周慧,徐安桃,封會(huì)娟,魏駿逸
基于PSD曲線的軍用車輛有機(jī)涂層防護(hù)性能研究
周慧a,徐安桃a,封會(huì)娟a,魏駿逸b
(陸軍軍事交通學(xué)院 a. 軍用車輛工程系 b. 學(xué)員五大隊(duì)研究生隊(duì),天津 300161)
研究兩種軍用車輛有機(jī)涂層的防腐蝕性能。利用兩種軍用車輛有機(jī)涂層作為樣本,以濕熱、紫外、中性鹽霧、酸性鹽霧為4個(gè)環(huán)境因子,組合成多因子綜合腐蝕試驗(yàn),用電化學(xué)噪聲頻域分析處理試驗(yàn)數(shù)據(jù),對(duì)比研究兩種車輛裝備涂層的防腐蝕性能。10個(gè)周期之后,兩種涂層均完全破壞,其中,灰色有機(jī)涂層H的初始狀態(tài)為9.55×108Ω/cm2,9個(gè)周期之后降低了2個(gè)數(shù)量級(jí),為1.3×106Ω/cm2;金屬漆涂層的初始狀態(tài)為1.8×109Ω/cm2,9個(gè)周期之后減小1個(gè)數(shù)量級(jí),為3.62×108Ω/cm2。曲線斜率i的變化趨勢與噪聲強(qiáng)度相反,在腐蝕速率快的時(shí)候,斜率變小,表現(xiàn)在圖像上為直線更陡;與之相反,腐蝕速率慢的時(shí)候曲線斜率變大,變得更為平緩。金屬漆涂層的防護(hù)性能優(yōu)于灰色有機(jī)涂層。
涂層;腐蝕;電化學(xué)噪聲;PSD
目前,在有機(jī)涂層腐蝕研究領(lǐng)域,絕大多數(shù)的測量方法都是在工作電極的表面施加某一電壓、電流信號(hào),進(jìn)而測量參比電極和輔助電極上的電流電壓信號(hào),通過分析根據(jù)這些信號(hào)得到的響應(yīng)函數(shù),來研究電極反應(yīng)的速率、影響因素和狀態(tài)機(jī)理[1]。在工作電極的表面施加擾動(dòng)信號(hào)以后,或多或少都會(huì)影響到腐蝕反應(yīng)的電位電流信息,因此,腐蝕防護(hù)領(lǐng)域一直在尋找一種無損無干擾的直接測量技術(shù)。電化學(xué)噪聲便是這樣一種測量方法。電化學(xué)噪聲(Electrochemical Noise, EN),是指電化學(xué)反應(yīng)進(jìn)行過程中,反應(yīng)系統(tǒng)的電化學(xué)參量(如電極電位、外測電流等)隨時(shí)間發(fā)生的非平衡態(tài)隨機(jī)波動(dòng)現(xiàn)象[2]。
為了將電流、電位噪聲譜聯(lián)系起來,Xiao H,Mansfeld F等人定義了譜噪聲函數(shù)sn()[3],如式(1)所示。
式中:FFT()和FFT()分別為經(jīng)過快速傅里葉變換得到的電位和電流噪聲函數(shù);PSD()和PSD()分別為電位和電流功率譜密度[4]。譜噪聲電阻為譜噪聲函數(shù)的低頻極限值[5],即:
試驗(yàn)所用試樣取自現(xiàn)役車輛裝備兩種涂層,分別為灰色有機(jī)涂層和金屬漆涂層。基板材料為Q/BQB403/ST14冷軋低碳鋼板,規(guī)格為60 mm× 60 mm×1 mm。
本加速腐蝕試驗(yàn)共9個(gè)循環(huán),每個(gè)循環(huán)參數(shù)設(shè)置如圖1所示。相關(guān)參數(shù)設(shè)置以我國南部沿海地區(qū)的平均氣候參數(shù)為基準(zhǔn),并參考了美空軍F-18飛機(jī)涂層加速腐蝕試驗(yàn)標(biāo)準(zhǔn)(CASS)和國軍標(biāo)[9]。
1)耐濕熱試驗(yàn),1個(gè)周期為168 h。試驗(yàn)條件:相對(duì)濕度為95%~100%,溫度為43 ℃。
2)耐紫外線試驗(yàn),1個(gè)輻照周期為47.4 h。試驗(yàn)條件:輻照度為(60±10) W/m2,溫度為(50±3) ℃。
3)耐中性鹽霧試驗(yàn),1個(gè)耐受周期為92.4 h。試驗(yàn)條件:溫度為(35±2) ℃,每小時(shí)鹽霧沉降速率為1~2 mL/80 cm2,NaCl溶液的質(zhì)量分?jǐn)?shù)為5%。
4)耐酸性鹽霧試驗(yàn),1個(gè)耐受周期為75.6 h。試驗(yàn)條件:溫度為(35±2) ℃,每小時(shí)鹽霧沉降速率為1~2 mL/80 cm2,NaCl溶液的質(zhì)量分?jǐn)?shù)為5%。
以上為1個(gè)周期的試驗(yàn)內(nèi)容。
圖1 涂層多因子綜合環(huán)境加速腐蝕試驗(yàn)流程
圖2 灰色有機(jī)涂層H譜噪聲函數(shù)頻域譜
圖3 兩種涂層譜噪聲電阻隨周期的變化規(guī)律
文中利用Hanning窗函數(shù)去除直流趨勢的電化學(xué)噪聲信號(hào)作快速傅里葉變換(Fast Fourier Transform, FFT),得到電流功率譜密度曲線,如圖4所示。Zhang Tao和Li Liu等分別研究了AZ91D鎂合金和奧氏體不銹鋼的腐蝕行為,利用式(3)對(duì)電流噪聲進(jìn)行了研究。
式中:i為電流噪聲強(qiáng)度;i為功率譜密度曲線高頻段斜率。i與工作電極的腐蝕速率有關(guān),i與噪聲暫態(tài)峰壽命有關(guān),能夠描述腐蝕過程中金屬的鈍化及再鈍化信息[14]。
圖4 兩種涂層各個(gè)周期的電流功率譜密度(PSD)曲線
為了更好地分析兩種涂層的PSD曲線,利用式(3)對(duì)每個(gè)試驗(yàn)周期之后的電流噪聲PSD曲線進(jìn)行擬合,得到相應(yīng)的參數(shù)i和i[15],見表1。
表1 灰色有機(jī)涂層和金屬漆涂層譜的PSD曲線擬合結(jié)果
噪聲強(qiáng)度i的值可以反映出腐蝕強(qiáng)度的大小,i越大,表示涂層腐蝕速率越快[16]。從表1中可以看出,灰色有機(jī)涂層的電流噪聲度明顯高于金屬漆涂層,說明金屬漆涂層的防護(hù)性能優(yōu)于灰色有機(jī)涂層,腐蝕性粒子Cl?在灰色有機(jī)涂層的滲透速度快于金屬漆涂層[17]。在第1、2周期之后,兩種涂層的i值都呈現(xiàn)減小趨勢。由于金屬漆涂層可以生成致密的鈍化膜[18],在第3、5、6周期,防護(hù)性能都有小幅度提升。灰色有機(jī)涂層在3、5、7周期的噪聲強(qiáng)度變小,可能與其腐蝕產(chǎn)物堵塞離子通道有關(guān)[19]。曲線斜率i的變化趨勢與噪聲強(qiáng)度相反,在腐蝕速率快的時(shí)候,斜率變小,表現(xiàn)在圖像上為直線更陡;相反地,腐蝕速率慢的時(shí)候斜率變大,曲線變得更為平緩[20]。
2)通過擬合電流功率譜密度圖譜,得到了噪聲強(qiáng)度i和高頻段斜率i。兩種涂層的噪聲強(qiáng)度都在第2、3周期的時(shí)候達(dá)到最大值,金屬漆涂層的噪聲強(qiáng)度明顯小于灰色有機(jī)涂層;曲線斜率i的變化趨勢與噪聲強(qiáng)度相反。
[1] ZHENG Hao, LIANG Jing-zhe, QIN Zhen-bo, et al. Identifying defect size in organic coatings by electrochemical noise, galvanostatic step and potentiostatic step techniques[J]. Journal of electroanalytical chemistry, 2020, 856: 113596.
[2] R·溫斯頓·里維. 尤利格手冊[M]. 第二版. 北京: 化學(xué)工業(yè)出版社, 2005. LEVY R W. Editor-in-Chief of R. Winston Review. Ulig handbook [M]. Second Edition. Beijing: Chemical Industry Press, 2005.
[3] 趙茹. 核電用不銹鋼應(yīng)力腐蝕電化學(xué)檢測研究[D]. 天津: 天津大學(xué), 2009. ZHAO Ru. Research on electrochemical detection of stainless steel stress corrosion for nuclear power[D]. Tianjin: Tianjin University, 2009.
[4] 叢楠, 陳俊達(dá), 任焱晞, 等. 一種指定功率譜密度與峭度值的對(duì)稱威布爾分布道路譜重構(gòu)方法[J]. 振動(dòng)與沖擊, 2018, 37(2): 1-5. CONG Nan, CHEN Jun-da, REN Yan-xi, et al. A spectral reconstruction method of symmetric weibull distribution road specified by spectral power density and kurtosis values[J]. Vibration and shock, 2018, 37(2): 1-5.
[5] 何金杯. 基于電化學(xué)噪聲的銅及銅合金腐蝕監(jiān)測技術(shù)研究[D]. 武漢: 華中科技大學(xué), 2007. HE Jin-bei. Research on copper and copper alloy corrosion monitoring technology based on electrochemical noise[D]. Wuhan: Huazhong University of Science and Technology, 2007.
[6] XIAO H, MANSFLED F. Evaluation of coatings regradation with electrochemical impedance spectroscopy and electrochemical noise analysis[J]. Journal of Electrochemistry Society, 1994, 141(9): 2330-2340.
[7] 劉繼慧. 利用電化學(xué)噪聲與交流阻抗測試方法研究防腐涂層的性能[D]. 哈爾濱: 哈爾濱工程大學(xué), 2008. LIU Ji-hui. Using electrochemical noise and AC impedance test methods to study the performance of anticorrosive coatings [D]. Harbin: Harbin Engineering University, 2008.
[8] 張睿. 車輛有機(jī)涂層在鹽霧與紫外環(huán)境中的腐蝕行為研究[D]. 天津: 軍事交通學(xué)院, 2017. ZHANG Rui. Research on corrosion behavior of vehicle organic coatings in salt spray and ultraviolet environment[D]. Tianjin: Military Transportation Institute, 2017.
[9] 徐安桃, 周慧, 李錫棟, 等. 車輛裝備有機(jī)涂層加速腐蝕試驗(yàn)方案設(shè)計(jì)[J]. 軍事交通學(xué)院學(xué)報(bào), 2018, 20(12): 36-40. XU An-tao, ZHOU Hui, LI Xi-dong, et al. Design of accelerated corrosion test plan for vehicle equipment organic coating[J]. Journal of Military Communications Institute, 2018, 20(12): 36-40.
[10] 高志明, 宋詩哲. 小波噪聲電阻與EIS結(jié)合評(píng)價(jià)涂覆層性能[J]. 中國腐蝕與防護(hù)學(xué)報(bào), 2008(4): 3-6. GAO Zhi-ming, SONG Shi-zhe. The combination of wavelet noise resistance and EIS to evaluate the performance of coating[J]. Journal of Chinese Society for Corrosion and Protection, 2008(4): 3-6.
[11] 劉繼慧, 邵亞薇, 孟國哲, 等. 利用電化學(xué)阻抗譜和電化學(xué)噪聲分析薄有機(jī)涂層的腐蝕過程[J]. 涂料工業(yè), 2008(6): 66-70. LIU Ji-hui, SHAO Ya-wei, MENG Guo-zhe, et al. Analysis of the corrosion process of thin organic coatings using electrochemical impedance spectroscopy and electrochemical noise[J]. Coatings industry, 2008(6): 66-70.
[12] 楊英碩. NaAlO2封孔對(duì)2024鋁合金陽極氧化膜耐腐蝕性的影響[D]. 南京: 南京郵電大學(xué), 2020. YANG Ying-shuo. The effect of NaAlO2sealing on the corrosion resistance of 2024 aluminum alloy anodized film[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
[13] 雷欣, 林乃明, 鄒嬌娟, 等. 鋁合金微弧氧化的研究進(jìn)展[J]. 表面技術(shù), 2019, 48(12): 10-22. LEI Xin, LIN Nai-ming, ZOU Jiao-juan, et al. Research progress of aluminum alloy micro-arc oxidation[J]. Surface technology, 2019, 48(12): 10-22.
[14] ZHANG T, SHAO Y, MENG G, et al. Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution [J]. Electrochemical acta, 2007, 53(2): 560-570.
[15] 王楠. AlSi/BN封嚴(yán)涂層在海洋環(huán)境下的腐蝕行為研究[D]. 沈陽: 沈陽理工大學(xué), 2017. WANG Nan. Corrosion behavior of AlSi/BN sealing coating in marine environment[D]. Shenyang: Shenyang University of Science and Technology, 2017.
[16] 蔣新瑜. 常用金屬電化學(xué)噪聲規(guī)律?機(jī)理與應(yīng)用[D]. 大連: 遼寧師范大學(xué), 2016. JIANG Xin-yu. Electrochemical noise law, mechanism and application of common metals[D]. Dalian: Liaoning Normal University, 2016.
[17] 雷軍, 陳毓彬. 低頻電阻電流噪聲測試技術(shù)的發(fā)展和應(yīng)用[J]. 電子產(chǎn)品可靠性與環(huán)境試驗(yàn), 2018, 36(4): 25-28. LEI Jun, CHEN Yu-bin. Development and application of low-frequency resistance current noise test technology[J]. Electronic product reliability and environmental testing, 2018, 36(4): 25-28.
[18] 張振楠, 張大鵬, 王軒, 等. 涂層酸性鹽霧環(huán)境下失效過程的電化學(xué)阻抗譜分析[J]. 包裝工程, 2017, 38(23): 45-49. ZHANG Zhen-nan, ZHANG Da-peng, WANG Xuan, et al. Electrochemical impedance spectroscopy analysis of coating failure process in acidic salt spray environment[J]. Packaging Engineering, 2017, 38(23): 45-49.
[19] 邢珊珊, 戚浩宇, 鄭傳波. 固溶處理對(duì)2205雙相不銹鋼組織及鈍化膜特性的影響[J]. 金屬熱處理, 2020, 45(3): 146-150. XING Shan-shan, QI Hao-yu, ZHENG Chuan-bo. Effect of solution treatment on the structure of 2205 duplex stainless steel and the characteristics of passivation film[J]. Heat treatment of metals, 2020, 45(3): 146-150.
[20] 李治, 呂建, 牛智民, 等. X80管線鋼在新洲土壤中腐蝕的電化學(xué)噪聲[J]. 腐蝕與防護(hù), 2017, 38(8): 608-614. LI Zhi, LU Jian, NIU Zhi-min, et al. Electrochemical noise of X80 pipeline steel corrosion in Xinzhou soil[J]. Corrosion and protection, 2017, 38(8): 608-614.
Research on Protective Performance of Organic Coatings for Military Vehicles Based on PSD Curve
ZHOU Huia, XU An-taoa, FENG Hui-juana, WEI Jun-yib
(a. Military Vehicle Engineering Department, b. Postgraduate Training Brigade, Fifth Team of Cadets, Army Military Transportation University, Tianjin 300161, China)
In order to study the anti-corrosion performance of organic coatings on two military vehicles, this paper takes two kinds of military vehicle's organic coatings as samples to carry out multi-factor comprehensive corrosion test with four environmental factors of damp heat, ultraviolet, neutral salt spray and acid salt spray. The experimental data are processed by electrochemical noise frequency domain analysis, and the anti-corrosion performance of the two coatings are compared and analyzed. After 10 cycles, both coatings are completely destroyed. Among them, the initial state of gray organic coating H is in 9.55×108Ω/cm2, and after 9 cycles, it is reduced by two orders of magnitude to 1.3×106Ω/cm2; the initial state of the metallic paint coating is 1.8×109Ω/cm2, and after 9 cycles, it is reduced by 1 order of magnitude to 3.62×108Ω/cm2. The change trend of curve slopeiis opposite to the noise intensity. When the corrosion rate is fast, the slope becomes smaller and the line is steeper on the image. Conversely, when the corrosion rate is slow, the slope becomes larger and the curve becomes more gentle. Therefore, the protective performance of metallic coating is better than that of gray organic coating.
coating; corrosion; electrochemical noise; PSD
2020-10-28;
2020-12-05
ZHOU Hui (1994—), Male, Master, Assistant, Research focus: vehicle equipment corrosion and protection.
徐安桃(1964—),男,博士,教授,主要研究方向?yàn)檐囕v裝備腐蝕與防護(hù)。
Corresponding author:XU An-tao (1964—), Male, Ph.D., Professor, Research focus: vehicle equipment corrosion and protection.
周慧, 徐安桃, 封會(huì)娟,等.基于PSD曲線的軍用車輛有機(jī)涂層防護(hù)性能研究[J]. 裝備環(huán)境工程, 2021, 18(4): 128-132.
TG174.4
A
1672-9242(2021)04-0128-05
10.7643/ issn.1672-9242.2021.04.019
2020-10-28;
2020-12-05
周慧(1994—),男,碩士,助教,主要研究方向?yàn)檐囕v裝備腐蝕與防護(hù)。
ZHOU Hui, XU An-tao, FENG Hui-juan, et al. Research on protective performance of organic coatings for military vehicles based on PSD curve [J]. Equipment environmental engineering, 2021, 18(4): 128-132.