• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical evolution of cross phase of edge fluctuations and transport bifurcation

    2021-04-22 05:34:12XueyunWANG王雪韻ZhenyuZHOU周振宇ZhuoyiLI李卓懿andBoLI李博
    Plasma Science and Technology 2021年4期
    關鍵詞:李博

    Xueyun WANG(王雪韻),Zhenyu ZHOU(周振宇),Zhuoyi LI(李卓懿) and Bo LI(李博)

    1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,People’s Republic of China

    2 School of Physics,Beihang University,Beijing 100191,People’s Republic of China

    Abstract The dynamical evolution of edge turbulence during a transport bifurcation is explored using a flux-driven nonlinear fluid model with a geometry relevant to the plasma edge region.The simulations show that the self-generated mean shear flows can dramatically modify the phase angle between turbulent fluctuations.The changes in phase differences and amplitudes of edge fluctuations give rise to the modifications of turbulent edge transport.The statistical properties of flux and fluctuations are also investigated before and after edge shear flow generation.

    Keywords:plasma turbulence,plasma edge transport,plasma simulation

    1.Introduction

    The study of turbulence and transport due to the curvaturedriven modes is of high interest because they are believed to play a central role in the edge region of magnetic confinement devices[1-4].The topic is of great importance to the fusion community because edge turbulence largely governs the overall confinement performance of tokamaks and similar machines.The edge region,comprising the transition zone from the inner,hot core plasma to the outer,cold scrape-off layer(SOL),exerts vital control over the plasma discharge through its role in the L-H(low-high confinement)transition[5],and the formation of the edge pedestal.Considerable efforts in experiments[6-12],theoretical modeling[13-16],and nonlinear simulations[17-25]have been devoted to the understanding of transport-reduction mechanism in L-H transitions.In particular,the nonlinear energy transfer during the transition process has been experimentally studied[6-9],and the limit cycle oscillations before a transition have been observed in the edge region of tokamak experiments[10-12].Radial profiles of fluctuations and velocities have also been measured in the edge transition region where the plasma is crossing the last closed flux surface(LCFS)[26-28].

    The generation of mean E×B shear flow in the edge region is believed to be responsible for quenching turbulent transport and further triggering the formation of plasma edge transport barriers[29].On one hand,the fluctuation levels can be suppressed by strong mean shear flows,which directly limit the amplitudes of turbulent fluxes.On the other hand,mean shear flow may modify the phase angle between the fluctuations,whose correlation drives a turbulent flux and determines the direction of radial flux.These effects of E×B shear flows on turbulence and its transport play an important role in turbulence suppression.The changes in turbulent transport through the modificaton of cross phase of fluctuations in frequency domain have been investigated in the experiments where the plasma flows are self-generated through the interaction with turbulence[30],and in the experiments where the shear flows are controlled externally by biasing voltage[31].The effects of strongly sheared flows on the cross phase between turbulent fluctuations in wavenumber space have been studied theoretically[32-34].The impact of phase dynamics on transport has also been explored in numerical simulations of the edge localized modes[35]and the biasing-induced transport reduction[36].However,the nonlinear simulation of phase dynamics during the transitions between low and high confinement modes has not been reported.The interaction between fluctuation phases and mean shear flow still requires more detailed investigation.

    In this work,we present self-consistent nonlinear simulations of fluctuation-induced transport bifurcation in plasma interchange turbulence.The simulations are carried out in a poloidally and radially localized domain at the outboard midplane of toroidal plasma devices.In particular,radial computational domain is across the LCFS to explore the interaction between the plasma edge and SOL.We consider the edge region of a plasma column full of bad curvature of magnetic field line,which is relevant to the edge bad-curvature region of toroidally confined plasmas.Parallel losses are introduced through sheath boundary conditions in the SOL region.This produces plasma pressure gradients at the LCFS that drive the pressure-driven interchange instability.The simulations evolve full profiles of the various quantities without separation of equilibrium and fluctuations.In the simulations,the mean E×B shear flows are self-generated just inside the LCFS through the fluctuation-induced nonlinear energy transfer[22].Previously,we have shown the existence of two transport regimes(L and H regimes)for plasma interchange turbulence[22,37,38].The L and H regimes refer to the state with weak and strong mean flows,respectively.Steeper gradients are formed at the plasma edge in the pressure and density profiles in H-regime[22].Here,we examine the role of the phase angles between fluctuations in the fluctuation-induced nonlinear transport bifurcation.We focus on the time evolution of the transport cross phase and self-generated shear flows,as well as their interaction on the turbulence suppression.The dynamics of cross phase and fluctuation levels are explored throughout the forward and back transitions.The statistical properties of turbulent flux and fluctuations in the two transport regimes are also compared to further explore the impact of mean shear flow generation.

    2.Model equations

    The simulation model is based on the drift-reduced Braginskii equations with ion pressure dynamics[39].For simplicity,we consider the pressure-driven electrostatic instability with parallel wavenumbers k‖?0.The geometry used in the simulations is a two-dimensional(2D)plane perpendicular to the equilibrium magnetic field.The 2D computational domain is radially localized at the plasma outer boundary on the low field side and poloidally localized at the midplane of a toroidally confined plasma.Since the variation of magnetic field is much slower,the changes in plasma profiles,the curvature and strength of the equilibrium magnetic fields are assumed to be constant across the computational domain.The equilibrium field is assumed to be dominated by the toroidal component,and the curvature radius of magnetic filed lines is given by the major radius from the torus axis.The simulated geometry does not describe the full equilibrium magnetic configuration such as the shape of cross sections.The fieldaligned coordinates are used in the simulations.The parallel coordinate z is in the direction of the equilibrium magnetic field.The transverse coordinates x,y correspond to local radial and poloidal variables.The time(t),perpendicular(x,y),and parallel(z)normalization scales are t0=a/cs,ρs=cs/Ωi,and Lcthe connection length of field lines,whereis the sound speed and Ωiis the ion gyrofrequency.The normalized nonlinear equations for the perpendicular dynamics of the total plasma density,pressure,and vorticity are[22]

    where the Laplacian has the formwhen applied at the outer midplane in field-aligned coordinates[17].The effects due to the curvature of magnetic field lines are included in the curvature terms of the model equations:where R is the curvature radius of field lines.The convective derivatives are written in the conservative form

    where vx=??φ/?y and vy=?φ/?x are the radial and poloidal components of normalized E×B velocityin units of cs.Equation(2)in our 2D model assumes the adiabatic closure,d(p/nγ)/dt=0 for the plasma pressure,where γ=5/3.We note that this adiabatic approximation and the assumption of electrostatic flute-like mode may not be valid for comparison with the L-H transition experimentally observed in tokamak plasmas.The ion pressure term in the generalized vorticity results from the diamagnetic velocity part in the ion polarization current[40,41].Thus,the gradients of plasma potential and pressure are coupled through equation(4).This coupling is vital to realize transport bifurcation in our nonlinear simulations.The input flux is introduced from source terms SE,Snthat are localized near the inner boundary.In the SOL region,sheath boundary conditions are applied in the parallel direction:parallel flowsand parallel currentswith[42,43].Thus,the sheath terms are added into model equations for the SOL region with σ=a/Lcthe normalized loss rate due to the sound-speed parallel flows to the ends of open field lines.Dirichlet boundary conditions are imposed at the inner and outer boundaries.Periodic boundary conditions are assumed in the poloidal y direction.The nonlinear fluid equations are solved by a finite-difference turbulence code.The numerical algorithm used in our code is described in section 3.The simulation parameters are a/ρs=100,a/R=0.3,σ=0.015,and Λ=3.Note that the perpendicular diffusion coefficients are taken to be the same for three field variables n,p and w,and specifically the values of the coefficients used in the nonlinear simulations μ=1 in units ofare small compared to Bohm diffusion ρscsby a factor of ρs/a ?1.

    3.Numerical algorithm

    We have developed an explicit time-dependent code for the solution of coupled,nonlinear equations(1)-(3)on uniform,rectangular grids in the(x,y)plane.All of our equations are of the form

    where F=vψ is the flux and v is the velocity.The dominant nonlinearities in the equations arise from the convective terms,which are written in the conservative form.The second-order,centered-difference expression is used for the divergence of flux.The diffusive terms are centrally different to second-order accuracy.The explicit time stepping scheme is a second-order trapezoidal leapfrog algorithm[44]

    where i labels the discrete time.Since the vorticity is evolved in equation(3),we obtain the potential at each time step by the matrix inversion of the Poisson equationwhere Φ=φ+p.Fourier transforming this equation in y gives

    This equation in the finite-difference form can be inverted using a standard tridiagonal solver.Then inverse Fourier transform in y gives Φ(x,y)and the potential is given by φ=Φ?p.

    4.Simulation results

    The curvature-driven interchange instability is triggered by sufficient pressure gradients at the LCFS.As the system evolves,interchange modes saturate in the nonlinear phase and the L-regime turbulent state is reached with quasi-stationary plasma profiles.Figure 1 shows the poloidal-averaged potential signals at two different radial locations just inside the LCFS.In the quasi-stationary nonlinear L-regime(t=70?110),the two signals oscillate in phase and only have slight difference in amplitude.This implies weak radial gradients of plasma potential and strong radial correlations of potential fluctuations at the plasma edge.

    Figure 1.Time evolution of poloidal-averaged potential at x=?15ρs(blue),and x=?5ρs(red).The LCFS is located at x=0.The vertical lines indicate the moments of increasing and decreasing heating power,respectively.

    From the L-regime nonlinear state,we increase input power above a certain threshold at t=110.As seen in figure 1,the two potential signals begin to separate and oscillate with higher frequencies,known as the limit cycle oscillation(t=110?140).The strong oscillations of the potential induce the radial electric fields and the associated poloidal flows localized just inside the LCFS.This reveals that the limit cycle oscillation,as a process of relaxation of heating,is strongly correlated to the generation of mean flow shear.After the mean shear flow is fully generated in the H-regime,the differences between the two potential signals approach maximum and the limit cycle oscillation ends.The significant gap between the two potential signals indicates a large radial potential well in the edge region.The simulations show that the radial gradients of electric potential and the resulting radial electric field strongly depend on the magnitude of local heating power,hence on the plasma local temperature.The temperature dependence for generation of edge inward electric field due to ion orbit losses has been studied in[45].

    During the state of H-regime,we decrease the input heating power below a certain threshold at t=170.In response to the change of the driven flux from the plasma core,a back transition is eventually triggered at t=180.The two potential signals at plasma edge oscillate faster again and the amplitudes get closer to each other as the mean shear flow gradually disappears in the edge region.After the system returns to L-regime(t?210),the large-scale fluctuations with strong radial correlations are developed again in the edge region.Comparing the fluctuation level of potential signals before and after the transition,it is obvious that the amplitude of fluctuations in H-regime is much smaller than that in the L-regime,which shows the turbulence suppression in H-regime.

    To explore the amplitude and phase evolution of fluctuations during a transition,we write the perturbations in terms of Fourier series,

    Figure 2.Time evolution of(a)phase angle θk,(b)sin θk,(c)|δpk|,(d)|δφk|,(e)radial flux 〈δ pδ vx 〉and(f)mean poloidal E×B flow vy in the edge region.The vertical lines indicate the moments of increasing and decreasing heating power.

    Figure 3.Probability density function(PDF)of radial flux in the edge region in(a)L-regime and(b)H-regime.Here σ is the standard deviation.

    where k ≡kyis the poloidal wavenumber.Then the Fourier components of the average radial flux can be written as

    is a combination of the amplitudes of potential and pressure fluctuations and the phase differences between them.The wavenumber we choose for Γkis the dominant poloidal wavenumber of fluctuations in the nonlinear turbulent state.

    As seen in figure 2(a),the relative phase angle is mainly oscillating between π/2 and π in the nonlinear L-regime(t=70?110).Correspondingly,sinθ kin figure 2(b)oscillates near the value of one,producing the maximum amount of flux in the outward radial direction.As shown in figures 2(c)and(d),the amplitudes of potential perturbations are large compared to pressure perturbations.The resulting outward turbulent flux in figure 2(e),which consists of all Fourier components of perturbations,fluctuates around a stationary and relatively high level while the mean shear flow vyin figure 2(f)remains small at the plasma edge.

    When the limit cycle oscillation(t?110?140)is triggered by the increase of input power,the phase angles as well as the amplitudes of pressure and potential perturbations exhibit stronger oscillations in response to the increased heating.This induces large-amplitude fluctuations in radially outward energy flux as the edge mean flows begin to grow during the limit cycle oscillation period.The transition occurs at t?140 when the radial flux gets decreased to a low level.As shown in figure 2,the amplitudes of pressure and potential fluctuations suddenly drop to a low level compared to those just before the transition.Meanwhile,the relative phase angle oscillates dramatically.As the growth of mean shear flow saturates in H-regime,the phase differences between potential and pressure fluctuations eventually change to π so thatsinθ koscillates near zero.As a result,the radial fluxes remain at a low level even though the fluctuation amplitudes start to increase again after the transition.

    The back transition(t?180?210)is characterized by the increase of fluctuation amplitudes and reduction of mean flows in response to a sudden decrease of input power.The final transition to the turbulent state of L-regime occurs when the edge mean flows completely collapse at t?210.Meanwhile,the phase angle between potential and pressure fluctuations reduces to a value near π/2 that is favorable for outward transport.After the back transition,the amplitude of pressure fluctuations drops because of the decreased heating.In contrast,the potential fluctuations maintain at the high level throughout the back transition.The turbulence phase and mean flow dynamics during the forward and back transitions in figure 2 reveal that the mean E×B flow has a direct impact on the phase angles of fluctuations which determine the direction as well as amplitude of turbulent transport.

    We further study statistical properties of average radial flux in the two transport regimes.The probability distribution of flux is calculated from the time series of Γkand the flux is normalized by the standard deviation of the time series.As shown in figure 3(a),the dominant k components of turbulent radial flux in L-regime has a non-Gaussian distribution with a long tail at the positive flux and has a large positive mean value,indicating intermittent,outward transport events.The strong radial flux is related to large-scale convective turbulent eddies in the edge region.In contrast,the distribution of radial flux is changed dramatically in H-regime.As seen in figure 3(b),the probability density function becomes approximately symmetric about the zero value.Thus,the inward and outward fluxes have a nearly equal probability.The deviation of the flux amplitude from the mean is significantly reduced,implying the turbulence suppression.

    Figure 4.Maximum value of cross-correlation function as a function of separation distances in(a)radial and(b)poloidal directions.

    Finally,we examine the correlations of spatial structures.The cross-correlation functions are calculated from the time series of density fluctuations at two different locations just inside the LCFS.The correlation lengths are obtained by measuring the decay of the peak correlation amplitude as a function of separation distance[42].The cross-correlation functions in the radial and poloidal directions are defined as

    Here,〈… 〉denotes an average over time.In L-regime,as seen in figures 4(a)and(b),the correlation lengths of fluctuations in the radial and poloidal directions have similar decay lengths λc?10ρs,which are approximately the size of the large,round eddies in the potential structures.In H-regime,radial correlation lengths of density fluctuations are significantly reduced,indicating the decorrelation of structures in the radial direction.The potential differences in the radial direction induce radial electric fields,which result in the generation of mean E×B flows at the location about 10ρsinside the LCFS,as shown in figure 1.When calculating the poloidal cross-correlation function,we choose the radial location where the flows exist.As shown in figure 4(b),the poloidal correlation length is significantly enhanced at the plasma edge.The enhancement of correlation in the poloidal direction implies the flow generation at the position.Note that the simulations are not compared with experiments due to the limitation of the model discussed earlier.

    5.Conclusion

    In summary,the dynamical evolution of cross phase and amplitudes of fluctuations during an edge transport bifurcation has been explored from self-consistent nonlinear fluxdriven simulations,focusing on the curvature-driven instability.We find that the generation of mean edge shear flow is strongly correlated with the modification of amplitudes and phase angles of edge turbulent fluctuations.During the transition to a suppressed transport regime,the changes of phase angles become significant as the fluctuation-induced mean shear flows grow at the plasma edge.The mean shear flows act on the amplitudes and phase angles of turbulence through the modification of coherent structures of fluctuations as demonstrated by the changes in the spatial correlations.Our 2D simplified model only describes the electrostatic interchange modes in a toroidal magnetic field with bad curvature.For comparison with the L-H transitions in tokamak plasmas,however,the ballooning modes should be considered for tokamak plasmas with magnetic shear[46,47].We also note that the particle source is fixed in the simulations.However,the change of particle sources would possibly affect the dynamical evolution of the relative phase angle and the mean flow shear,which is for future investigation.

    Acknowledgments

    We thank Chuankui Sun,Cong Meng,Pengfei Li,Zhijian Xie,Dianjing Liu,and Ao Zhou for help with simulations.We acknowledge extensive discussions with Tianchun Zhou,Guosheng Xu,Jiaqi Dong,and P.H.Diamond.This work was supported by the National Magnetic Confinement Fusion Energy Program of China(No.2018YFE0311300).

    猜你喜歡
    李博
    Simulation of ion cyclotron wave heating in the EXL-50U spherical tokamak based on dispersion relations
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    LabVIEW下的模擬電路實驗教學創(chuàng)新對策
    Evolution of optical properties and molecular structure of PCBM films under proton irradiation
    LabVIEW下通信原理實驗教改探討
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    Manipulating transition of a two-component Bose–Einstein condensate with a weak δ-shaped laser?
    Fully integrated modeling of surface water and groundwater in coastal areas *
    空間相機次鏡在軌校正仿真分析
    母亲3免费完整高清在线观看| 在线看三级毛片| 国产探花在线观看一区二区| 亚洲专区国产一区二区| 嫩草影视91久久| 国产精品免费一区二区三区在线| 最近最新中文字幕大全免费视频| 久久久久性生活片| 精品久久久久久久人妻蜜臀av| 亚洲成人免费电影在线观看| 18禁观看日本| 巨乳人妻的诱惑在线观看| 国产精品香港三级国产av潘金莲| 综合色av麻豆| 亚洲五月天丁香| 欧美3d第一页| 怎么达到女性高潮| 天天一区二区日本电影三级| 亚洲色图av天堂| 精品一区二区三区视频在线观看免费| 国内精品一区二区在线观看| 日韩精品中文字幕看吧| 亚洲色图av天堂| 日本黄色视频三级网站网址| 身体一侧抽搐| 亚洲 国产 在线| av天堂在线播放| 少妇丰满av| 久久婷婷人人爽人人干人人爱| 亚洲av成人av| 国产成人精品久久二区二区91| 一本一本综合久久| 夜夜躁狠狠躁天天躁| 又黄又粗又硬又大视频| 在线a可以看的网站| 午夜日韩欧美国产| 老司机在亚洲福利影院| 最好的美女福利视频网| 美女高潮喷水抽搐中文字幕| 啪啪无遮挡十八禁网站| 非洲黑人性xxxx精品又粗又长| 观看免费一级毛片| 国内精品一区二区在线观看| 午夜免费成人在线视频| 老汉色av国产亚洲站长工具| 啪啪无遮挡十八禁网站| 国产精品亚洲av一区麻豆| 国产在线精品亚洲第一网站| 日日摸夜夜添夜夜添小说| 色老头精品视频在线观看| 国产精品久久久久久久电影 | 国产av在哪里看| 1024香蕉在线观看| 久久久精品欧美日韩精品| 免费看十八禁软件| 男插女下体视频免费在线播放| 国产成人欧美在线观看| 久久午夜综合久久蜜桃| 亚洲自偷自拍图片 自拍| 国产精品99久久99久久久不卡| 日韩欧美国产一区二区入口| 99热只有精品国产| 欧美一区二区国产精品久久精品| 中国美女看黄片| 精品熟女少妇八av免费久了| 国产精品久久电影中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 性欧美人与动物交配| 欧美黄色淫秽网站| 法律面前人人平等表现在哪些方面| 国产高清三级在线| 午夜日韩欧美国产| 亚洲色图av天堂| 成年女人看的毛片在线观看| 国内少妇人妻偷人精品xxx网站 | 国产精品美女特级片免费视频播放器 | 亚洲中文日韩欧美视频| 国产黄片美女视频| aaaaa片日本免费| 国产亚洲精品久久久com| 免费人成视频x8x8入口观看| 国产蜜桃级精品一区二区三区| 欧美性猛交黑人性爽| 嫩草影院入口| 在线免费观看不下载黄p国产 | 久久精品综合一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精华国产精华精| 国内久久婷婷六月综合欲色啪| 超碰成人久久| av天堂在线播放| 久久精品影院6| 午夜福利在线观看吧| 日本撒尿小便嘘嘘汇集6| 波多野结衣巨乳人妻| 变态另类成人亚洲欧美熟女| 免费看a级黄色片| 久久中文看片网| 狠狠狠狠99中文字幕| 青草久久国产| 亚洲avbb在线观看| 亚洲国产中文字幕在线视频| 国产 一区 欧美 日韩| 看黄色毛片网站| av天堂中文字幕网| 国产精品综合久久久久久久免费| av天堂在线播放| 久久久成人免费电影| 国产一区二区在线av高清观看| 亚洲欧美日韩卡通动漫| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 搡老熟女国产l中国老女人| 身体一侧抽搐| 美女黄网站色视频| bbb黄色大片| 91在线观看av| 亚洲国产看品久久| www.www免费av| 免费在线观看日本一区| av天堂在线播放| 岛国在线免费视频观看| 亚洲精品在线观看二区| 久久香蕉国产精品| 91久久精品国产一区二区成人 | 日本一二三区视频观看| 三级毛片av免费| 国产精品电影一区二区三区| 国产精品综合久久久久久久免费| 亚洲av美国av| www.www免费av| 男人和女人高潮做爰伦理| 亚洲国产欧美一区二区综合| 18美女黄网站色大片免费观看| 男女视频在线观看网站免费| 狂野欧美白嫩少妇大欣赏| 午夜福利成人在线免费观看| 99精品在免费线老司机午夜| 亚洲欧美日韩东京热| 亚洲精品在线美女| 亚洲欧美激情综合另类| 亚洲欧美激情综合另类| 亚洲在线自拍视频| www日本在线高清视频| 国产av在哪里看| 91久久精品国产一区二区成人 | 看黄色毛片网站| 巨乳人妻的诱惑在线观看| 中亚洲国语对白在线视频| 天堂网av新在线| 国产乱人视频| 国产成人精品无人区| 一本精品99久久精品77| ponron亚洲| 搡老妇女老女人老熟妇| 日本一本二区三区精品| 午夜福利在线在线| 亚洲国产欧美一区二区综合| 国产av麻豆久久久久久久| 国产男靠女视频免费网站| 欧美激情在线99| 久久午夜综合久久蜜桃| 日韩精品青青久久久久久| 亚洲欧美一区二区三区黑人| 99热这里只有是精品50| 欧美三级亚洲精品| 亚洲中文av在线| 久久久国产成人精品二区| 亚洲色图av天堂| 哪里可以看免费的av片| 精品久久蜜臀av无| 精品国产亚洲在线| 国产精品av久久久久免费| 国产精品 欧美亚洲| 国产99白浆流出| 叶爱在线成人免费视频播放| 最新美女视频免费是黄的| 91字幕亚洲| 欧美激情在线99| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| 亚洲av熟女| 精品久久久久久久久久免费视频| 色在线成人网| 午夜精品在线福利| 757午夜福利合集在线观看| 免费电影在线观看免费观看| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 久久中文字幕一级| 99热这里只有是精品50| 婷婷精品国产亚洲av在线| 天天添夜夜摸| 99在线视频只有这里精品首页| 99久久综合精品五月天人人| 中文在线观看免费www的网站| 免费av不卡在线播放| 神马国产精品三级电影在线观看| 一个人免费在线观看的高清视频| 男女视频在线观看网站免费| 国产97色在线日韩免费| 国产成人av激情在线播放| 成年版毛片免费区| 国产真人三级小视频在线观看| 偷拍熟女少妇极品色| 老司机午夜十八禁免费视频| 麻豆一二三区av精品| 身体一侧抽搐| www.999成人在线观看| 嫁个100分男人电影在线观看| 色尼玛亚洲综合影院| h日本视频在线播放| 久久这里只有精品中国| 亚洲五月天丁香| 真实男女啪啪啪动态图| 身体一侧抽搐| 久久久久久大精品| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 给我免费播放毛片高清在线观看| 超碰成人久久| 国产精品九九99| 国产成人啪精品午夜网站| 男人舔女人的私密视频| 又大又爽又粗| 亚洲国产日韩欧美精品在线观看 | www.www免费av| 欧美日韩国产亚洲二区| 国产av不卡久久| 精品久久蜜臀av无| 久久精品人妻少妇| 在线观看午夜福利视频| 国产午夜精品论理片| 亚洲av美国av| 精品久久久久久成人av| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 在线观看舔阴道视频| 在线免费观看的www视频| 少妇的丰满在线观看| 亚洲成人久久性| 日日干狠狠操夜夜爽| 丁香六月欧美| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 亚洲精品在线美女| 欧美黑人巨大hd| 中文资源天堂在线| 国产精品一区二区三区四区久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人不卡在线观看播放网| 午夜福利视频1000在线观看| 淫妇啪啪啪对白视频| 日本五十路高清| 狠狠狠狠99中文字幕| 亚洲国产精品久久男人天堂| 亚洲精品粉嫩美女一区| www.www免费av| 国产激情欧美一区二区| 91字幕亚洲| 国内毛片毛片毛片毛片毛片| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 国产免费av片在线观看野外av| 18禁裸乳无遮挡免费网站照片| 九色国产91popny在线| 两个人的视频大全免费| 欧美性猛交黑人性爽| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 真人做人爱边吃奶动态| 国产成人系列免费观看| 欧美黑人巨大hd| 亚洲avbb在线观看| 国产午夜福利久久久久久| 视频区欧美日本亚洲| 国产成人欧美在线观看| 变态另类成人亚洲欧美熟女| 哪里可以看免费的av片| 免费高清视频大片| 男人舔奶头视频| 亚洲av日韩精品久久久久久密| 欧美日韩中文字幕国产精品一区二区三区| www.精华液| av中文乱码字幕在线| 99久久无色码亚洲精品果冻| 成人欧美大片| 日韩精品中文字幕看吧| www.999成人在线观看| 亚洲av电影不卡..在线观看| 18禁观看日本| 这个男人来自地球电影免费观看| 成人永久免费在线观看视频| 亚洲18禁久久av| 国产精华一区二区三区| 亚洲专区字幕在线| 亚洲av美国av| 亚洲av电影不卡..在线观看| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| www.熟女人妻精品国产| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 少妇的逼水好多| 美女黄网站色视频| 欧美中文日本在线观看视频| 三级国产精品欧美在线观看 | 淫秽高清视频在线观看| 精品久久蜜臀av无| 亚洲中文字幕日韩| 亚洲精品美女久久久久99蜜臀| 国产成人aa在线观看| 亚洲专区字幕在线| 亚洲18禁久久av| 青草久久国产| 中文资源天堂在线| 成人三级黄色视频| 1024手机看黄色片| 无限看片的www在线观看| 香蕉av资源在线| 免费在线观看成人毛片| av天堂中文字幕网| 久久精品综合一区二区三区| 亚洲精品乱码久久久v下载方式 | 最好的美女福利视频网| 俺也久久电影网| 中文字幕av在线有码专区| 巨乳人妻的诱惑在线观看| 精品欧美国产一区二区三| 香蕉久久夜色| 国产高清视频在线观看网站| 久久久久国产一级毛片高清牌| 国产极品精品免费视频能看的| 日本a在线网址| 国产欧美日韩精品一区二区| 精品国产三级普通话版| 一级作爱视频免费观看| 精品国产乱子伦一区二区三区| 18禁观看日本| 亚洲狠狠婷婷综合久久图片| 久久性视频一级片| 9191精品国产免费久久| 婷婷六月久久综合丁香| 国产欧美日韩一区二区精品| 搞女人的毛片| 亚洲国产欧洲综合997久久,| 最新在线观看一区二区三区| 日本成人三级电影网站| 欧美黑人欧美精品刺激| 国产日本99.免费观看| 国产精品久久久久久久电影 | 免费人成视频x8x8入口观看| 看片在线看免费视频| 国内揄拍国产精品人妻在线| 国产成人aa在线观看| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品| 99热这里只有精品一区 | 日韩 欧美 亚洲 中文字幕| av女优亚洲男人天堂 | 欧美成人一区二区免费高清观看 | 精品国产三级普通话版| 熟女少妇亚洲综合色aaa.| 国产一区二区在线观看日韩 | 观看免费一级毛片| 久久久成人免费电影| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 国产综合懂色| 深夜精品福利| 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 免费在线观看亚洲国产| 在线视频色国产色| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 成人18禁在线播放| 久久精品国产清高在天天线| 午夜精品一区二区三区免费看| 久久久成人免费电影| 国产成人啪精品午夜网站| 国产高清激情床上av| 国产精品久久电影中文字幕| 久久这里只有精品中国| 午夜成年电影在线免费观看| 午夜免费成人在线视频| 香蕉国产在线看| 伦理电影免费视频| 欧美在线一区亚洲| 成人精品一区二区免费| 欧美午夜高清在线| 国产精品久久电影中文字幕| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 一二三四在线观看免费中文在| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 最新中文字幕久久久久 | 精品一区二区三区四区五区乱码| 国产亚洲精品久久久久久毛片| 黄色视频,在线免费观看| 亚洲在线自拍视频| 久久中文看片网| 成年免费大片在线观看| av在线蜜桃| 日韩高清综合在线| 欧美最黄视频在线播放免费| 草草在线视频免费看| 欧美3d第一页| 999久久久国产精品视频| 18美女黄网站色大片免费观看| 国产免费男女视频| 久久久国产精品麻豆| 91老司机精品| 久久精品国产亚洲av香蕉五月| 美女高潮的动态| 一进一出抽搐gif免费好疼| 久久人妻av系列| 国产不卡一卡二| 老司机午夜十八禁免费视频| 两个人的视频大全免费| 性色avwww在线观看| 欧美不卡视频在线免费观看| 成年女人永久免费观看视频| 国产在线精品亚洲第一网站| 久久精品国产亚洲av香蕉五月| 精品久久蜜臀av无| av中文乱码字幕在线| x7x7x7水蜜桃| 一进一出抽搐gif免费好疼| 久久亚洲真实| 国产成+人综合+亚洲专区| 久久久久久久午夜电影| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 亚洲国产精品合色在线| 午夜福利视频1000在线观看| 1000部很黄的大片| 最新在线观看一区二区三区| 草草在线视频免费看| 亚洲人成网站高清观看| 国产一区二区三区在线臀色熟女| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人av| 亚洲av片天天在线观看| 亚洲av熟女| 中文亚洲av片在线观看爽| 欧美日韩一级在线毛片| 国产精品久久久av美女十八| 制服人妻中文乱码| 90打野战视频偷拍视频| 不卡av一区二区三区| 男女视频在线观看网站免费| 麻豆久久精品国产亚洲av| 国产成人av教育| 无遮挡黄片免费观看| 校园春色视频在线观看| www.999成人在线观看| 9191精品国产免费久久| 欧美黑人巨大hd| 身体一侧抽搐| 首页视频小说图片口味搜索| 午夜免费观看网址| 亚洲中文日韩欧美视频| 91久久精品国产一区二区成人 | 久久久久久九九精品二区国产| 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| 欧美最黄视频在线播放免费| 国产黄色小视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品欧美国产一区二区三| 国产男靠女视频免费网站| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 好看av亚洲va欧美ⅴa在| 老鸭窝网址在线观看| 999精品在线视频| 夜夜夜夜夜久久久久| 久久99热这里只有精品18| 91老司机精品| 极品教师在线免费播放| 黑人巨大精品欧美一区二区mp4| 成人av在线播放网站| 亚洲美女黄片视频| 国产aⅴ精品一区二区三区波| 视频区欧美日本亚洲| 国产精品一区二区三区四区免费观看 | 亚洲国产欧洲综合997久久,| 国产亚洲精品一区二区www| 中国美女看黄片| 日韩人妻高清精品专区| 欧美另类亚洲清纯唯美| 十八禁网站免费在线| 韩国av一区二区三区四区| 国产精品久久视频播放| 亚洲av成人不卡在线观看播放网| 日本三级黄在线观看| 长腿黑丝高跟| 国产精品99久久久久久久久| 禁无遮挡网站| 久久国产乱子伦精品免费另类| 日韩欧美国产在线观看| 舔av片在线| 网址你懂的国产日韩在线| 欧美日韩一级在线毛片| 男女下面进入的视频免费午夜| 中文字幕久久专区| 最近最新中文字幕大全免费视频| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色| 国产91精品成人一区二区三区| 成人精品一区二区免费| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 黄色丝袜av网址大全| 露出奶头的视频| 91在线观看av| 一本久久中文字幕| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 免费观看人在逋| 国产午夜福利久久久久久| 又爽又黄无遮挡网站| 国产精品免费一区二区三区在线| netflix在线观看网站| 欧美成人一区二区免费高清观看 | 亚洲精品乱码久久久v下载方式 | 亚洲成a人片在线一区二区| 黄色女人牲交| 亚洲成av人片在线播放无| 久久久久国内视频| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美三级三区| 搞女人的毛片| 久9热在线精品视频| 巨乳人妻的诱惑在线观看| 脱女人内裤的视频| 91在线精品国自产拍蜜月 | 国产精品日韩av在线免费观看| 亚洲专区字幕在线| 后天国语完整版免费观看| 99re在线观看精品视频| 国产激情偷乱视频一区二区| 欧美黑人巨大hd| 日韩欧美国产一区二区入口| 午夜久久久久精精品| 最近视频中文字幕2019在线8| 久久香蕉精品热| 亚洲一区高清亚洲精品| 十八禁网站免费在线| 又黄又爽又免费观看的视频| 在线观看免费午夜福利视频| 国产精品av视频在线免费观看| 久久久久久久久中文| www.www免费av| 久久久国产欧美日韩av| 午夜精品一区二区三区免费看| 亚洲av熟女| 伊人久久大香线蕉亚洲五| 级片在线观看| 国产伦人伦偷精品视频| 午夜视频精品福利| svipshipincom国产片| 听说在线观看完整版免费高清| 熟女电影av网| 久久久久国产一级毛片高清牌| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女| 日本黄色片子视频| 亚洲av成人av| 国产精品98久久久久久宅男小说| 国产视频内射| 亚洲av成人av| 亚洲精品一卡2卡三卡4卡5卡| xxxwww97欧美| 中文字幕人妻丝袜一区二区| 国产精品一区二区三区四区免费观看 | 成年女人毛片免费观看观看9| 国产av不卡久久| 亚洲精品一卡2卡三卡4卡5卡| 色视频www国产| 日本精品一区二区三区蜜桃| 老熟妇乱子伦视频在线观看| 在线看三级毛片| 天堂动漫精品| 又黄又爽又免费观看的视频| x7x7x7水蜜桃| 国产精品一区二区三区四区久久| 白带黄色成豆腐渣| e午夜精品久久久久久久| 免费高清视频大片| 黄色成人免费大全| 两人在一起打扑克的视频| 免费高清视频大片| 变态另类成人亚洲欧美熟女| 性欧美人与动物交配| 女生性感内裤真人,穿戴方法视频| 欧美日韩综合久久久久久 | 人人妻人人澡欧美一区二区| 怎么达到女性高潮| 国产精品久久视频播放| 亚洲国产精品sss在线观看| 免费一级毛片在线播放高清视频| 十八禁人妻一区二区| 午夜福利欧美成人| 小蜜桃在线观看免费完整版高清| 青草久久国产| 草草在线视频免费看| 特级一级黄色大片| 国产成人av教育|