劉 勇,李滿倉(cāng),于穎銳,肖 鵬,婁 磊
(中國(guó)核動(dòng)力研究設(shè)計(jì)院核反應(yīng)堆系統(tǒng)設(shè)計(jì)技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都 610213)
近年來(lái),以改善核燃料在嚴(yán)重事故下保持結(jié)構(gòu)完整性能力為目標(biāo),國(guó)際核燃料領(lǐng)域出現(xiàn)了耐事故燃料(accident tolerant fuel,ATF)這一新的核電燃料研究方向。采用新的燃料材料、包殼材料和結(jié)構(gòu)設(shè)計(jì)的ATF,可以減少或避免可燃?xì)怏w的產(chǎn)生,盡量減少裂變產(chǎn)物的泄漏,保持嚴(yán)重事故下核燃料結(jié)構(gòu)的完整性,從而降低核電站發(fā)生大量放射性物質(zhì)泄漏的風(fēng)險(xiǎn)[1]。
目前,壓水堆中常用的控制棒為不銹鋼導(dǎo)向管裝載Ag-In-Cd(AIC)材料。AIC合金的熔點(diǎn)小于800 ℃,且遠(yuǎn)小于Zr合金燃料包殼在多種事故下發(fā)生強(qiáng)烈氧化現(xiàn)象時(shí)的溫度1 300 ℃,這意味著發(fā)生事故時(shí),燃料棒還處于完整狀態(tài),但控制棒已開(kāi)始熔化。一旦控制棒受到破壞,將導(dǎo)致不可控的反應(yīng)性引入,產(chǎn)生一系列后續(xù)事故[2-3]。由此可見(jiàn),控制棒材料的選取在ATF研究中具有重要意義。隨著反應(yīng)堆技術(shù)的發(fā)展,新型控制棒材料不斷出現(xiàn)[4-5],研究人員從材料熔點(diǎn)、穩(wěn)定性及控制棒價(jià)值等方面對(duì)ATF控制棒備選材料進(jìn)行了研究和篩選[6-7],但對(duì)備選材料的中子學(xué)特性研究尚不充分,如對(duì)控制棒價(jià)值隨燃耗的變化研究較少。備選的ATF控制棒材料應(yīng)與傳統(tǒng)的壓水堆控制棒材料具有相當(dāng)?shù)目刂瓢魞r(jià)值,且控制棒價(jià)值不能隨燃耗加深出現(xiàn)較大的衰減,這樣才能滿足反應(yīng)堆設(shè)計(jì)及反應(yīng)性控制要求。本文選擇稀土元素的倍半氧化物(Eu2O3,Gd2O3,Sm2O3,Dy2O3,Er2O3)、Hf及HfO2等材料,研究了其控制棒價(jià)值隨燃耗的變化,為控制棒材料選型提供數(shù)據(jù)支持。
為保證事故工況下的堆芯安全性,考慮到ATF控制棒所處的環(huán)境,ATF控制棒材料必須具備3種性質(zhì)[6]:1)有效的中子吸收性,可保證反應(yīng)堆有效的反應(yīng)性控制和停堆裕量;2)高溫穩(wěn)定性,可保證在事故工況下控制棒晚于燃料熔化,防止不可控的反應(yīng)性引入;3)與燃料材料的可混合性,應(yīng)與燃料具有接近的熔點(diǎn),確保在燃料熔化時(shí)能與燃料混合熔化,保證對(duì)反應(yīng)性的控制。基于這些條件,文獻(xiàn)[6]給出了多種良好的ATF控制棒備選材料,如Eu2O3,Gd2O3,Sm2O3,Dy2O3,Er2O3,Hf,HfO2及這些材料的不同混合材料。
本文從中子學(xué)角度出發(fā),提出ATF控制棒吸收體材料選取應(yīng)遵循2個(gè)原則:1)ATF控制棒價(jià)值需與傳統(tǒng)控制棒價(jià)值相當(dāng),以保證適用于目前的堆芯設(shè)計(jì)。本文以AIC控制棒價(jià)值作為參考,要求ATF控制棒價(jià)值不小于AIC控制棒價(jià)值。2)在較長(zhǎng)時(shí)間的輻照條件下,控制棒價(jià)值能保持相對(duì)穩(wěn)定,適合長(zhǎng)期處于堆芯環(huán)境中。本文設(shè)定控制棒所處燃料組件的累積燃耗為200 GW·d·t-1,在該燃耗下,若某材料的控制棒價(jià)值與AIC控制棒價(jià)值相比更大或基本相當(dāng),則認(rèn)為該材料的反應(yīng)性價(jià)值較好,具有較好的燃耗行為。
為研究控制棒價(jià)值的燃耗行為,本文將Eu2O3,Gd2O3,Sm2O3,Dy2O3,Er2O3,Hf,HfO2控制棒材料置于全陶瓷微膠囊封裝燃料(fully ceramic microencapsulated fuel,F(xiàn)CM)組件中進(jìn)行充分燃燒,使燃耗達(dá)到2 GW·d·t-1,再將燃燒后的控制棒放入新組件中重新燃燒到燃耗為2 GW·d·t-1,以此重復(fù)計(jì)算100次,使得控制棒所在組件的累積燃耗達(dá)到200 GW·d·t-1。采用蒙特卡羅程序RMC對(duì)FCM燃料組件進(jìn)行建模計(jì)算[8]。
控制棒價(jià)值為控制棒插入所引入的反應(yīng)性變化,計(jì)算公式為
(1)
其中,Δρ為控制棒價(jià)值;ρ1,ρ2分別表示無(wú)棒、有棒時(shí)的反應(yīng)性;kinf,1,kinf,2分別表示無(wú)棒、有棒時(shí)的無(wú)限增殖因子。為便于對(duì)計(jì)算結(jié)果進(jìn)行分析說(shuō)明,定義控制棒價(jià)值衰減為當(dāng)前燃耗下的控制棒價(jià)值與零燃耗時(shí)的控制棒價(jià)值之差。定義控制棒價(jià)值相對(duì)當(dāng)量為當(dāng)前燃耗下的控制棒價(jià)值與零燃耗時(shí)的控制棒價(jià)值之比。
圖1為本文采用的FCM燃料組件結(jié)構(gòu)示意圖[9]。
圖1 FCM燃料組件結(jié)構(gòu)示意圖Fig.1 Diagram of FCM fuel assembly structure
TRISO(tri-structural iso-tropic)顆粒的幾何尺寸及材料層密度,如表 1所列。13×13組件中布置16根控制棒和中心測(cè)量?jī)x器導(dǎo)向管。FCM燃料組件的主要參數(shù)如表2所列??刂瓢粑阵w材料屬性,如表 3所列。由表3可見(jiàn),與AIC相比,本文的控制棒吸收體材均具有較高的熔點(diǎn), Eu2O3,Gd2O3,Sm2O3具有更大的熱中子吸收截面。
表1 TRISO顆粒的幾何尺寸及材料層密度Tab.1Geometry and material density information of TRISO particle
表2 FCM燃料組件的主要參數(shù)Tab.2The main parameters of FCM fuel assembly
表3 控制棒吸收體材料屬性Tab.3The properties of control materials
控制棒價(jià)值隨燃耗的變化曲線如圖 2所示,控制棒價(jià)值相對(duì)當(dāng)量隨燃耗的變化曲線如圖3所示。
圖2 控制棒價(jià)值隨燃耗的變化曲線Fig.2 Worth of control rod vs. burn up
圖3 控制棒價(jià)值相對(duì)當(dāng)量隨燃耗的變化曲線Fig.3 Relative equivalent of control rod vs. burnup
由圖2和圖3可見(jiàn),在燃耗初期,AIC的控制棒價(jià)值約為18 788 pcm,該值在整個(gè)壽期內(nèi)下降較為緩慢;在組件燃耗為50 GW·d·t-1時(shí),AIC控制棒價(jià)值相對(duì)當(dāng)量下降為燃耗初期的90%,此后,隨著組件燃耗的進(jìn)一步加深,AIC控制棒價(jià)值相對(duì)當(dāng)量緩慢下降,在燃耗為200 GW·d·t-1時(shí),AIC控制棒價(jià)值相對(duì)當(dāng)量為燃耗初期的86%。
Eu2O3的控制棒價(jià)值遠(yuǎn)大于其他材料的控制棒價(jià)值,且在整個(gè)燃耗期間,Eu2O3的控制棒價(jià)值均大于27 000 pcm。Eu2O3的宏觀吸收截面并不是最大的,而Gd2O3和 Sm2O3的吸收截面較大,但其控制棒價(jià)值卻小于Eu2O3的控制棒價(jià)值,這種現(xiàn)象可能與空間自屏現(xiàn)象相關(guān)。
Dy2O3和Hf的控制棒價(jià)值均比AIC的控制棒價(jià)值大;在整個(gè)燃耗期間, Dy2O3的控制棒價(jià)值幾乎沒(méi)有衰減。在燃耗小于140 GW·d·t-1時(shí),Sm2O3的控制棒價(jià)值大于AIC的控制棒價(jià)值;Gd2O3,HfO2和 Er2O3的控制棒價(jià)值相對(duì)較小。
圖4給出了燃耗過(guò)程中Eu2O3中主要中子吸收核素核子密度的變化情況。
圖4 Eu2O3控制棒的核子密度隨燃耗的變化曲線Fig.4 Nuclide densities of main isotopes forEu2O3 control rod vs.burnup
由圖4可見(jiàn),雖然151Eu和153Eu吸收中子不斷消耗,但其吸收中子分別產(chǎn)生的152Eu和154Eu會(huì)衰變產(chǎn)生152Sm,154Gd,155Gd等核素。本文涉及的主要同位素的熱中子微觀吸收截面,如表 4所列。
表4 主要同位素的熱中子微觀吸收截面Tab.4Microscopic thermal neutroncapture cross sections of main isotopes
由表4可見(jiàn),新產(chǎn)生的核素152Sm,154Gd,155Gd均具有較大的熱中子微觀吸收截面,能夠補(bǔ)充151Eu和153Eu消耗產(chǎn)生的控制棒價(jià)值虧損。
圖5給出了燃耗過(guò)程中Dy2O3中主要中子吸收核素核子密度的變化情況。由圖 5可見(jiàn),雖然161Dy和164Dy隨燃耗增加而減少,但產(chǎn)生的162Dy、165Ho和166Er等核素具有較大的熱中子微觀吸收截面,在一定程度上補(bǔ)充了161Dy和164Dy消耗對(duì)控制棒價(jià)值的影響。
圖5 Dy2O3控制棒的核子密度隨燃耗的變化曲線Fig.5 Nuclide densities of main isotopes forDy2O3 control rod vs. burnup
Hf的控制棒價(jià)值比AIC大,且在整個(gè)燃耗過(guò)程中存在比較顯著的線性遞減。圖6給出了Hf控制棒的核子密度隨燃耗的變化曲線。由圖6可見(jiàn),隨著燃耗加深,177Hf的核子密度不斷減少,而其他次要中子吸收核素,如178Hf,179Hf和180Hf,只能通過(guò)少中子的Hf同位素吸收中子產(chǎn)生,因此,新產(chǎn)生的核素核子密度增加緩慢,不足以補(bǔ)充177Hf減少帶來(lái)的控制棒價(jià)值的衰減。在燃耗為200 GW·d·t-1時(shí),Hf控制棒相對(duì)價(jià)值當(dāng)量為燃耗初期的84%,與AIC控制棒的相對(duì)價(jià)值當(dāng)量非常接近。由于HfO2中Hf的核子密度低于純Hf材料,其控制棒價(jià)值更低,但控制棒價(jià)值隨燃耗的變化曲線與Hf控制棒類似。
圖6 Hf控制棒的核子密度隨燃耗的變化曲線Fig.6 Nuclide densities of main isotopesfor Hf control rod vs. burnup
在燃耗小于150 GW·d·t-1時(shí),隨著燃耗增加,Sm2O3的控制棒價(jià)值緩慢減??;燃耗為150 GW·d·t-1時(shí),Sm2O3的控制棒價(jià)值相對(duì)當(dāng)量減少為燃耗初期的82%;在燃耗大于150 GW·d·t-1時(shí),隨著燃耗增加,Sm2O3的控制棒價(jià)值逐漸增大;燃耗為200 GW·d·t-1時(shí),Sm2O3的控制棒價(jià)值相對(duì)當(dāng)量增大到燃耗初期的84%。圖 7給出了Sm2O3控制棒的核子密度隨燃耗的變化曲線。由圖7可見(jiàn),在燃耗150 GW·d·t-1時(shí),由于149Sm幾乎耗盡,而153Eu,154Eu和156Gd等仍不斷增加,導(dǎo)致控制棒價(jià)值在燃耗大于150 GW·d·t-1后有一定的增加。
圖7 Sm2O3控制棒的核子密度隨燃耗的變化曲線Fig.7 Nuclide densities of main isotopes forSm2O3 control rod vs.burnup
Er2O3和Gd2O3的控制棒價(jià)值隨燃耗加深有較大衰減,燃耗為200 GW·d·t-1時(shí)的控制棒價(jià)值只有初始控制棒價(jià)值的60%左右。主要原因是其他同位素的產(chǎn)生不足以補(bǔ)充主要中子吸收核減少造成的控制棒價(jià)值衰減,所以,這2種材料用作控制棒材料還有待進(jìn)一步研究??紤]到Er2O3和Gd2O3的快速消耗現(xiàn)象,目前多將其應(yīng)用于可燃毒物材料中。
本文評(píng)價(jià)了Eu2O3,Gd2O3,Sm2O3,Dy2O3,Er2O3,Hf及HfO2用作ATF控制棒吸收體的中子學(xué)特性,分析了控制棒價(jià)值隨燃耗的變化情況。結(jié)果表明,在本文采用的組件環(huán)境和控制棒幾何條件下,Eu2O3,Dy2O3,Sm2O3和Hf的初始控制棒價(jià)值比AIC的初始控制棒價(jià)值高約1%~47%。隨著燃耗加深,Eu2O3和Dy2O3的控制棒價(jià)值幾乎無(wú)衰減,Sm2O3和Hf的控制棒價(jià)值逐漸衰減,但在燃耗為200 GW·d·t-1時(shí),其控制棒價(jià)值仍能保持與AIC的控制棒價(jià)值相當(dāng)。