• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      水基拉延油混合體系黏度的廣義預(yù)測(cè)模型*

      2021-05-21 03:35:08趙子銳王承學(xué)
      潤滑與密封 2021年5期
      關(guān)鍵詞:牛頓流體拉延水基

      趙子銳 王承學(xué)

      (長春工業(yè)大學(xué)化學(xué)工程學(xué)院 吉林長春 130012)

      拉延油作為一種加工用油,在沖壓鋼的生產(chǎn)過程中起著非常重要的作用,其性能關(guān)系到?jīng)_壓產(chǎn)品的質(zhì)量、生產(chǎn)效率、后期加工乃至加工的成功率[1]。常用的拉延油具有冷卻、清潔的作用,并具有潤滑、防銹、抗極壓、抗氧化、抗起泡等特點(diǎn)[2]。目前市場(chǎng)上拉延油產(chǎn)品大多是油基拉延油,存在無法水洗、易燃燒、對(duì)環(huán)境有污染、冷卻不充分等缺點(diǎn)。為此,王承學(xué)和梁甜甜[3]研制了一種水基拉延油并已獲得國家專利。與油基拉延油相比,水基拉延油具有黏度高、耐熱性好、不發(fā)燙等優(yōu)點(diǎn),且加工后不需要使用洗滌劑清洗,對(duì)環(huán)境友好。

      黏度是水基拉延油的一個(gè)重要物理參數(shù)[4-10],影響到拉延油的涂布、清洗、潤滑等使用性能[11]。不同的沖壓鋼生產(chǎn)方式需要不同的產(chǎn)品黏度來配合,因此需要建立模型來控制黏度。

      目前,有許多經(jīng)驗(yàn)公式和半經(jīng)驗(yàn)公式可用于預(yù)測(cè)混合物黏度,這些公式大多來源于實(shí)驗(yàn)數(shù)據(jù)的回歸分析[12-14]。Arrhenius模型是最典型的以混合比為基礎(chǔ)計(jì)算混合體系黏度的模型,它適用于計(jì)算純烴混合物的黏度[14]。BINGHAM提出了一種基于理想溶液的混合液體黏度計(jì)算新模型,KENDALL-MONROE提出了一個(gè)估算烴類混合物黏度的模型,CRAGOE提出了對(duì)數(shù)組分黏度倒數(shù)與質(zhì)量分?jǐn)?shù)乘積的線性組合模型,用于計(jì)算高黏度混合物[15-16]。

      黏度與物料類型、配比、溫度有關(guān)[1]。水基拉伸油同時(shí)具有牛頓流體和非牛頓流體的性質(zhì)[1],隨著溫度的升高,體系由混合型向牛頓型轉(zhuǎn)變。因此,在環(huán)境溫度隨季節(jié)變化明顯的情況下,需要改變水基拉伸油的混合比例,以適應(yīng)不同的工藝和操作環(huán)境。此外,用一種黏度模型來計(jì)算黏度也是比較困難的,因此有必要建立一個(gè)包含可調(diào)值的黏度模型。

      為獲得一種最適合的水基拉延油混合體系黏度預(yù)測(cè)模型,本文作者在不同溫度下對(duì)不同配比的水基拉延油樣品的黏度進(jìn)行了測(cè)定,采用幾種黏度模型對(duì)水基拉延油的黏度進(jìn)行預(yù)測(cè),提出一種適用于水基拉延油等含牛頓流體和非牛頓流體混合體系的黏度預(yù)測(cè)模型。

      1 水基拉延油的流變性能分析

      為配制合適黏度的水基拉延油,將溫度和各組分的比例視作可調(diào)節(jié)變量。以一種由水(A)、鹽(B)和酯(C)組成的水基拉延油為例,調(diào)整三者的比例,制備10種水基拉延油試樣,在恒溫水浴和機(jī)械攪拌下,使用旋轉(zhuǎn)黏度計(jì)(NDJ-1,12 r/min)測(cè)量試樣在不同溫度下的黏度。根據(jù)環(huán)境溫度和材料的凝固點(diǎn),實(shí)驗(yàn)設(shè)定在20~60 ℃溫度下測(cè)量試樣黏度,溫度間隔設(shè)定為5 ℃。試樣中水與鹽、酯的混合比例及測(cè)得的不同溫度下的黏度如表1所示。

      表1 水基拉延油的配比及在不同溫度下的黏度測(cè)量結(jié)果

      注:wA為水的質(zhì)量分?jǐn)?shù);wB為鹽的質(zhì)量分?jǐn)?shù);wC為酯的質(zhì)量分?jǐn)?shù)。

      圖1 樣品黏度隨溫度的變化

      2 水基拉延油黏度預(yù)測(cè)模型

      2.1 常用黏度模型及預(yù)測(cè)分析

      文中首先采用常用的Arrhenius模型、Bingham模型、Kendall-Monroe模型、Cragoe模型對(duì)水基拉延油的黏度進(jìn)行預(yù)測(cè)分析。

      (1)Arrhenius 模型

      lnμ=φAlnμA+φBlnμB

      (1)

      (2)Bingham 模型

      (2)

      (3)Kendall-Monroe 模型

      (3)

      (4)Cragoe 模型

      1/ln(2 000μ)=φA/ln(2 000μA)+φB/ln(2 000μB)

      (4)

      式中:φA為水的質(zhì)量分?jǐn)?shù);φB為鹽酯混合物溶液的質(zhì)量分?jǐn)?shù);μ為拉延油黏度;μA為水的黏度;μB為鹽酯混合物溶液的黏度;VA為水的體積分?jǐn)?shù);VB為鹽酯混合物溶液的體積分?jǐn)?shù)。

      采用公式(1)—(4)計(jì)算不同配比的水基拉延油試樣在給定溫度下的黏度,并和實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比較。

      圖2所示為Arrhenius模型計(jì)算值與實(shí)驗(yàn)值的比較??梢钥闯?,模型的計(jì)算黏度值小于實(shí)驗(yàn)值,且與實(shí)驗(yàn)值的差距較大,因此該模型不適合對(duì)水基拉延油體系進(jìn)行黏度預(yù)測(cè)。

      圖2 Arrhenius模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比

      圖3和圖4分別示出了Bingham模型和Cragoe模型的計(jì)算值與實(shí)驗(yàn)值的比較??梢钥闯?,2種模型的計(jì)算值與實(shí)驗(yàn)值的差異比圖2中的差異更明顯,因此也不適合水基拉延油體系黏度的預(yù)測(cè)。

      圖5所示為Kendall-Monroe模型的計(jì)算值與實(shí)驗(yàn)值的比較??梢钥闯觯cArrhenius模型、Bingham模型和Cragoe模型相比,該模型的計(jì)算值接近于實(shí)驗(yàn)值,但在高黏度時(shí)的計(jì)算值與實(shí)驗(yàn)值差距較大,偏離實(shí)驗(yàn)黏度值擬合直線明顯,因此該模型也不適用于水基拉延油體系黏度的預(yù)測(cè)。

      圖3 Bingham模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比

      圖4 Cragoe模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比

      圖5 Kendall-Monroe模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比

      以上研究表明,常用的4種黏度模型均不能用于水基拉延油體系黏度的預(yù)測(cè),需尋求一種新的黏度模型。

      2.2 ASTM黏度模型及預(yù)測(cè)分析

      由圖1可見,水基拉延油混合體系的黏度隨溫度波動(dòng)較大,需要采用一種可用于黏度波動(dòng)較大的混合體系的黏度模型。GAO和LI[15]提出了采用ASTM雙參數(shù)黏度方程來預(yù)測(cè)黏度,認(rèn)為ASTM模型能很好地反映系統(tǒng)特性,對(duì)于黏度波動(dòng)較大的混合體系有良好的預(yù)測(cè)效果。ASTM模型公式如下:

      loglog(μ+0.7)=a+blogF

      (5)

      (6)

      式中:t為溫度(℃);a和b是系統(tǒng)的常數(shù)。

      圖6所示為ASTM模型計(jì)算值與實(shí)驗(yàn)值的比較。可以看出,模型計(jì)算值與實(shí)驗(yàn)值比較接近,且比較均勻分布在實(shí)驗(yàn)黏度值擬合直線兩側(cè),因此該模型能夠更好地對(duì)該體系進(jìn)行模型預(yù)測(cè)。

      但圖6中該模型計(jì)算值小于實(shí)驗(yàn)值的數(shù)據(jù)較多。為分析ASTM模型的預(yù)測(cè)精度,分別用公式(7)和公式(8)計(jì)算擬合優(yōu)度和平均絕對(duì)誤差。

      擬合優(yōu)度公式:

      (7)

      平均絕對(duì)誤差公式:

      (8)

      圖6 ASTM模型與實(shí)驗(yàn)數(shù)據(jù)對(duì)比

      表2給出了ASTM模型擬合10個(gè)樣品黏度的擬合優(yōu)度和a、b的值。模型的擬合度R2=0.989 8,平均絕對(duì)誤差E=0.086 19,因此需要對(duì)該模型進(jìn)行改進(jìn)。

      表2 ASTM模型擬合結(jié)果

      2.3 ASTM模型的修正及預(yù)測(cè)分析

      WALTHER提出了黏溫公式,被ASTM推薦為黏溫關(guān)系的標(biāo)準(zhǔn)。但是ASTM模型并沒有直接包含混合比例。為了確定不同溫度下的黏度數(shù)據(jù),根據(jù)黏度要求,修正的ASTM模型計(jì)入了溫度和混合比的影響。修改后的ASTM模型(M-ASTM)如下:

      loglog(μf+0.7)=a+blogT

      (9)

      μ=μf(1-c·φB)d

      (10)

      式(9)(10)中a、b、c、d4個(gè)參數(shù)可以通過實(shí)驗(yàn)數(shù)據(jù)的回歸分析得到。

      圖7所示為修正的ASTM模型的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)的對(duì)比。利用公式(7)和公式(8)計(jì)算得到的擬合優(yōu)度和平均絕對(duì)誤差分別為0.990 7和0.047 5,這表明修正后的M-ASTM模型比ASTM模型預(yù)測(cè)得到的黏度數(shù)據(jù)更準(zhǔn)確。

      圖7 修正的ASTM模型計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)對(duì)比

      3 結(jié)論

      (1)在20~45 ℃范圍內(nèi),水基拉延油的黏度隨溫度變化明顯,為非牛頓流體與牛頓流體的混合物;在50~60 ℃范圍內(nèi),水基拉延油的黏度變化不明顯,更接近牛頓流體。

      (2)Bingham模型、Cragoe模型、Arrhenius模型和Kendall-Monroe模型的計(jì)算結(jié)果與實(shí)驗(yàn)數(shù)據(jù)有較大差異,不適用于水基拉延油黏度數(shù)據(jù)的預(yù)測(cè)。

      (3)ASTM模型對(duì)黏度的預(yù)測(cè)優(yōu)于其他模型,而修正后的M-ASTM模型預(yù)測(cè)效果更優(yōu),表明M-ASTM模型更適用于水基拉延油等含牛頓流體和非牛頓流體混合體系的黏度預(yù)測(cè)。

      猜你喜歡
      牛頓流體拉延水基
      納米材料在水基鉆井液中的應(yīng)用
      河南科技(2022年8期)2022-05-31 22:28:08
      覆蓋件型面拉延筋參數(shù)化設(shè)計(jì)系統(tǒng)
      固定式局部水基滅火系統(tǒng)噴嘴安裝要求和常見缺陷
      水上消防(2020年3期)2020-07-25 02:36:20
      非牛頓流體
      HL-FFQH環(huán)保型水基鉆井液體系的構(gòu)建及應(yīng)用
      什么是非牛頓流體
      少兒科技(2019年3期)2019-09-10 07:22:44
      多道次深拉延工藝數(shù)值模擬與實(shí)驗(yàn)比較研究
      區(qū)別牛頓流體和非牛頓流體
      基于CAE技術(shù)驅(qū)動(dòng)的汽車前門外板覆蓋件拉延模設(shè)計(jì)
      首款XGEL非牛頓流體“高樂高”系列水溶肥問世
      青州市| 黄平县| 革吉县| 自贡市| 滁州市| 微博| 宿迁市| 赤城县| 古交市| 衡山县| 抚远县| 乌鲁木齐市| 修水县| 家居| 江都市| 罗江县| 昌黎县| 阳新县| 泽州县| 沈丘县| 曲水县| 泊头市| 南郑县| 濮阳县| 台江县| 清原| 友谊县| 钦州市| 拉萨市| 化州市| 旬阳县| 马边| 深州市| 绥滨县| 永州市| 远安县| 通山县| 禹州市| 兰考县| 泗阳县| 唐山市|