杜?續(xù),宋?康,謝?輝
無人碾壓機軌跡跟蹤算法及能耗規(guī)律研究
杜?續(xù),宋?康,謝?輝
(天津大學機械工程學院,天津 300072)
無人碾壓機是降低人工作業(yè)負擔、改善碾壓作業(yè)品質(zhì)和效率的重要技術(shù)途徑.但由于碾壓機噸位高、轉(zhuǎn)向阻力大,且經(jīng)常工作在復雜非結(jié)構(gòu)路面上,常規(guī)車輛軌跡跟蹤算法的能耗通常較高,影響了控制系統(tǒng)的電能平衡、可靠性以及綜合能效.為此,針對運行在水電大壩上的無人碾壓機,提出了面向節(jié)能的串級抗擾軌跡跟蹤算法,同時研究了該算法對無人碾壓機轉(zhuǎn)向系統(tǒng)能耗的影響規(guī)律.首先,針對碾壓機高噸位造成的轉(zhuǎn)向速度慢、尋跡易超調(diào)的問題,采用位置預瞄算法對轉(zhuǎn)向系統(tǒng)進行提前控制,進而減少超調(diào)量,降低能耗.其次,針對車輛受路面起伏干擾定位量測噪聲大的問題,提出了車身姿態(tài)校正算法,通過測取無人碾壓機前、后車身的橫滾角對定位結(jié)果進行修正,減少噪聲干擾,降低能耗.最后,為定位中小幅度高頻噪聲的干擾,通過采用非線性誤差反饋控制律控制,降低方向盤在小距離誤差帶內(nèi)的高頻波動,實現(xiàn)轉(zhuǎn)向系統(tǒng)節(jié)能.在水電大壩建設(shè)現(xiàn)場開展了實車試驗,結(jié)果表明;?①采用優(yōu)化的預瞄距離與無預瞄的標稱控制器相比,可降低轉(zhuǎn)向電機能量消耗24.7%,使得軌跡跟蹤精度穩(wěn)定在?±0.15m;②采用姿態(tài)校正算法可以減少轉(zhuǎn)向電機29.2%的能量消耗,并將軌跡跟蹤精度改善了33.0%;③采用非線性誤差反饋控制律在距離誤差無明顯惡化(0.06m內(nèi))情況下,可降低轉(zhuǎn)向電機能耗31.8%.
無人碾壓機;軌跡跟蹤;能耗優(yōu)化控制;預瞄算法;姿態(tài)校正
振動碾壓機作為一種高效的壓實機械,廣泛應(yīng)用于大壩、道路等工程建設(shè)中[1].無人碾壓機在減輕操作人員的工作量、提高壓實作業(yè)效率和質(zhì)量方面具有廣闊的應(yīng)用前景.精確和節(jié)能的軌跡跟蹤顯然對無人碾壓機的性能和效率至關(guān)重要.
然而,與乘用車相比,無人碾壓機的橫向控制更具挑戰(zhàn)性,轉(zhuǎn)向系統(tǒng)能耗更大.主要原因如下:①碾壓機的質(zhì)量通常大于20t,比乘用車重10倍以上,轉(zhuǎn)向系統(tǒng)的阻力扭矩更大;②碾壓機工作路面非結(jié)構(gòu),多數(shù)是大粒徑塊石或斜坡,這些因素一方面導致轉(zhuǎn)向阻力扭矩進一步增大,另一方面造成了車身姿態(tài)變化波動,并導致車載GPS(全球定位系統(tǒng))天線的定位定性波動;③碾壓機是一個多體系統(tǒng)的鉸接結(jié)構(gòu)[2],其多運動自由度特征,減弱車輛橫向剛度,進一步增大了軌跡跟蹤控制的難度[3-4].
針對鉸接式車輛的軌跡跟蹤算法,大量學者提出了不同的控制方案.Uzunsoy等[5]以及后來的Khalaji[6]提出了基于模糊邏輯的PID(比例-積分-微分)控制器,用于分析橫向誤差和航向誤差.但是因為控制器問題是高度非線性的,所以基于PID的控制算法響應(yīng)速度慢,并且通常需要繁瑣的控制參數(shù)整定[7].
為解決PID控制響應(yīng)速度慢等問題,基于模型的軌跡跟蹤算法受到廣泛關(guān)注.邵俊愷等[8]基于地下礦車的運動學模型利用強化學習算法對PID參數(shù)進行自整定,提高控制系統(tǒng)的魯棒性和快速性.Khalaji等[9]和Erkan等[10]對載重汽車(LHD)的非線性運動學模型、動力學模型以及魯棒控制進行討論.Nayl?等[11]分析了運動學參數(shù)對模型預測控制器(MPC)的影響.之后,Yue等[12]利用MPC實現(xiàn)了對拖掛車系統(tǒng)軌跡的穩(wěn)定跟蹤.近年來,針對碾壓機基于模型的軌跡控制逐漸形成熱點.Bian等[13]對碾壓機運動學建模,并基于Lyapunov穩(wěn)定性設(shè)計了控制律.Xu?等[14]基于碾壓機運動學模型提出了一種分層的主動干擾抑制控制器,顯然,對于碾壓機與地面間存在的側(cè)滑效應(yīng)未考慮.而Nayl等[15]提出了一種考慮時變滑移角的MPC(模型預測控制)解決方案.Yang等[16]提出了一種具有側(cè)滑補償?shù)哪雺簷C軌跡跟蹤控制方法.但是上述方案都需要較高的計算量和精確的模型.
然而,上述研究的重點在軌跡跟蹤精度以及穩(wěn)定性能上,關(guān)于控制過程中的能耗問題卻鮮有研究.對于無人駕駛工程車輛,高電能消耗使得控制系統(tǒng)需要匹配高扭矩轉(zhuǎn)向電機、大容量電池和大功率發(fā)電機,這不僅增大了成本,也影響了可靠性,成為工程應(yīng)用中的難題.
為此,本文提出了一種面向節(jié)能的串級抗擾軌跡跟蹤算法.在串級主動抗擾控制器框架下,引入預瞄算法主動適應(yīng)碾壓機轉(zhuǎn)向速度慢的問題,減小軌跡跟蹤控制過程中的超調(diào)量;添加姿態(tài)校正算法,修正定位坐標,抑制噪聲,降低能耗;在距離誤差控制器環(huán)節(jié)設(shè)置非線性誤差反饋控制律來降低小距離誤差帶內(nèi)方向盤的高頻波動.在水電大壩填筑現(xiàn)場實車試驗,對算法進行了試驗驗證,量化分析了節(jié)能效果.
如圖1所示,無人碾壓機是一個典型的由前壓輥和后車身組成的多體系統(tǒng).本研究使用的無人碾壓機試驗平臺采用的主要傳感器的功用以及關(guān)鍵參數(shù)如表1所示,執(zhí)行機構(gòu)-轉(zhuǎn)向電機的關(guān)鍵參數(shù)如表2?所示.
圖1?無人碾壓機測控系統(tǒng)布置
表1?主要傳感器關(guān)鍵參數(shù)
Tab.1?Key parameters of the main sensors
表2?轉(zhuǎn)向電機關(guān)鍵參數(shù)
Tab.2?Key parameters of the steering motor
圖2?碾壓機運動學模型
該模型為被控對象,在該模型上開展面向節(jié)能的串級抗擾軌跡跟蹤算法的設(shè)計和分析研究.
基于第1.2節(jié)中的運動學模型,設(shè)計面向節(jié)能的串級抗擾軌跡跟蹤算法,其控制架構(gòu)如圖3所示.分別以橫向距離誤差和航向角控制作為串級控制的內(nèi)環(huán)和外環(huán),最終計算所需的方向盤轉(zhuǎn)角,實現(xiàn)目標軌跡跟蹤.
圖3?面向節(jié)能的串級抗擾軌跡跟蹤算法架構(gòu)
將式(1)帶入到式(3)簡化后得
根據(jù)式(4)設(shè)計如下抗擾控制器:
由此,將式(5)改造為積分器:
針對式(6)設(shè)計比例控制器:
首先計算俯仰產(chǎn)生后對無人碾壓機橫向運動造成的距離誤差,即
圖4?姿態(tài)校正位姿解算示意
針對轉(zhuǎn)向和車輛航向動態(tài)變化慢的問題,設(shè)計預瞄控制算法[21],實現(xiàn)對方向盤轉(zhuǎn)角的提前控制,以減少控制波動.預瞄算法中的位置重構(gòu)方法為
車輛前剛體定位點距離目標軌跡線的垂直距離計算式為
圖5?非線性誤差反饋控制律
控制律的計算式為
圖6?無人碾壓機碾壓作業(yè)示意
為了研究算法的節(jié)能效果,現(xiàn)建立如下幾個評價指標.
針對不同預瞄距離的節(jié)能效果,在相同的試驗軌跡上分別對預瞄距離為0m、1m、2m、3m、4m、5m、6m進行了碾壓作業(yè)試驗,碾壓試驗倉面縱向長度為100m.試驗結(jié)果如下.
如圖7(a)和(b)所示,預瞄算法的使用,使得控制過程超調(diào)量減小,無人碾壓機運行軌跡趨于穩(wěn)定收斂,軌跡誤差波動降低,距離誤差穩(wěn)定在0.20m以內(nèi).其次,如圖7(c)所示,預瞄距離為3m時與無預瞄算法相比,距離誤差更為集中于小距離誤差帶.
如圖8所示,=3m、=6m與無預瞄對比,轉(zhuǎn)向電機調(diào)節(jié)的頻率變快,調(diào)節(jié)的幅度降低了49.1%,驗證了預瞄算法主動適應(yīng)轉(zhuǎn)向速度慢問題的有效性.
根據(jù)表3和圖9可知,采用3m的預瞄距離可以兼顧轉(zhuǎn)向電機能耗與軌跡跟蹤精度,轉(zhuǎn)向電機能耗較無預瞄(=0m)降低24.7%,且距離誤差穩(wěn)定在0.15m以內(nèi).
圖8?不同預瞄距離下無人碾壓機轉(zhuǎn)向電機性能
表3?不同預瞄距離下無人碾壓機軌跡跟蹤控制的性能
Tab.3 Path-following control performance of unmanned roller under different preview distances
圖9?不同預瞄距離下無人碾壓機運行性能
為了研究姿態(tài)校正算法對無人碾壓機性能改善情況,在相同試驗軌跡上分別打開或關(guān)閉姿態(tài)校正算法在縱向長度為150m的碾壓試驗倉面上進行碾壓作業(yè).試驗結(jié)果如下.
如圖10所示,姿態(tài)校正算法的引入主要是對橫向坐標進行了校正,即在橫向運動上進行了補償,減緩了定位坐標波動的幅度,降低了倉面起伏對定位的噪聲干擾.
如圖11和表4所示,姿態(tài)校正算法在對定位補償后,距離誤差的標準差提高了40.0%,距離誤差絕對值的平均值減少了0.04m,整個試驗周期的83.9%,距離誤差都穩(wěn)定在0.10m以內(nèi),轉(zhuǎn)向電機小幅度調(diào)節(jié),轉(zhuǎn)向電機瞬時功率得到改善,轉(zhuǎn)向電機的能耗降低了29.2%.
圖10?姿態(tài)校正算法對定位坐標的校正
圖11?姿態(tài)校正前后碾壓機各項指標性能
表4 姿態(tài)校正算法對無人碾壓機軌跡跟蹤控制性能的影響
Tab.4 Influence of attitude correction controller on the path-following control performance of unmanned roller
針對非線性誤差反饋控制律的節(jié)能效果,在相同試驗軌跡上分別對距離死區(qū)為0m、0.03m、0.05m、0.10m、0.13m和0.18m進行了碾壓作業(yè)試驗,建立碾壓試驗倉面縱向長度為180m.試驗結(jié)果如下.
圖12?不同距離死區(qū)下無人碾壓機的循跡情況
表5 不同距離死區(qū)下無人碾壓機軌跡跟蹤控制的性能
Tab.5 Path-following control performance of unmanned roller under different distances of dead zones
圖13?不同距離死區(qū)下無人碾壓機轉(zhuǎn)向電機性能
圖14?不同距離死區(qū)下無人碾壓機運行性能總圖
本文針對典型的鉸接車輛碾壓機在復雜倉面上的節(jié)能控制問題進行了研究分析.首先搭建了無人碾壓機運動學模型,其次,針對無人碾壓機軌跡跟蹤算法能耗高的問題,設(shè)計了面向節(jié)能的串級抗擾軌跡跟蹤算法,通過大壩填筑現(xiàn)場實車試驗,驗證了該算法在典型鉸鏈式車輛上的節(jié)能控制效果.結(jié)論如下.
(1) 采用預瞄算法,利用未來道路信息主動適應(yīng)轉(zhuǎn)向速度慢的問題,通過優(yōu)化預瞄距離,轉(zhuǎn)向系統(tǒng)電能消耗比無預瞄的標稱控制器降低了24.7%,且能夠使得距離誤差穩(wěn)定在0.15m內(nèi).
(2) 采用姿態(tài)校正算法,消除了位置和方位測量中的噪聲干擾,同時可以消除碾壓機在大巖石上或在有斜坡的道路上壓實時,碾壓機的擺動而引起的定位偏差問題,從而降低29.2%的轉(zhuǎn)向系統(tǒng)能量消耗,距離誤差降低了33.0%.
(3) 通過使用非線性誤差反饋控制律,降低方向盤在小距離誤差帶內(nèi)的高頻波動,可以在距離誤差無明顯惡化(0.06m以內(nèi))的情況下,將轉(zhuǎn)向系統(tǒng)的能耗降低31.8%.
最后,本文的研究內(nèi)容主要關(guān)注車輛轉(zhuǎn)向系統(tǒng)的能耗,尚未涉及整車的能耗分析.因此,后續(xù)的研究工作將會結(jié)合鉸接式車輛的整車動力學開展進一步分析,評估控制算法對整車能耗的影響規(guī)律.
[1] Zhang Q,Liu T,Zhang Z,et al. Unmanned rolling compaction system for rockfill materials[J]. Automation in Construction,2019,100:103-117.
[2] Gao Y,Cao D,Shen Y. Path-following control by dynamic virtual terrain field for articulated steer vehicles[J/OL]. Vehicle System Dynamics,https://doi. org/10. 1080/00423114. 2019. 1648837,2019-09-31.
[3] Zhang Y,Khajepour A,Hashemi E,et al. Reconfigurable model predictive control for articulated vehicle stability with experimental validation[J]. IEEE Transactions on Transportation Electrification,2020,6(1):308-317.
[4] Liu S,Hou Z,Tian T,et al. Path tracking control of a self-driving wheel excavator via an enhanced data-driven model-free adaptive control approach[J]. IET Control Theory & Applications,2020,14(2):220-232.
[5] Uzunsoy E,Erkilic V. Development of a trajectory following vehicle control model[J]. Advances in Mechanical Engineering,2016,8(5):1-11.
[6] Khalaji A K. PID-based target tracking control of a tractor-trailer mobile robot[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science,2019,233(13):4776-4787.
[7] Fang X,Bian Y,Yang M,et al. Development of a path following control model for an unmanned vibratory roller in vibration compaction[J]. Advances in Mechanical Engineering,2018,10(5):1-16.
[8] 邵俊愷,趙?翾,楊?玨,等. 無人駕駛鉸接式車輛強化學習路徑跟蹤控制算法[J]. 農(nóng)業(yè)機械學報,2017,48(3):376-382.
Shao Junkai,Zhao Xuan,Yang Jue,et al. Reinforcement learning algorithm for path following control of articulated vehicle[J]. Transactions of the Chinese Society of Agricultural Machinery,2017,48(3):376-382(in Chinese).
[9] Khalaji A K,Jalalnezhad M. Control of a tractor-trailer robot subjected to wheel slip[J]. Proc IMechE Part K:J Multi-Body Dynamics,2019,233(4):956-967.
[10] Erkan K,Wouter S,Herman R,et al. Experimental validation of linear and nonlinear MPC on an articulated unmanned ground vehicle[J]. Transactions on Mechatronics,IEEE/ASME,2018,23(5):2023-2030.
[11] Nayl T,Nikolakopoulos G,Gustafsson T,et al. Design and experimental evaluation of a novel sliding mode controller for an articulated vehicle[J]. Robotics and Autonomous Systems,2018,103:213-221.
[12] Yue M,Wu X,Guo L,et al. Quintic polynomial-based obstacle avoidance trajectory planning and tracking control framework for tractor-trailer system[J]. International Journal of Control Automation and Systems,2019,17(3):2634-2646.
[13] Bian Yongming,Yang Meng,F(xiàn)ang Xiaojun,et al. Kinematics and path following control of an articulated drum roller[J]. Chinese Journal of Mechanical Engineering,2017,30(4):888-899.
[14] Xu Quanzhi,Song Kang,Xie Hui. The impact of control structure on the path-following control of unmanned compaction rollers[C]//SAE 2019 Intelligent and Connected Vehicles Symposium. Paris,F(xiàn)rance,2020:2020-01-5030.
[15] Nayl T,Nikolakopoulos G,Gustafsson T. Switching model predictive control for an articulated vehicle under varying slip angle[C]// 2012 20th Mediterranean Conference on Control & Automation. Barcelona,Spain,2012:884-889.
[16] Yang M,Bian Y M,Liu G J,et al. Path tracking control of an articulated road roller with sideslip compensation[J/OL]. IEEE Access,DOI:10.1109/ACCESS.2020. 3008455,2020-09-20.
[17] Corke P,Ridley P. Load haul dump vehicle kine-matics and control[J]. Journal of Dynamic Systems Measurement & Control,2003,125(1):54-59.
[18] Iida M,F(xiàn)ukuta M,Tomiyama H. Measurement and analysis of side-slip angle for an articulated vehicle[J]. Engineering in Agriculture Environment & Food,2010,3(1):1-6.
[19] 謝?輝,趙龍同,阮迪望. 智能振動碾壓機的自抗擾循跡控制方法[J]. 天津大學學報:自然科學與工程技術(shù)版,2020,53(9):900-909.
Xie Hui,Zhao Longtong,Ruan Diwang. Path following control method with active disturbance rejection for an intelligent vibration roller[J]. Journal of Tianjin University:Science and Technology,2020,53(9):900-909(in Chinese).
[20] 韓京清. 從PID技術(shù)到“自抗擾控制”技術(shù)[J]. 控制工程,2002(3):13-18.
Han Jingqing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China,2002(3):13-18(in Chinese).
[21] 孟?宇,甘?鑫,白國星. 基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制[J]. 工程科學學報,2019,41(5):662-671.
Meng Yu,Gan Xin,Bai Guoxing. Path following control of underground mining articulated vehicle based on the preview control method[J]. Chinese Journal of Engineering,2019,41(5):662-671(in Chinese).
Path-Following Algorithm and Energy Consumption Law of Unmanned Roller
Du Xu,Song Kang,Xie Hui
(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
The unmanned roller is an important technique to reduce the burden of manual work and improve the quality and efficiency of rolling operation. However,because of the high tonnage,high steering resistance,and frequent working on complex unstructured road surfaces,the energy consumption of the conventional vehicles’path-following algorithms is usually high,which affects the power balance,reliability,and comprehensive energy efficiency of the control system. Hence,an energy-saving cascade disturbance rejection path-following algorithm is proposed for an unmanned roller running on a hydropower dam. At the same time,the influence of the algorithm on the energy consumption of the steering system of the unmanned roller is studied. First,a position preview algorithm is used to control the steering system in advance to reduce the overshoot caused by the heavy load and to reduce energy consumption. Second,a vehicle body attitude correction algorithm is proposed to resolve the problem of disturbances in the vehicle caused by road surface undulation. By measuring the roll angle of the front and rear body of the unmanned roller compactor,the positioning results are corrected to reduce the noise interference and energy consumption. Finally,to reduce the high-frequency fluctuation of the steering wheel in the small range error band,a nonlinear error feedback control law is used to save energy in the steering system. A real vehicle test was conducted at the hydropower dam’s construction site. The results show that:①Compared with the nominal controller without preview,the optimized preview distance can reduce the energy consumption of the steering motor by 24.7% and make the path-following accuracy stable at ±0.15m;②Using the attitude correction algorithm,the energy consumption of the steering motor can be reduced by 29.2% and the path-following accuracy can be improved by 33.0%;③Using nonlinear error feedback control law,the energy consumption of the steering motor can be reduced by 31.8% without the usual deterioration of distance error(within 0.06m).
unmanned roller;path-following;energy consumption optimization control;preview algorithm;attitude correction
TP242.6
A
0493-2137(2021)08-0834-10
10.11784/tdxbz202009082
2020-09-28;
2020-12-09.
杜?續(xù)(1994—??),男,碩士研究生,arcgerald@163.com.
宋?康,songkangtju@tju.edu.cn.
天津市人工智能科技重大專項資助項目(19ZXZNGX00050).
Supported by the Science and Technology Major Project on Artificial Intelligence of Tianjin,China(No. 19ZXZNGX00050).
(責任編輯:金順愛)