種河婷 張?chǎng)╂? 馬丹丹 劉昌奎 黃碩
摘? 要:目的? 介紹一種基于錐形束CT(Cone beam CT,CBCT)獲得牙根三維模型,利用計(jì)算機(jī)輔助設(shè)計(jì)(CAD)構(gòu)建與牙根形態(tài)一致的表面多孔種植體,通過(guò)選擇性激光熔融(SLM)技術(shù)進(jìn)行3D打印制造表面多孔的根形種植體(Root-analogue implant,RAI)的方法。材料與方法? 使用CBCT對(duì)1位拔牙患者的頭顱進(jìn)行掃描,將生成的DICOM文件導(dǎo)入Mimics醫(yī)學(xué)影像處理軟件,分離牙齒和頜骨,將牙齒的三維網(wǎng)格保存為標(biāo)準(zhǔn)化的三角測(cè)量語(yǔ)言(STL)文件。將文件導(dǎo)入Geomagic Studio軟件進(jìn)行修飾,再用3-Matic Medical建模軟件進(jìn)行牙根表面的多孔結(jié)構(gòu)設(shè)計(jì)以及牙冠部的基臺(tái)設(shè)計(jì)。采用SLM技術(shù)和生物相容性鈦合金(Ti6Al4V)粉末進(jìn)行制造。結(jié)果? 設(shè)計(jì)得到的個(gè)性化根形多孔鈦種植體模型,其表面多孔層厚度為0.5 mm,孔徑0.5 mm,孔隙率為70%,多孔層內(nèi)部為縮小的根形實(shí)心結(jié)構(gòu)。3D打印制造的成品形態(tài)與設(shè)計(jì)模型一致,其頸部以下外形也與拔除的患牙一致。結(jié)論? 利用3D打印技術(shù)制造個(gè)性化多孔鈦種植體可能成為即刻種植的一種方法,因其與牙槽窩的適合性,相比較于傳統(tǒng)的即刻種植能夠縮短治療周期,但是否能夠達(dá)到良好的骨結(jié)合尚需進(jìn)一步實(shí)驗(yàn)驗(yàn)證。
關(guān)鍵詞:3D打印? 多孔鈦? 個(gè)性化根形種植體? 即刻種植
中圖分類號(hào):R783.6? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1672-3791(2021)02(b)-0005-05
Design and Manufacture of 3D Printing Porous Titanium Root-Analogue Implant
ZHONG Heting? ZHANG Wenting? MA Dandan? LIU Changkui? HUANG Shuo*
(School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi Province, 710021? China)
Abstract:Objective? This paper introduces a method to obtain the three-dimensional model of tooth root based on cone beam CT (Cone beam CT, CBCT) to construct the surface porous implant consistent with the root shape by computer-aided design (CAD), and to manufacture the root-analogue implant (RAI) by 3D printing by selective laser melting (SLM) technology. Materials and methods? The head of a patient with tooth extraction was scanned with CBCT, and the generated DICOM file was imported into Mimics medical image processing software to separate teeth and jaws, and the three-dimensional mesh of teeth was saved as a standardized triangulation language (STL) file. Import the file into Geomagic Studio software for modification, and then use 3-Matic Medical modeling software to design the porous structure of the root surface and the abutment of the crown. It was manufactured by SLM technology and biocompatible titanium alloy (Ti6Al4V) powder. Results? The designed porous titanium root-analogue implant model has a surface porous layer thickness of 0.5 mm, a pore diameter of 0.5 mm, a porosity of 70%, and a reduced root solid structure inside the porous layer. The shape of the finished product produced by 3D printing is consistent with the design model, and the shape below the neck is also consistent with that of the extracted teeth. Conclusion? Using 3D printing technology to make personalized porous titanium implant may be a method of immediate implantation. because of its suitability with alveolar fossa, it can shorten the treatment cycle compared with traditional immediate implantation. however, whether a good bone union can be achieved or not needs further experimental verification.
相互連通的多孔表面結(jié)構(gòu)是導(dǎo)致種植體骨結(jié)合的重要因素,研究發(fā)現(xiàn),多孔結(jié)構(gòu)能夠促進(jìn)成骨細(xì)胞增殖,相互連通的孔隙有利于誘導(dǎo)新生骨組織長(zhǎng)入,使種植體與周圍骨組織形成機(jī)械鎖結(jié),可以提高二者的結(jié)合強(qiáng)度,提高骨結(jié)合率[9]。而多孔結(jié)構(gòu)的孔隙率和孔徑對(duì)于骨的生長(zhǎng)起著關(guān)鍵作用[10]。對(duì)于孔隙率來(lái)說(shuō),Arabnejad等人研究認(rèn)為當(dāng)鈦表層多孔結(jié)構(gòu)的孔隙率為30%和70%時(shí),多孔結(jié)構(gòu)的彈性模量分別接近人體皮質(zhì)骨和松質(zhì)骨[11]。Cheng等人的研究表明70%的孔隙率比15%和37.9%的孔隙率能夠更好地形成骨小梁結(jié)構(gòu)[12]。對(duì)于孔徑來(lái)說(shuō),Wauthle等人的研究表明500 μm孔徑的多孔種植體能夠使種植體與骨組織之間形成良好的骨結(jié)合[13],另有研究也支持此結(jié)論,認(rèn)為200~500 μm的孔徑適宜達(dá)到良好的骨結(jié)合[14]。因此,該研究將多孔表面的厚度設(shè)計(jì)為0.5 mm,孔徑為500 μm,多孔間距為0.5 mm,測(cè)得的孔隙率為70%。
3D打印技術(shù)又稱增材制造(Additively Manufacture,AM),是一種快速成型技術(shù)(Rapid Prototyping,RP)。3D打印的原理是通過(guò)材料的逐層堆疊累積來(lái)進(jìn)行制造,尤其適合制作個(gè)性化產(chǎn)品或復(fù)雜精細(xì)的結(jié)構(gòu),制作精度能夠達(dá)到0.02~0.1 mm[15]。3D打印有很多不同的方法,對(duì)于金屬制造來(lái)說(shuō),常用的3D打印技術(shù)包括選擇性激光燒結(jié)(selective laser sintering,SLS)、選擇性激光熔化(selective laser melting,SLM)及電子束熔融(electron beam melting,EBM)等[16],其中,SLS容易在打印體內(nèi)部殘留未燒結(jié)的金屬顆粒,EBM的制作精度尚待提高,而選擇性激光熔融(SLM)技術(shù)借助于計(jì)算機(jī)輔助設(shè)計(jì)(CAD)與制造,利用高能激光束將工作臺(tái)上每一層的金屬粉末融化后迅速凝固,并層層燒結(jié)堆疊,從而實(shí)現(xiàn)將金屬粉末材料直接成型為立體模型,在成型過(guò)程不需要借助任何模具輔助,零件形狀復(fù)雜程度也不會(huì)限制其生產(chǎn)制造[17]。綜合考慮下,該研究采用SLM方法制作具有表面多孔結(jié)構(gòu)的個(gè)性化根形種植體,這種方法具有傳統(tǒng)制造無(wú)法比擬的優(yōu)勢(shì),尤其適用于復(fù)雜的表面多孔個(gè)性化根形種植體的制造。
參考文獻(xiàn)
[1] 高亦林,游嘉,彭偉,等.個(gè)性化擬自然牙種植體的設(shè)計(jì)及有限元分析[J].中國(guó)口腔種植學(xué)雜志,2015(2):62-65.
[2] 胡洪成,盧松鶴,毋育偉,等.電子束熔融技術(shù)制作的個(gè)性化根形種植體的制作精度評(píng)價(jià)[J].口腔醫(yī)學(xué)研究,2014,30(6):558-562.
[3] 杜義軍,董福生,栗興超,等.匹配牙槽窩的根形種植體即刻種植的動(dòng)物實(shí)驗(yàn)研究[J].口腔醫(yī)學(xué),2015(9):721-725.
[4] 徐逢源,賴紅昌.3D打印技術(shù)在根形種植體制作中的研究進(jìn)展[J].中國(guó)口腔頜面外科雜志,2017,15(4):373-376.
[5] Mangano FG, De Franco M, Caprioglio A, et al.? Immediate, non-submerged, root-analogue direct laser metal sintering (DLMS) implants: a 1-year prospective study on 15 patients [J].Lasers in Medical Science,2014,29(4):1321-1328.
[6] 周磊.即刻種植術(shù)中引導(dǎo)骨增量技術(shù)的應(yīng)用[J].中國(guó)實(shí)用口腔科雜志,2012,5(4):197-202.
[7] 林野.即刻種植的是與非[J].中華口腔醫(yī)學(xué)雜志,2013,48(4):193-199.
[8] Al-Rawi,B.,Hassan,B.,Vandenberge,B.,et al,Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans[J].Journal of Oral Rehabilitation, 2010(37):352-358.
[9] Hara D, Nakashima Y, Sato T, et al. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique[J].Mater Sci Eng C Mater Biol Appl, 2016(59):1047-1052.
[10] Bael SV, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds[J].Acta Biomaterialia,2012,8(7):2824-2834.
[11] Arabnejad S, Johnston RB, Pura JA, et al. High-Strength Porous Biomaterials for Bone Replacement: a strategy to assess the interplay between cell morphology,mechanical properties,bone ingrowth and manufacturing constraints[J].Acta biomaterial-ia,2015,30(8):345-356.
[12] alice cheng,aiza humayun,david joshua cohen, et al. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation,differentiation and local factor production in a porosity and surface roughness dependent manner[J].Biofabrica-tion,2014,6(4):045007.
[13] Wauthle R, Van Der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants [J].Acta biomaterialia,2015(14):217-225.
[14] 游嘉,方利華,張青,等.基于SLM技術(shù)的表面多孔鈦金屬多根牙種植體的骨結(jié)合研究[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2015,34(3):315-322.
[15] 姬金虎,孫靜,森干,等.3D打印種植體在口腔修復(fù)中的應(yīng)用研究[J].中國(guó)數(shù)字醫(yī)學(xué),2016,11(6):6-8.
[16] 徐步光,李丹榮,寧銳劍.3D打印技術(shù)在口腔種植領(lǐng)域的應(yīng)用及對(duì)牙科工業(yè)發(fā)展的革命性影響[J].中國(guó)醫(yī)療器械信息,2015(8):13-18.
[17] Johan V D S, Van d J O P, Amin Y S, et al. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects[J].Journal of Orthopaedic Research,2013,31(5):792-799.