沈燚明 盧琴芬
初級(jí)勵(lì)磁型永磁直線電機(jī)研究現(xiàn)狀與展望
沈燚明 盧琴芬
(浙江大學(xué)電氣工程學(xué)院 杭州 310027)
初級(jí)勵(lì)磁型永磁直線電機(jī)是從傳統(tǒng)永磁直線電機(jī)衍生而來(lái)的一類(lèi)新型特種電機(jī),具有高推力密度、高效率、高精度和高可靠性等優(yōu)點(diǎn)。在長(zhǎng)行程直驅(qū)式直線運(yùn)動(dòng)領(lǐng)域,該類(lèi)電機(jī)有其獨(dú)特的性能與成本優(yōu)勢(shì),具有很高的研究?jī)r(jià)值和廣闊的應(yīng)用前景。該文針對(duì)初級(jí)勵(lì)磁型永磁直線電機(jī),回顧并總結(jié)了國(guó)內(nèi)外相關(guān)研究的技術(shù)現(xiàn)狀和發(fā)展趨勢(shì)。從磁場(chǎng)調(diào)制理論出發(fā),揭示了初級(jí)勵(lì)磁型永磁直線電機(jī)氣隙磁場(chǎng)諧波分布與推力產(chǎn)生原理。從拓?fù)浣Y(jié)構(gòu)的角度,梳理了各類(lèi)永磁直線電機(jī)的技術(shù)要點(diǎn)及研究進(jìn)展。從初級(jí)勵(lì)磁型永磁直線電機(jī)的特征出發(fā),介紹了高性能控制策略。最后,對(duì)比分析了各類(lèi)初級(jí)勵(lì)磁型永磁直線電機(jī)的綜合性能,并探討了未來(lái)的發(fā)展方向。
永磁直線電機(jī) 初級(jí)勵(lì)磁 雙凸極 磁場(chǎng)調(diào)制原理 高推力密度 長(zhǎng)行程
隨著我國(guó)國(guó)民經(jīng)濟(jì)的高速發(fā)展和制造強(qiáng)國(guó)戰(zhàn)略的深入部署,高性能電機(jī)系統(tǒng)成為裝備制造業(yè)向高端化發(fā)展的關(guān)鍵與核心[1]。在直驅(qū)式直線運(yùn)動(dòng)領(lǐng)域,永磁直線電機(jī)(Permanent Magnet Linear Machines,PMLM)集成了永磁電機(jī)與直線電機(jī)的特性,具有高推力密度、高效率、高精度和高可靠性等顯著優(yōu)點(diǎn),目前廣泛應(yīng)用于高檔數(shù)控機(jī)床、極大規(guī)模集成電路制造裝備、3C產(chǎn)品制造裝備、高速物流系統(tǒng)與無(wú)繩電梯等領(lǐng)域[2]。
傳統(tǒng)PMLM電樞與磁極分別在動(dòng)、定子兩側(cè),可分為具有高推力密度的有鐵心結(jié)構(gòu)和高動(dòng)態(tài)響應(yīng)的無(wú)鐵心結(jié)構(gòu)。針對(duì)高精度應(yīng)用場(chǎng)合的直線伺服系統(tǒng)領(lǐng)域,傳統(tǒng)PMLM已在工業(yè)界得到了廣泛的應(yīng)用。目前,國(guó)內(nèi)外知名的供應(yīng)商有德國(guó)Siemens、美國(guó)Kollmorgen、荷蘭Tecnotion、瑞士ETEL、日本Yaskawa、新加坡Akribis、深圳大族和廣州數(shù)控等公司[3]。在工業(yè)界廣泛應(yīng)用的同時(shí),傳統(tǒng)PMLM面臨著兩大問(wèn)題:①磁極需面貼于次級(jí)全行程范圍,永磁體用量大且成本高;②次級(jí)帶有強(qiáng)磁性,需要額外安裝隔磁防護(hù)裝置。隨著長(zhǎng)行程直驅(qū)式應(yīng)用領(lǐng)域的不斷拓展,上述兩大問(wèn)題越發(fā)突出,工業(yè)界急需具有高推力密度和低成本的PMLM新拓?fù)浣Y(jié)構(gòu)。
近年來(lái),初級(jí)勵(lì)磁型PMLM成為直線電機(jī)領(lǐng)域的一大熱點(diǎn),逐步得到了深入的研究。顧名思義,初級(jí)勵(lì)磁型PMLM將電樞和磁極均放置于初級(jí)側(cè),次級(jí)僅由鐵心構(gòu)成,且通常是短初級(jí)長(zhǎng)次級(jí)結(jié)構(gòu)。在長(zhǎng)行程應(yīng)用時(shí),永磁體僅位于短初級(jí)側(cè)而無(wú)需面貼于次級(jí)全行程范圍,用量與成本均大幅降低。同時(shí),次級(jí)在全行程范圍內(nèi)不再具有強(qiáng)磁性,無(wú)需額外安裝隔磁防護(hù)裝置,可以應(yīng)用的領(lǐng)域得到大幅擴(kuò)展。由此可見(jiàn),初級(jí)勵(lì)磁型PMLM相比于傳統(tǒng)PMLM具有獨(dú)特的性能與成本優(yōu)勢(shì),在長(zhǎng)行程直驅(qū)式直線運(yùn)動(dòng)領(lǐng)域,如長(zhǎng)行程直線伺服系統(tǒng)、高速物流系統(tǒng)和高速無(wú)繩電梯等,具有很高的研究?jī)r(jià)值和廣闊的應(yīng)用前景。
本文主要針對(duì)初級(jí)勵(lì)磁型PMLM,回顧并總結(jié)了國(guó)內(nèi)外相關(guān)研究的技術(shù)現(xiàn)狀和發(fā)展趨勢(shì)。從基本原理和結(jié)構(gòu)出發(fā)對(duì)初級(jí)勵(lì)磁型PMLM進(jìn)行分類(lèi),梳理了各類(lèi)電機(jī)的技術(shù)要點(diǎn)及研究進(jìn)展,指出了目前尚存在的一些問(wèn)題。最后,總結(jié)了各類(lèi)初級(jí)勵(lì)磁型PMLM的綜合性能,并探討了未來(lái)的發(fā)展方向。
圖1所示為初級(jí)勵(lì)磁型PMLM的分類(lèi)。從空間結(jié)構(gòu)來(lái)看,可分為單邊型、雙邊型和圓筒型三種結(jié)構(gòu);從勵(lì)磁方式來(lái)看,主要有永磁勵(lì)磁和混合勵(lì)磁兩種方式;從磁場(chǎng)分布來(lái)看,可分為縱向磁通和橫向磁通。按照永磁體在初級(jí)鐵心中的相對(duì)位置,可進(jìn)一步將其分為以下幾種類(lèi)型:①永磁體與電樞分離在初級(jí)兩側(cè)的初級(jí)分裂型PMLM;②永磁體嵌于電樞齒中的磁通切換型PMLM;③永磁體貼于電樞齒面的磁通反向型和游標(biāo)型PMLM,若永磁體只有單極性,則可構(gòu)成交替極型PMLM;④永磁體嵌于初級(jí)鐵心軛部的磁通偏置型PMLM;⑤永磁體嵌于初級(jí)鐵心槽口的槽口永磁型PMLM。
圖1 初級(jí)勵(lì)磁型PMLM分類(lèi)
初級(jí)勵(lì)磁型PMLM拓?fù)浣Y(jié)構(gòu)種類(lèi)繁多,但仍具有以下幾個(gè)共同特點(diǎn):
(1)電樞和磁極均放置于短初級(jí)側(cè),長(zhǎng)次級(jí)僅由硅鋼片疊成的凸極鐵心構(gòu)成,初、次級(jí)均為凸極結(jié)構(gòu)。
(2)磁極的極對(duì)數(shù)較高,通常為槽數(shù)的一半或整數(shù)倍槽數(shù),電樞繞組常采用端部非重疊集中繞組,且運(yùn)動(dòng)一個(gè)次級(jí)極距對(duì)應(yīng)一個(gè)電周期。
(3)推力的產(chǎn)生遵循磁場(chǎng)調(diào)制原理,即靜止的初級(jí)勵(lì)磁磁場(chǎng)被次級(jí)鐵心調(diào)制后在氣隙處產(chǎn)生運(yùn)動(dòng)的行波磁場(chǎng),該行波磁場(chǎng)與電樞磁場(chǎng)構(gòu)成有效諧波對(duì),從而產(chǎn)生推力。
初級(jí)勵(lì)磁型PMLM推力的產(chǎn)生可用磁動(dòng)勢(shì)-磁導(dǎo)模型進(jìn)行解析計(jì)算。其中,永磁磁動(dòng)勢(shì)為
初級(jí)勵(lì)磁型PMLM為雙凸極結(jié)構(gòu),其初級(jí)、次級(jí)磁導(dǎo)均需要考慮鐵心開(kāi)槽的影響,初、次級(jí)磁導(dǎo)p和s進(jìn)行計(jì)算式為
將永磁磁動(dòng)勢(shì)(式(1))與合成氣隙磁導(dǎo)(式(4))相乘,即可得到氣隙磁通密度表達(dá)式為
空載氣隙磁通密度各次諧波組成見(jiàn)表1。其中,極對(duì)數(shù)為(2-1)pm的各次諧波由永磁磁動(dòng)勢(shì)與次級(jí)平均磁導(dǎo)相乘得到,其運(yùn)動(dòng)速度為0,不能用于產(chǎn)生推力。經(jīng)次級(jí)鐵心調(diào)制后,剩余兩種極對(duì)數(shù)為|(2-1)pm±s|的諧波為運(yùn)動(dòng)的行波磁場(chǎng),與電樞磁場(chǎng)相互作用后可以產(chǎn)生推力。
表1 初級(jí)勵(lì)磁型PMLM空載氣隙磁通密度諧波成分
Tab.1 Distribution of air gap harmonics of PE-PMLM
由于行波磁場(chǎng)中低次諧波的幅值較大,為了充分利用低次諧波,式(6)中一般取低次諧波的極對(duì)數(shù)作為電樞繞組的極對(duì)數(shù),即= 1,= 1,由此可以確定電樞繞組的聯(lián)結(jié)方式。
在確定電樞繞組聯(lián)結(jié)方式后,將氣隙磁通密度在初級(jí)長(zhǎng)度范圍內(nèi)積分,可得到三相繞組所匝鏈的磁鏈,再進(jìn)一步對(duì)磁鏈微分即可得到各相反電動(dòng)勢(shì)為
式中,ph()為繞組函數(shù);sk為電機(jī)疊厚。當(dāng)電樞繞組中通入三相正弦交流電時(shí),初級(jí)勵(lì)磁型PMLM的推力計(jì)算式為
由此可以看出,初級(jí)勵(lì)磁型PMLM相比于傳統(tǒng)PMLM具有更加豐富的氣隙磁場(chǎng)諧波,其本質(zhì)上是一類(lèi)由多種有效諧波對(duì)共同產(chǎn)生推力的諧波電機(jī)。
磁通切換型PMLM(Switched-Flux PMLM,SFPMLM)作為一種典型的雙凸極直線電機(jī),已成為直線電機(jī)研究領(lǐng)域的一大熱點(diǎn),其典型拓?fù)浣Y(jié)構(gòu)如圖2所示。2008年,英國(guó)謝菲爾德大學(xué)的Z. Q. Zhu教授首次提出SFPMLM,并對(duì)不同槽極配合及繞組結(jié)構(gòu)進(jìn)行了對(duì)比分析[4]。同年,浙江大學(xué)的沈建新教授也對(duì)SFPMLM展開(kāi)了研究,并利用次級(jí)斜極的方法減小定位力[5]。此后,越來(lái)越多的學(xué)者對(duì)SFPMLM展開(kāi)深入的研究,主要集中在新型拓?fù)浣Y(jié)構(gòu)研究方面。
圖2 磁通切換型PMLM典型拓?fù)浣Y(jié)構(gòu)
2.1.1 少永磁結(jié)構(gòu)
文獻(xiàn)[6]在傳統(tǒng)U型結(jié)構(gòu)的基礎(chǔ)上,提出了C型和E型新結(jié)構(gòu)以減少一半的永磁用量。研究表明,相同損耗下C型結(jié)構(gòu)可比傳統(tǒng)U型結(jié)構(gòu)提高約10%~20%的推力;E型結(jié)構(gòu)中的容錯(cuò)齒有效降低了相間互感,適合模塊化容錯(cuò)運(yùn)行。文獻(xiàn)[7-9]進(jìn)一步對(duì)初級(jí)奇數(shù)槽下的C型和E型新結(jié)構(gòu)進(jìn)行了深入研究,結(jié)果顯示,奇數(shù)槽下可選槽極配合更多,且同樣可提高電機(jī)推力密度及容錯(cuò)性能。
文獻(xiàn)[10-11]提出了多齒型結(jié)構(gòu)用于進(jìn)一步提高電機(jī)推力密度并降低永磁用量,其結(jié)構(gòu)如圖3所示。研究表明,電負(fù)荷較低時(shí)多齒型結(jié)構(gòu)可明顯提高推力密度,但電負(fù)荷較高時(shí),其功率因數(shù)較低且非常容易飽和,過(guò)載能力較弱。
圖3 多齒型結(jié)構(gòu)SFPMLM
2.1.2 圓筒型及雙邊型結(jié)構(gòu)
圓筒型及雙邊型結(jié)構(gòu)可以消除不平衡單邊法向力的影響,且在減小定位力及推力波動(dòng)、提高推力密度等方面更具優(yōu)勢(shì)。
文獻(xiàn)[12]利用傳統(tǒng)U型鐵心的外電樞結(jié)構(gòu),提出了一種圓筒型SFPMLM,如圖4所示。在此基礎(chǔ)上,采用模塊化E型鐵心及隔磁橋結(jié)構(gòu),可以提高圓筒型SFPMLM的容錯(cuò)能力[13]。此外,文獻(xiàn)[14]提出了一種采用單相圓筒型SFPMLM的直線振蕩電機(jī)??傮w而言,圓筒型SFPMLM結(jié)構(gòu)復(fù)雜,加工及裝配困難,實(shí)際應(yīng)用時(shí)較少采用。
圖4 圓筒型結(jié)構(gòu)SFPMLM
文獻(xiàn)[15-16]提出了一種初級(jí)無(wú)軛部雙邊型SFPMLM,如圖5所示。研究表明,該結(jié)構(gòu)可以有效減少軛部漏磁并提高永磁體利用率,同體積下推力密度可提高約50%。文獻(xiàn)[17]進(jìn)一步提出了一種雙永磁結(jié)構(gòu)的初級(jí)無(wú)軛部雙邊型SFPMLM。結(jié)果顯示,該電機(jī)在同體積下推力密度可提高約80%,特別適合用作有限空間內(nèi)的力電機(jī)。與此同時(shí),文獻(xiàn)[18]提出了一種多齒型結(jié)構(gòu)的初級(jí)無(wú)軛部雙邊型SFPMLM,如圖6所示。研究表明,去掉初級(jí)軛部并采用多齒結(jié)構(gòu)后,定位力及推力波動(dòng)可大幅減小,相同推力密度下永磁用量減少約30%,但是電負(fù)荷較高時(shí)非常容易飽和。此外,還有一些雙邊型結(jié)構(gòu)以次級(jí)軛部作為對(duì)稱軸,且次級(jí)通常作為短動(dòng)子運(yùn)動(dòng),可應(yīng)用于電磁彈射等領(lǐng)域[19-21]。
圖5 初級(jí)無(wú)軛部雙邊型SFPMLM
圖6 多齒型結(jié)構(gòu)的初級(jí)無(wú)軛部雙邊型SFPMLM
2.1.3 模塊化容錯(cuò)結(jié)構(gòu)
文獻(xiàn)[22]在傳統(tǒng)U型結(jié)構(gòu)基礎(chǔ)上,利用磁障將相鄰兩相磁路隔離,提出了一種模塊化容錯(cuò)型SFPMLM,如圖7所示。該電機(jī)具有相間互感小、容錯(cuò)能力強(qiáng)、永磁用量小等優(yōu)點(diǎn)。在此基礎(chǔ)上,文獻(xiàn)[23-27]提出了磁路互補(bǔ)模塊化容錯(cuò)型SFPMLM,如圖8所示。磁路互補(bǔ)的目的是追求各模塊合成反動(dòng)勢(shì)正弦度更好及合成定位力最小。此外,還有一些去掉磁障且各相獨(dú)立的模塊化容錯(cuò)型SFPMLM[28-29]。
圖7 模塊化容錯(cuò)型SFPMLM
圖8 磁路互補(bǔ)模塊化容錯(cuò)型SFPMLM
2.1.4 混合勵(lì)磁結(jié)構(gòu)
為了增強(qiáng)氣隙磁場(chǎng)的調(diào)節(jié)能力,電勵(lì)磁作為補(bǔ)充勵(lì)磁源的混合勵(lì)磁方式常被采用,主要有串聯(lián)勵(lì)磁和并聯(lián)勵(lì)磁兩種形式。文獻(xiàn)[30]提出了一種串聯(lián)混合勵(lì)磁SFPMLM,其中直流勵(lì)磁繞組位于靠近氣隙的電樞分裂齒內(nèi),如圖9所示。結(jié)果顯示,當(dāng)直流勵(lì)磁在±15 A/mm2范圍內(nèi)調(diào)節(jié)時(shí),氣隙磁場(chǎng)調(diào)節(jié)范圍擴(kuò)大至+45%~-53%。文獻(xiàn)[31-32]提出了一種勵(lì)磁繞組位于軛部的并聯(lián)混合勵(lì)磁SFPMLM,如圖10所示。文獻(xiàn)[33]以E型結(jié)構(gòu)為基礎(chǔ),在E型鐵心中間的容錯(cuò)齒上添加直流勵(lì)磁繞組,構(gòu)成并聯(lián)混合勵(lì)磁。
圖9 串聯(lián)混合勵(lì)磁SFPMLM
圖10 并聯(lián)混合勵(lì)磁型SFPMLM
2.1.5 邊端效應(yīng)削弱與優(yōu)化
受初級(jí)鐵心開(kāi)斷的影響,直線電機(jī)存在邊端力及三相不平衡問(wèn)題。因此,在本體設(shè)計(jì)中常采用先進(jìn)的優(yōu)化算法對(duì)電機(jī)各尺寸進(jìn)行全局優(yōu)化,并利用其他輔助方法削弱邊端效應(yīng)。文獻(xiàn)[34-35]提出了一種利用邊端輔助齒來(lái)削弱推力波動(dòng)中端部效應(yīng)的方法。針對(duì)推力波動(dòng)中齒槽效應(yīng)成分,可以采用次級(jí)鐵心斜極或分段錯(cuò)位、齒頂表面開(kāi)槽或圓弧倒角、大小齒匹配等方式進(jìn)行削弱[36]。文獻(xiàn)[37]提出了一種帶補(bǔ)償繞組及永磁體的邊端輔助齒新結(jié)構(gòu),如圖11所示。通過(guò)分析空載定位力及負(fù)載推力波動(dòng)主要諧波成分,并在補(bǔ)償繞組中反向注入諧波電流,可以消除主要諧波成分的影響并提供更加平穩(wěn)的推力。該方法為削弱邊端效應(yīng)提供了新思路。
圖11 帶補(bǔ)償繞組及永磁體的邊端輔助齒示意圖
磁通反向型PMLM(Flux Reversal PMLM,F(xiàn)RPMLM)是由Ion Boldea教授首次提出并應(yīng)用于一臺(tái)單相的直線振蕩電機(jī)中[38],其典型拓?fù)浣Y(jié)構(gòu)如圖12所示。提出至今,國(guó)內(nèi)外眾多學(xué)者對(duì)FRPMLM進(jìn)行了深入地研究,取得了豐碩的研究成果。
圖12 磁通反向型PMLM典型拓?fù)浣Y(jié)構(gòu)
2.2.1 交替極結(jié)構(gòu)
在傳統(tǒng)FRPMLM結(jié)構(gòu)的基礎(chǔ)上,文獻(xiàn)[39-42]提出了一系列交替極少永磁結(jié)構(gòu)的FRPMLM,如圖13所示。交替極(Consequent-Pole,CP)指的是利用鐵心取代其中一種極性的永磁體,使得永磁體只存在單極性,且永磁體的極對(duì)數(shù)與個(gè)數(shù)相同。研究表明,交替極FRPMLM在減少一半永磁用量的同時(shí),推力密度可提高約20%。文獻(xiàn)[43]進(jìn)一步提出了一種雙邊型無(wú)軛部交替極FRPMLM,其永磁體嵌于電樞齒的中心而兩端為鐵心,在相同體積及永磁用量下,推力密度可提高約33%。
圖13 交替極FRPMLM
文獻(xiàn)[44-47]提出了多種容錯(cuò)型交替極FRPMLM,其典型拓?fù)浣Y(jié)構(gòu)如圖14所示。該結(jié)構(gòu)將三相繞組彼此隔離并形成獨(dú)立模塊,永磁體嵌于電樞齒的中心位置,相鄰兩個(gè)電樞齒中間留有容錯(cuò)齒。圖15所示為混合勵(lì)磁容錯(cuò)型交替極FRPMLM,其中直流勵(lì)磁繞組繞制在容錯(cuò)齒上,與電樞齒上的永磁體形成并聯(lián)磁路,可以同時(shí)獲得永磁勵(lì)磁帶來(lái)的高推力密度及電勵(lì)磁帶來(lái)的寬調(diào)磁范圍。
圖14 容錯(cuò)型交替極FRPMLM
圖15 混合勵(lì)磁容錯(cuò)型交替極FRPMLM
2.2.2 橫向磁通結(jié)構(gòu)
FRPMLM的一大特點(diǎn)是勵(lì)磁結(jié)構(gòu)的多樣性,其永磁陣列可以是多對(duì)NS極、單對(duì)NS極和永磁-鐵心單極性陣列。當(dāng)永磁陣列的極性在橫、縱兩個(gè)方向上同時(shí)變化時(shí),可以實(shí)現(xiàn)橫向磁通結(jié)構(gòu)。哈爾濱工業(yè)大學(xué)的寇寶泉教授對(duì)橫向磁通FRPMLM展開(kāi)了深入研究,提出了多種新型拓?fù)浣Y(jié)構(gòu)。文獻(xiàn)[48]提出了一種擴(kuò)展U型橫向磁通FRPMLM,其整體結(jié)構(gòu)如圖16a所示,電樞齒在橫、縱兩個(gè)方向上均貼有極性交變的永磁體。從圖16b所示的橫向磁路看,同一時(shí)刻相鄰電樞齒上的磁通方向相反;從圖16c所示的縱向磁路看,三相初級(jí)模塊沿著運(yùn)動(dòng)方向依次錯(cuò)開(kāi)120°電角度排列。在此基礎(chǔ)上,文獻(xiàn)[49-50]用鐵心替代其中一種極性的永磁體,提出了交替極橫向磁通FRPMLM。文獻(xiàn)[51]提出了一種E型橫向磁通FRPMLM,用于減少繞組端部數(shù)量從而降低銅耗。研究表明,E型橫向磁通FRPMLM的推力密度高達(dá)183kN/m3。
圖16 擴(kuò)展U型橫向磁通FRPMLM
上述平面型橫向磁通FRPMLM雖然具有較高的推力密度,但存在不平衡單邊法向力的問(wèn)題。因此,一些研究團(tuán)隊(duì)提出了圓筒型橫向磁通FRPMLM以消除不平衡單邊法向力[52-53],如圖17所示。在此基礎(chǔ)上,文獻(xiàn)[54-55]充分利用交替極結(jié)構(gòu)的特點(diǎn),提出了一種旋轉(zhuǎn)-直線二自由度圓筒型橫向磁通FRPMLM,可同時(shí)實(shí)現(xiàn)旋轉(zhuǎn)和直線運(yùn)動(dòng)。
圖17 圓筒型橫向磁通FRPMLM
根據(jù)磁阻最小原理,游標(biāo)型PMLM(Vernier PMLM,VPMLM)次級(jí)移動(dòng)較小的位置即可使氣隙磁導(dǎo)產(chǎn)生較大的變化。利用其“磁齒輪效應(yīng)”,可以實(shí)現(xiàn)低速大推力,其典型拓?fù)浣Y(jié)構(gòu)如圖18所示。游標(biāo)型與磁通反向型PMLM結(jié)構(gòu)非常相似,兩者的差異在于游標(biāo)型的永磁體極對(duì)數(shù)較高而磁通反向型極對(duì)數(shù)較低。按照永磁體的極性,游標(biāo)型PMLM同樣可分為雙極性結(jié)構(gòu)和交替極結(jié)構(gòu)。
圖18 游標(biāo)型PMLM典型拓?fù)浣Y(jié)構(gòu)
2.3.1 雙極性結(jié)構(gòu)
日本安川電機(jī)公司的Nagahiko Nagasaka等于1994年提出了圖19所示的雙極性VPMLM[56]。其中,初級(jí)電樞齒上表貼有兩對(duì)永磁體,而次級(jí)僅由凸極鐵心構(gòu)成。文獻(xiàn)[57-60]進(jìn)一步提出了類(lèi)似結(jié)構(gòu)的雙邊型雙極性VPMLM,其中初級(jí)鐵心包括C型和E型結(jié)構(gòu),每個(gè)電樞齒上表貼有三對(duì)永磁體,如圖20所示。在此基礎(chǔ)上,文獻(xiàn)[61-69]將電樞齒上的永磁體極數(shù)從偶數(shù)擴(kuò)展到奇數(shù),其拓?fù)浣Y(jié)構(gòu)如圖21所示。研究表明,采用奇數(shù)極結(jié)構(gòu)時(shí)永磁體漏磁與齒槽力可明顯降低,且“磁齒輪效應(yīng)”仍明顯存在。
圖19 雙極性游標(biāo)型PMLM
圖20 雙邊型雙極性游標(biāo)型PMLM
圖21 奇數(shù)極雙極性游標(biāo)型PMLM
2.3.2 交替極結(jié)構(gòu)
為了進(jìn)一步降低永磁用量并減少漏磁,部分研究人員開(kāi)始對(duì)交替極結(jié)構(gòu)的VPMLM展開(kāi)研究。文獻(xiàn)[70]在雙極性奇數(shù)極結(jié)構(gòu)的基礎(chǔ)上,用鐵心替代其中兩塊相同極性的永磁體,得到了一種交替極VPMLM。結(jié)果顯示,該電機(jī)永磁用量為原來(lái)的75%,但主要次諧波及推力卻分別提高了43%和34%。
針對(duì)交替極結(jié)構(gòu)存在的漏磁問(wèn)題,江蘇大學(xué)的趙文祥教授對(duì)永磁體進(jìn)行了改進(jìn),并提出了一類(lèi)Halbach聚磁式交替極VPMLM,如圖22所示。圍繞解析建模[71-72]、槽極配合[73-77]、新型拓?fù)浣Y(jié)構(gòu)[78-79]和模塊化設(shè)計(jì)[80-81]等方面,該類(lèi)電機(jī)得到了深入研究。研究表明,Halbach永磁陣列可以有效減少漏磁并提高氣隙磁通密度,并且當(dāng)永磁體極對(duì)數(shù)為3時(shí)推力密度最高。
圖22 Halbach聚磁式交替極游標(biāo)型PMLM
與此同時(shí),文獻(xiàn)[82-88]提出了兩種不同結(jié)構(gòu)的V型和Halbach型聚磁式交替極VPMLM,如圖23所示。與圖22相比,圖23b所示的Halbach型永磁陣列與分裂齒的相對(duì)位置不同。研究表明,V型和Halbach型聚磁式交替極結(jié)構(gòu)可比原交替極結(jié)構(gòu)進(jìn)一步提高約10%的推力。
圖23 聚磁式交替極游標(biāo)型PMLM
與雙凸極旋轉(zhuǎn)電機(jī)類(lèi)似,初級(jí)勵(lì)磁型PMLM也可以將永磁體嵌于軛部。文獻(xiàn)[89]提出了一種模塊化E型雙凸極PMLM,并分析了其在無(wú)刷直流和無(wú)刷交流兩種驅(qū)動(dòng)模式下的推力性能。磁通偏置型PMLM在雙凸極PMLM的基礎(chǔ)上增加了永磁體的數(shù)量,使得相鄰兩電樞齒之間的軛部均嵌有永磁體,且每個(gè)線圈所匝鏈的磁鏈根據(jù)永磁體的極性存在一個(gè)偏置量。
文獻(xiàn)[90-91]提出了一種36槽20極的雙邊磁通偏置型PMLM,如圖24所示。該槽極配合下永磁體極對(duì)數(shù)與次級(jí)極數(shù)相近,因而電機(jī)具有明顯的磁齒輪效應(yīng)。在此基礎(chǔ)上,文獻(xiàn)[92]在初級(jí)鐵心槽口處加入永磁體作為并聯(lián)勵(lì)磁源,得到了一種雙永磁結(jié)構(gòu)的磁通偏置型PMLM,如圖25所示。結(jié)果顯示,槽口加入永磁體后,電機(jī)推力密度可以提升約36%。
圖24 雙邊磁通偏置型PMLM
圖25 雙永磁磁通偏置型PMLM
傳統(tǒng)電機(jī)設(shè)計(jì)中,槽開(kāi)口空間常采用槽楔進(jìn)行填充,而不會(huì)用來(lái)放置永磁體進(jìn)行勵(lì)磁。日本芝浦工業(yè)大學(xué)的Shoji Shimomura教授在游標(biāo)型PMLM的基礎(chǔ)上,充分利用槽開(kāi)口空間,提出了一種槽口永磁型PMLM[93-96],如圖26所示。該電機(jī)永磁體的充磁方向垂直于運(yùn)動(dòng)方向且只有單極性,其本質(zhì)上是一種交替極結(jié)構(gòu)的游標(biāo)型PMLM。
圖26 單極性槽口永磁型PMLM
浙江大學(xué)的盧琴芬教授提出了一類(lèi)槽口永磁型PMLM,并對(duì)其槽極配合與繞組結(jié)構(gòu)[97-98],混合勵(lì)磁結(jié)構(gòu)[99-100]展開(kāi)了深入研究,如圖27所示。研究表明,該類(lèi)電機(jī)在空載條件下具有非常小的定位力及反電動(dòng)勢(shì);在負(fù)載條件下,永磁體具有緩解初級(jí)鐵心飽和的作用,因而其過(guò)載能力較強(qiáng),適合用于短時(shí)工作制的力電機(jī)。
圖27 雙極性槽口永磁型PMLM
初級(jí)勵(lì)磁型PMLM中永磁體與電樞繞組位于同一側(cè),當(dāng)電負(fù)荷較高時(shí),初級(jí)鐵心很容易飽和。為了降低飽和,可以將初級(jí)分離成兩部分,構(gòu)成初級(jí)分裂型PMLM。其中,分離后的兩個(gè)初級(jí)子模塊分別放置電樞繞組與永磁體,而次級(jí)仍然僅由鐵心構(gòu)成。由于額外增加了一部分初級(jí),初級(jí)分裂型PMLM具有更多自由度,可以實(shí)現(xiàn)包括磁通切換型和磁通反向型在內(nèi)的多種拓?fù)浣Y(jié)構(gòu)。
浙江大學(xué)的盧琴芬教授對(duì)初級(jí)分裂型PMLM展開(kāi)了深入研究,提出了多種拓?fù)浣Y(jié)構(gòu),其中包括磁通切換型結(jié)構(gòu)[101]、磁通反向型結(jié)構(gòu)[102]和混合勵(lì)磁結(jié)構(gòu)[103-105]。圖28所示為其中一種磁通切換型結(jié)構(gòu)的初級(jí)分裂型PMLM。結(jié)果顯示,該初級(jí)分裂型結(jié)構(gòu)在同體積下可比傳統(tǒng)結(jié)構(gòu)提高約30%的推力,并且隨著電負(fù)荷的增加,提升的效果更為明顯。圖29所示為混合勵(lì)磁式初級(jí)分裂型PMLM,其中直流勵(lì)磁繞組位于短初級(jí)的一側(cè),電樞繞組和永磁體位于短初級(jí)的另一側(cè)。結(jié)果顯示,增加直流勵(lì)磁后電機(jī)的調(diào)磁能力大幅增強(qiáng)。
圖28 磁通切換式初級(jí)分裂型PMLM
圖29 混合勵(lì)磁式初級(jí)分裂型PMLM
與此同時(shí),初級(jí)分裂型PMLM存在一個(gè)共性問(wèn)題:雙氣隙的存在使得機(jī)械結(jié)構(gòu)變得更為復(fù)雜,初級(jí)裝配困難且可靠性較低。
初級(jí)勵(lì)磁型PMLM的驅(qū)動(dòng)方式與傳統(tǒng)PMLM一致,采用正弦波驅(qū)動(dòng),因而針對(duì)傳統(tǒng)PMLM的控制策略也適用于初級(jí)勵(lì)磁型PMLM,如空間矢量脈寬調(diào)制[106-107]、速度閉環(huán)控制[108-109]、位置閉環(huán)控制[110]與直接推力控制[111-112]等。另外,也有一些高性能控制策略用于改善初級(jí)勵(lì)磁型PMLM的性能,主要包括定位力與推力波動(dòng)抑制、無(wú)位置傳感器控制及容錯(cuò)控制等。
初級(jí)勵(lì)磁型PMLM雙凸極的結(jié)構(gòu)本質(zhì)使其具有定位力與推力波動(dòng)較大的缺點(diǎn)。因此,除了在電機(jī)結(jié)構(gòu)設(shè)計(jì)上需要利用斜極、邊端輔助齒等方式對(duì)定位力進(jìn)行削弱外,還需要在控制策略上進(jìn)一步采取補(bǔ)償措施。根據(jù)推力波動(dòng)產(chǎn)生的機(jī)制,主要可以從以下兩個(gè)方面對(duì)其進(jìn)行抑制[113]:
(1)研究具有高動(dòng)態(tài)響應(yīng)、高穩(wěn)態(tài)精度且強(qiáng)魯棒性的電流控制策略,從提高電流品質(zhì)的角度出發(fā)直接提高輸出推力的響應(yīng)速度和穩(wěn)態(tài)精度。
(2)研究高性能的推力波動(dòng)估計(jì)或觀測(cè)方法,從推力波動(dòng)抑制的角度出發(fā)直接提高輸出推力的平穩(wěn)性。
針對(duì)傳統(tǒng)PMLM推力波動(dòng)抑制問(wèn)題,不少學(xué)者展開(kāi)了深入的研究。傳統(tǒng)PMLM一般采用電流和位置雙閉環(huán)控制結(jié)構(gòu)以保證系統(tǒng)的高動(dòng)態(tài)響應(yīng),電流環(huán)作為最內(nèi)環(huán),其性能直接決定了系統(tǒng)的品質(zhì)。文獻(xiàn)[114-117]采用預(yù)測(cè)電流控制以提高電流響應(yīng)速度,并保證暫態(tài)時(shí)間內(nèi)的高精度控制。相比于滯環(huán)電流控制和PI控制,該方法可以實(shí)現(xiàn)較高的穩(wěn)態(tài)電流精度和較低的電流諧波,但其本質(zhì)上是一種基于模型的控制方法,其控制性能非常依賴電機(jī)參數(shù)的準(zhǔn)確度。文獻(xiàn)[118-120]對(duì)推力波動(dòng)的特征進(jìn)行了分析,并利用離線或在線辨識(shí)結(jié)果對(duì)其進(jìn)行前饋補(bǔ)償。該方法對(duì)推力波動(dòng)抑制具有一定的作用,但其本質(zhì)上也是一種基于模型的控制方法,辨識(shí)或補(bǔ)償效果依賴推力波動(dòng)模型的準(zhǔn)確度。
在實(shí)際系統(tǒng)中,推力波動(dòng)建模不準(zhǔn)確、模型參數(shù)時(shí)變等因素會(huì)導(dǎo)致前饋補(bǔ)償效果受限。因此,很多學(xué)者從改進(jìn)控制方法的角度來(lái)間接抑制推力波動(dòng)。文獻(xiàn)[121]將PID反饋控制、自適應(yīng)前饋控制和滑模控制相結(jié)合,提出一種摩擦力和推力波動(dòng)自適應(yīng)補(bǔ)償方法。美國(guó)普渡大學(xué)的Yao Bin教授將自適應(yīng)魯棒控制用于直線電機(jī)運(yùn)動(dòng)控制中,在提高跟蹤精度的同時(shí)又可以保證系統(tǒng)鎮(zhèn)定[122-125]。
區(qū)別于改進(jìn)反饋控制策略,不少學(xué)者從改進(jìn)觀測(cè)方法的角度來(lái)改善推力波動(dòng)抑制性能并提高位置控制精度,如基于自適應(yīng)控制的擾動(dòng)觀測(cè)器[115, 126]、滑模擾動(dòng)觀測(cè)器[114, 127]、擴(kuò)張狀態(tài)觀測(cè)器、通用比例積分觀測(cè)器[117]、擴(kuò)展卡爾曼濾波器等[116, 128]。
借鑒傳統(tǒng)PMLM推力波動(dòng)抑制的方法,初級(jí)勵(lì)磁型PMLM也可以采用。文獻(xiàn)[129]提出了一種將諧波抑制算法和擾動(dòng)觀測(cè)器相結(jié)合的聯(lián)合控制策略,用于抑制磁通切換型PMLM的推力波動(dòng),其控制框圖如圖30所示。該文獻(xiàn)通過(guò)q軸電流諧波注入的方式補(bǔ)償定位力,并設(shè)計(jì)擾動(dòng)觀測(cè)器對(duì)電機(jī)模型誤差和外部干擾所帶來(lái)的系統(tǒng)擾動(dòng)進(jìn)行在線估計(jì)和補(bǔ)償。該控制策略具有一定的擴(kuò)展性,可為相似結(jié)構(gòu)的初級(jí)勵(lì)磁型PMLM控制研究提供參考。文獻(xiàn)[130]將時(shí)變的域信號(hào),變換為具有固定周期的域信號(hào),再對(duì)其進(jìn)行重復(fù)控制器的設(shè)計(jì),從而達(dá)到抑制定位力和速度脈動(dòng)的目的。
圖30 擾動(dòng)觀測(cè)器及定位力補(bǔ)償聯(lián)合控制框圖
文獻(xiàn)[131]提出了一種模型預(yù)測(cè)推力控制策略用于降低模塊化磁通切換型PMLM運(yùn)行時(shí)的推力波動(dòng),其控制策略如圖31所示。利用有效電壓矢量選擇(Active Voltage Vector Selection,AVVS)可以降低控制計(jì)算量,最優(yōu)雙電壓矢量合成(Two-Voltage Vector Synthesis,TVVS)可以提高電機(jī)的穩(wěn)態(tài)性能。研究結(jié)果表明,該控制策略與傳統(tǒng)滯環(huán)電流控制和模型預(yù)測(cè)控制相比,可以有效降低諧波電流與推力波動(dòng)。
圖31 磁通切換型PMLM模型預(yù)測(cè)推力控制框圖
初級(jí)勵(lì)磁型PMLM在長(zhǎng)行程直驅(qū)式直線運(yùn)動(dòng)領(lǐng)域具有較大優(yōu)勢(shì)。在一些對(duì)位置精度要求不高的場(chǎng)合,可以利用無(wú)位置傳感器控制策略對(duì)動(dòng)子位置進(jìn)行估計(jì),從而省去在長(zhǎng)行程范圍內(nèi)鋪設(shè)的位置傳感器,如光柵、磁柵等,進(jìn)一步降低成本。
文獻(xiàn)[132]提出了一種基于模型參考自適應(yīng)系統(tǒng)的無(wú)位置傳感器控制策略,其控制框圖如圖32所示。結(jié)果顯示,該控制策略在速度突變、低速運(yùn)行、負(fù)載突變及帶載工況下速度波動(dòng)小且估算準(zhǔn)確,系統(tǒng)魯棒性好,具有良好的動(dòng)靜態(tài)特性。此外,也有文獻(xiàn)利用滑模觀測(cè)器[133]、擴(kuò)展卡爾曼濾波[134]、改進(jìn)的擾動(dòng)觀測(cè)器[135]及磁鏈觀測(cè)器[136-137]等方式,對(duì)磁通切換型和游標(biāo)型PMLM進(jìn)行無(wú)位置傳感器控制,均具有不錯(cuò)的控制精度與動(dòng)態(tài)性能。
圖32 磁通切換型PMLM模型參考自適應(yīng)控制系統(tǒng)
在可靠性非常重要的應(yīng)用場(chǎng)合,電機(jī)系統(tǒng)需要在故障條件下繼續(xù)運(yùn)行一段時(shí)間。因此,針對(duì)高可靠性應(yīng)用場(chǎng)合,除了采用常規(guī)的控制方式外,還需要額外增加容錯(cuò)控制功能。
江蘇大學(xué)的趙文祥教授對(duì)游標(biāo)型PMLM的容錯(cuò)控制展開(kāi)了系統(tǒng)研究,針對(duì)開(kāi)繞組結(jié)構(gòu)下逆變器開(kāi)關(guān)管故障提出了一系列新的容錯(cuò)控制策略。文獻(xiàn)[138]通過(guò)驅(qū)動(dòng)電路容錯(cuò)重構(gòu)、電壓矢量重新合成,可以將容錯(cuò)后的電壓利用率提高到正常狀況下的 75%,為開(kāi)繞組結(jié)構(gòu)下初級(jí)勵(lì)磁型PMLM的容錯(cuò)控制策略研究提供了新思路,其控制框圖如圖33所示。文獻(xiàn)[139]提出了一種單位功率因數(shù)容錯(cuò)控制策略,連接到直流電源的主逆變器,負(fù)責(zé)提供有功功率,連接到浮式電容器的電容逆變器用于補(bǔ)償無(wú)功功率,該控制策略可以有效改善故障狀態(tài)下的功率因數(shù)。文獻(xiàn)[140]提出了一種采用混合調(diào)制方法的容錯(cuò)控制策略,通過(guò)在主逆變器側(cè)采用六拍調(diào)制方法,在保證容錯(cuò)運(yùn)行的同時(shí)可以有效降低開(kāi)關(guān)頻率與損耗。
圖33 開(kāi)繞組游標(biāo)型PMLM故障容錯(cuò)重構(gòu)圖
初級(jí)勵(lì)磁型PMLM相比于傳統(tǒng)PMLM具有更加豐富的拓?fù)浣Y(jié)構(gòu),各拓?fù)浣Y(jié)構(gòu)各有優(yōu)缺點(diǎn),下面將從推力密度、鐵心飽和度、結(jié)構(gòu)簡(jiǎn)易度與可靠性、退磁風(fēng)險(xiǎn)等幾個(gè)方面對(duì)各類(lèi)初級(jí)勵(lì)磁型PMLM的綜合性能進(jìn)行比較:
(1)推力密度。推力密度的定義有多種,常用的主要有單位體積下的推力和單位永磁下的推力。按照單位體積下的推力進(jìn)行比較,初級(jí)勵(lì)磁型PMLM的推力密度仍不如傳統(tǒng)PMLM,其約為后者的60%~80%;而按照單位永磁下的推力進(jìn)行比較,則初級(jí)勵(lì)磁型PMLM遠(yuǎn)高于傳統(tǒng)PMLM,并且隨著行程的增加優(yōu)勢(shì)更加明顯。在各類(lèi)初級(jí)勵(lì)磁型PMLM中,磁通切換型、磁通反向型和游標(biāo)型PMLM具有較高的推力密度。
(2)鐵心飽和度。由于永磁體與電樞繞組同時(shí)位于初級(jí)側(cè),初級(jí)勵(lì)磁型PMLM相比于傳統(tǒng)PMLM更容易飽和,因而在設(shè)計(jì)時(shí)需要綜合考慮推力密度與過(guò)載能力,以便選取合適的永磁體尺寸。
(3)結(jié)構(gòu)簡(jiǎn)易度與可靠性。對(duì)于磁通反向型、游標(biāo)型和槽口永磁型PMLM,其初級(jí)鐵心為整體結(jié)構(gòu),永磁體以表貼的形式固定在鐵心上,結(jié)構(gòu)簡(jiǎn)單且容易裝配,可靠性較高;而對(duì)于磁通切換型、磁通偏置型和初級(jí)分裂型PMLM,初級(jí)鐵心模塊化分立,結(jié)構(gòu)較為復(fù)雜且裝配困難,可靠性較低。
(4)退磁風(fēng)險(xiǎn)。磁通切換型和槽口永磁型PMLM以并聯(lián)勵(lì)磁形式存在,電樞磁場(chǎng)不經(jīng)過(guò)永磁體,因而退磁風(fēng)險(xiǎn)較低;磁通反向型、游標(biāo)型和磁通偏置型PMLM以串聯(lián)勵(lì)磁形式存在,電樞磁場(chǎng)需要經(jīng)過(guò)永磁體,因而存在大規(guī)模退磁的風(fēng)險(xiǎn),需要采用較高工作溫度的永磁體牌號(hào)如SH、UH等。
綜合而言,磁通反向型、游標(biāo)型PMLM及其交替極結(jié)構(gòu)更具有綜合性能優(yōu)勢(shì),值得關(guān)注并進(jìn)一步深入研究,以下將給出幾個(gè)潛在的研究方向供探討:
(1)拓?fù)浣Y(jié)構(gòu)優(yōu)化。對(duì)于磁通反向型和游標(biāo)型PMLM,各永磁體間漏磁較多,交替極結(jié)構(gòu)雖可以減小部分漏磁,但漏磁問(wèn)題仍較為突出,需要在拓?fù)浣Y(jié)構(gòu)上進(jìn)一步優(yōu)化以減小漏磁并提高推力密度。
(2)多物理場(chǎng)作用下電機(jī)系統(tǒng)電磁參數(shù)時(shí)變規(guī)律。初級(jí)勵(lì)磁型PMLM氣隙磁場(chǎng)相比傳統(tǒng)PMLM具有更多的諧波,在非理想激勵(lì)及多物理場(chǎng)耦合工況下電磁參數(shù)的變化規(guī)律更為復(fù)雜。為了提高控制精度,需要探明多物理場(chǎng)耦合作用下電機(jī)系統(tǒng)關(guān)鍵電磁參數(shù)時(shí)變特征,進(jìn)一步還原電磁參數(shù)與電機(jī)運(yùn)行狀態(tài)間的映射關(guān)系。
(3)高性能控制策略。初級(jí)勵(lì)磁型PMLM本質(zhì)上是一類(lèi)諧波電機(jī),相比于傳統(tǒng)PMLM這類(lèi)基波電機(jī),其氣隙磁場(chǎng)諧波豐富,但定位力及推力波動(dòng)較大,在伺服領(lǐng)域應(yīng)用時(shí),需要采取額外的控制策略補(bǔ)償定位力及推力波動(dòng)。因此,初級(jí)勵(lì)磁型PMLM高性能控制需要從諧波電機(jī)的電磁參數(shù)出發(fā),建立電機(jī)系統(tǒng)電磁、變流、控制及負(fù)載參數(shù)間的動(dòng)態(tài)耦合模型,提高電機(jī)系統(tǒng)整體性能。
初級(jí)勵(lì)磁型PMLM是從傳統(tǒng)PMLM衍生而來(lái)的一類(lèi)新型特種電機(jī),具有高推力密度、高效率、高精度和高可靠性等優(yōu)點(diǎn),在長(zhǎng)行程直驅(qū)式直線運(yùn)動(dòng)領(lǐng)域有其獨(dú)特的性能與成本優(yōu)勢(shì),具有很高的研究?jī)r(jià)值和廣闊的應(yīng)用前景。
本文主要針對(duì)初級(jí)勵(lì)磁型PMLM,回顧并總結(jié)了國(guó)內(nèi)外相關(guān)研究的技術(shù)現(xiàn)狀和發(fā)展趨勢(shì)。從磁場(chǎng)調(diào)制理論出發(fā),揭示了初級(jí)勵(lì)磁型PMLM氣隙磁場(chǎng)諧波分布與推力產(chǎn)生的原理。從拓?fù)浣Y(jié)構(gòu)的角度梳理了各類(lèi)電機(jī)的技術(shù)要點(diǎn)及研究進(jìn)展,介紹了針對(duì)初級(jí)勵(lì)磁型PMLM的高性能控制策略。最后對(duì)比分析了各類(lèi)初級(jí)勵(lì)磁型PMLM的綜合性能,探討了未來(lái)的發(fā)展方向。
初級(jí)勵(lì)磁型PMLM研究尚有諸多關(guān)鍵技術(shù)需要突破,主要有以下幾個(gè)方面:
1)新型高推力密度拓?fù)浣Y(jié)構(gòu)及優(yōu)化設(shè)計(jì)是初級(jí)勵(lì)磁型PMLM研究和進(jìn)一步發(fā)展的重要基礎(chǔ)。初級(jí)勵(lì)磁型PMLM拓?fù)浣Y(jié)構(gòu)雖然豐富,但其核心的單位體積推力密度指標(biāo)與傳統(tǒng)PMLM相比仍有一定距離。因此,需要深刻理解并充分利用初級(jí)勵(lì)磁型PMLM氣隙磁場(chǎng)多諧波的特點(diǎn),構(gòu)造具有更高推力密度的拓?fù)浣Y(jié)構(gòu)。
2)寬禁帶電力電子器件及其功率變換技術(shù)的發(fā)展為初級(jí)勵(lì)磁型PMLM的高性能控制帶來(lái)新的手段。初級(jí)勵(lì)磁型PMLM本質(zhì)上是一類(lèi)雙凸極結(jié)構(gòu)的諧波電機(jī),相比于傳統(tǒng)PMLM這類(lèi)基波電機(jī),其氣隙磁場(chǎng)諧波豐富,但定位力及推力波動(dòng)較大,在應(yīng)用于高精度伺服領(lǐng)域時(shí),需要采取額外的高性能控制策略用于補(bǔ)償定位力及推力波動(dòng)。
3)實(shí)際工業(yè)應(yīng)用背景下的系統(tǒng)綜合問(wèn)題。初級(jí)勵(lì)磁型PMLM最有潛力應(yīng)用于長(zhǎng)行程直線運(yùn)動(dòng)領(lǐng)域,如長(zhǎng)行程直線伺服系統(tǒng)、高速物流系統(tǒng)和高速無(wú)繩電梯等。因此,長(zhǎng)行程下電機(jī)系統(tǒng)的初級(jí)無(wú)線纜供電、無(wú)位置傳感器控制、多電機(jī)協(xié)同控制運(yùn)行等系統(tǒng)綜合問(wèn)題需要重點(diǎn)突破。
[1]馬偉明, 王東, 程思為, 等. 高性能電機(jī)系統(tǒng)的共性基礎(chǔ)科學(xué)問(wèn)題與技術(shù)發(fā)展前沿[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2016, 36(8): 2025-2035. Ma Weiming, Wang Dong, Cheng Siwei, et al. Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035.
[2]盧琴芬, 沈燚明, 葉云岳. 永磁直線電動(dòng)機(jī)結(jié)構(gòu)及研究發(fā)展綜述[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2019, 39(9): 2575-2588. Lu Qinfen, Shen Yiming, Ye Yunyue. Development of permanent magnet linear synchronous motors structure and research[J]. Proceedings of the CSEE, 2019, 39(9): 2575-2588.
[3]沈燚明. 新型初級(jí)并聯(lián)式混合勵(lì)磁變磁阻直線電機(jī)研究[D]. 杭州: 浙江大學(xué), 2020.
[4]Zhu Z Q, Chen X, Chen J T, et al. Novel linear flux-switching permanent magnet machines[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 2948-2953.
[5]Wang C F, Shen J X, Wang L L, et al. A novel permanent magnet flux-switching linear motor[C]// 2008 4th IET Conference on Power Electronics, Machines and Drives, York, UK, 2008: 116-119.
[6]Min W, Chen J T, Zhu Z Q, et al. Optimization and comparison of novel E-core and C-core linear switched flux PM machines[J]. IEEE Transactions on Magnetics, 2011, 47(8): 2134-2141.
[7]Lu Qinfen, Li Yanxin. Novel linear switched-flux PM machine with 9/10 primary/secondary pole number combination[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2015, 34(6): 1656-1672.
[8]Liu Jiabao, Chen Yi, Lu Qinfen, et al. Optimization and comparison of C-core and E-core linear switched-flux PM machines with odd primary poles[C]//2015 18th International Conference on Electrical Machines and Systems, Pattaya, Thailand, 2015: 254-259.
[9]劉嘉寶. 奇數(shù)極直線開(kāi)關(guān)磁鏈永磁電機(jī)少永磁結(jié)構(gòu)的分析與優(yōu)化[D]. 杭州: 浙江大學(xué), 2016.
[10]蔡炯炯, 盧琴芬, 葉云岳. 一種新型多齒開(kāi)關(guān)磁鏈直線電機(jī)的關(guān)鍵問(wèn)題[J]. 電機(jī)與控制學(xué)報(bào), 2012, 16(3): 8-14. Cai Jiongjiong, Lu Qinfen, Ye Yunyue. Key problems for a novel multi-tooth flux-switching linear motor[J]. Electric Machine and Control, 2012, 16(3): 8-14.
[11]蔡炯炯. 新型開(kāi)關(guān)磁鏈永磁直線電機(jī)研究[D]. 杭州: 浙江大學(xué), 2014.
[12]Wang Jiabin, Wang Weiya, Atallah K, et al. Design considerations for tubular flux-switching permanent magnet machines[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4026-4032.
[13]Yan Liang, Li Wei, Jiao Zongxia, et al. Design and modeling of three-phase tubular linear flux-switching permanent magnet motor[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 2014: 2675-2680.
[14]Yin Zuosheng, Sui Yi, Han Liang, et al. Research on a tubular flux-switching permanent-magnet linear machine[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-5.
[15]Gandhi A, Parsa L. Thrust optimization of a flux-switching linear synchronous machine with yokeless translator[J]. IEEE Transactions on Magnetics, 2013, 49(4): 1436-1443.
[16]Gandhi A, Parsa L. Thrust optimization of a five-phase fault-tolerant flux-switching linear synchronous motor[C]//IECON 2012 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 2012: 2067-2073.
[17]Zhang Bangfu, Cheng Ming, Wang Jiabin, et al. Optimization and analysis of a yokeless linear flux-switching permanent magnet machine with high thrust density[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[18]Shen Yiming, Lu Qinfen, Li Huanwen, et al. Analysis of a novel double-sided yokeless multitooth linear switched-flux PM motor[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1837-1845.
[19]Huang Lei, Yu Haitao, Hu Minqiang, et al. Study on a long primary flux-switching permanent magnet linear motor for electromagnetic launch systems[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1138-1144.
[20]曹瑞武, 張錚, 金毅, 等. 次級(jí)無(wú)軛部雙邊磁通切換永磁直線電機(jī)及其控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2017, 37(22): 6585-6593. Cao Ruiwu, Zhang Zheng, Jin Yi, et al. Double-sided linear flux-switching permanent magnet motor with yokeless secondary and control System[J]. Proceedings of the CSEE, 2017, 37(22): 6585-6593.
[21]Cao Rui, Jin Yi, Zhang Zheng, et al. A new double-sided linear flux-switching permanent magnet motor with yokeless mover for electromagnetic launch system[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 680-690.
[22]Jin Menjia, Wang Canfei, Shen Jianxin, et al. A modular permanent-magnet flux-switching linear machine with fault-tolerant capability[J]. IEEE Transactions on Magnetics, 2009, 45(8): 3179-3186.
[23]Cao Ruiwu, Cheng Ming, Mi C C, et al. Influence of leading design parameters on the force performance of a complementary and modular linear flux-switching permanent-magnet motor[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2165-2175.
[24]曹瑞武, 程明, 花為, 等. 磁路互補(bǔ)型模塊化磁通切換永磁直線電機(jī)[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2011, 31(6): 58-65.
Cao Ruiwu, Cheng Ming, Hua Wei, et al. Novel modularized flux-switching permanent magnet linear machine with complementary magnetic circuits[J]. Proceedings of the CSEE, 2011, 31(6): 58-65.
[25]Cao Ruiwu, Cheng Ming, Mi C C, et al. Modeling of a complementary and modular linear flux-switching permanent magnet motor for urban rail transit applications[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 489-497.
[26]Cao Ruiwu, Cheng Ming, Hua Wei. Investigation and general design principle of a new series of complementary and modular linear FSPM motors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5436-5446.
[27]Cao Ruiwu, Cheng Ming, Mi C C, et al. Comparison of complementary and modular linear flux-switching motors with different mover and stator pole pitch[J]. IEEE Transactions on Magnetics, 2013, 49(4): 1493-1504.
[28]Farrok O, Islam M R, Sheikh M R I, et al. A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7600-7608.
[29]Zhang Zongsheng, Tang Xu, Zhang Chao, et al. Novel decoupling modular permanent magnet flux-switching linear motor[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7603-7612.
[30]Cao Ruiwu, Cheng Ming, Mi C C, et al. A hybrid excitation flux-switching permanent magnet linear motor for urban rail transit[C]//2011 IEEE Vehicle Power and Propulsion Conference,Chicago, IL, USA, 2011: 1-5.
[31]Hwang Chang-Chou, Li Ping-Lun, Liu Cheng-Tsung. Design and analysis of a novel hybrid excited linear flux switching permanent magnet motor[J]. IEEE Transactions on Magnetics, 2012, 48(11): 2969-2972.
[32]Liu Cheng-Tsung, Hwang Chang-Chou, Li Ping-Lun, et al. Design optimization of a double-sided hybrid excited linear flux switching PM motor with low force ripple[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
[33]曾志強(qiáng), 盧琴芬, 葉云岳. 一種新型九相模塊化混合勵(lì)磁開(kāi)關(guān)磁鏈直線電機(jī)[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2017, 37(21): 6158-6167. Zeng Zhiqiang, Lu Qinfen, Ye Yunyue. A novel nine-phase modular hybrid-excited flux-switching linear machine[J]. Proceedings of the CSEE, 2017, 37(21): 6158-6167.
[34]Wang Canfei, Shen Jianxin, Wang Yu, et al. A new method for reduction of detent force in permanent magnet flux-switching linear motors[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2843-2846.
[35]Wang Canfei, Shen Jianxin. A method to segregate detent force components in permanent-magnet flux-switching linear machines[J]. IEEE Transactions on Magnetics, 2012, 48(5): 1948-1955.
[36]沈建新, 王燦飛, 費(fèi)偉中, 等. 永磁開(kāi)關(guān)磁鏈直線電機(jī)若干優(yōu)化設(shè)計(jì)方法[J]. 電工技術(shù)學(xué)報(bào), 2013, 28(11): 1-8. Shen Jianxin, Wang Canfei, Fei Weizhong, et al. Some optimal design methods for permanent magnet flux switching linear machines[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 1-8.
[37]Zhao Jing, Mou Qunasong, Guo Keyu, et al. Reduction of the detent force in a flux-switching permanent magnet linear motor[J]. IEEE Transactions on Energy Conversion, 2019, 34(3): 1695-1705.
[38]Boldea I, Wang Congxiao, Yang Bin, et al. Analysis and design of flux-reversal linear permanent magnet oscillating machine[C]//Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), St. Louis, MO, USA, 1998: 136-143.
[39]Chung S, Lee H, Hwang S. A novel design of linear synchronous motor using FRM topology[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1514-1517.
[40]Chung S, Kang D, Chang J, et al. New configuration of flux reversal linear synchronous motor[C]//2007 International Conference on Electrical Machines and Systems, Seoul, South Korea, 2007: 864-867.
[41]Chung S, Lee H, Hong D, et al. Development of flux reversal linear synchronous motor for precision position control[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(3): 443-450.
[42]Chung S, Kim J, Woo B, et al. Dynamic simulation and experimental verification of flux reversal linear synchronous motor[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(2): 175-181.
[43]Gandhi A, Mohammadpour A, Sadeghi S, et al. Doubled-sided FRLSM for long-stroke safety-critical applications[C]//IECON 2011 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 2011: 4186-4191.
[44]Zhao Wenxiang, Ji Jinghua, Liu Guohai, et al. Design and analysis of a new modular linear flux-reversal permanent-magnet motor[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-5.
[45]Xu Liang, Liu Guohai, Zhao Wexiang, et al. Analysis of new modular linear flux reversal permanent magnet motors[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4.
[46]Xu Liang, Zhao Wenxiang, Ji Jinghua, et al. Design and analysis of a new linear hybrid excited flux reversal motor with inset permanent magnets[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
[47]Xu Liang, Liu Guohai, Zhao Wenxiang, et al. Comparison of two linear hybrid excitation flux reversal machines with different permanent-magnet arrays[C]//2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 2017: 252-256.
[48]Kou Baoquan, Luo Jun, Yang Xiaobao, et al. Modeling and analysis of a novel transverse-flux flux-reversal linear motor for long-stroke application[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6238-6248.
[49]Luo Jun, Kou Baoquan, Zhang He, et al. Development of a consequent pole transverse flux permanent magnet linear machine with passive secondary structure[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 39-44.
[50]Luo Jun, Kou Baoquan, Yang Xiaobao, et al. Modelling of a dual-side excited transverse flux permanent magnet linear motor[C]//2019 22nd International Conference on Electrical Machines and Systems, Harbin, China, 2019: 1-5.
[51]Luo Jun, Kou Baoquan, Zhou Yiheng, et al. Analysis and design of an E-core transverse-flux flux-reversal linear motor[C]//2016 19th International Conference on Electrical Machines and Systems,Chiba, Japan, 2016: 1-5.
[52]Dong Dingfeng, Huang Wenxin, Bu Feifei, et al. Modeling and optimization of a tubular permanent magnet linear motor using transverse-flux flux-reversal topology[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1382-1391.
[53]Zhao Xing, Niu Shuangxia. Development of a novel transverse flux tubular linear machine with parallel and complementary pm magnetic circuit for precision industrial processing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4945-4955.
[54]Guo Kaikai, Fang Shuhua, Lin Heyun, et al. 3-D analytical analysis of magnetic field of flux reversal linear-rotary permanent-magnet actuator[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-5.
[55]Guo Kaikai, Guo Youguang. Key parameter design and analysis of flux reversal linear rotary permanent magnet actuator[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5.
[56]Iwabuchi N, Kawahara A, Kume T, et al. A novel high-torque reluctance motor with rare-earth magnet[J]. IEEE Transactions on Industry Applications, 1994, 30(3): 609-614.
[57]Mueller M A, Baker N J. Modelling the performance of the vernier hybrid machine[J]. IEE Proceedings - Electric Power Applications, 2003, 150(6): 647-654.
[58]Raihan M A H, Baker N J, Smith K J, et al. An E-core linear veriner hybrid permanent magnet machine with segmented translator for direct drive wave energy converter[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-6.
[59]Baker N J, Raihan M A H, Almoraya A A. A cylindrical linear permanent magnet vernier hybrid machine for wave energy[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 691-700.
[60]Raihan M A H, Baker N J, Smith K J, et al. Development and testing of a novel cylindrical permanent magnet linear generator[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 3668-3678.
[61]Du Yi, Chau K T, Cheng Ming, et al. Theory and comparison of the linear stator permanent magnet vernier machine[C]//2011 International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-4.
[62]Du Yi, Chau K T, Cheng Ming, et al. Design and analysis of linear stator permanent magnet vernier machines[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4219-4222.
[63]杜懌, 程明, 鄒國(guó)棠. 初級(jí)永磁型游標(biāo)直線電機(jī)設(shè)計(jì)與靜態(tài)特性分析[J]. 電工技術(shù)學(xué)報(bào), 2012, 27(11): 22-30. Du Yi, Cheng Ming, Chau K T. Design and analysis of a new linear primary permanent magnet vernier machine[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 22-30.
[64]Du Yi, Cheng Ming, Chau K T. Simulation of the linear primary permanent magnet vernier machine system for wave energy conversion[C]//2013 International Conference on Electrical Machines and Systems, Busan, South Korea, 2013: 262-266.
[65]Du Yi, Cheng Ming, Chau K T, et al. Comparison of linear primary permanent magnet vernier machine and linear vernier hybrid machine[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4.
[66]Du Yi, Cheng Ming, Chau K T, et al. Linear primary permanent magnet vernier machine for wave energy conversion[J]. IET Electric Power Applications, 2015, 9(3): 203-212.
[67]杜懌, 鄒春花, 朱孝勇, 等. 初級(jí)永磁型游標(biāo)直線電機(jī)繞組連接及其電磁特性比較[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(3): 130-138. Du Yi, Zou Chunhua, Zhu Xiaoyong, et al. Comparison of winding arrangements and electromagnetic characteristics of a linear primary permanent magnet vernier machine[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 130-138.
[68]Du Yi, Chau K T, Cheng Ming, et al. A linear stator permanent magnet vernier HTS machine for wave energy conversion[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5202505.
[69]Xiao Feng, Du Yi, Wang Yubin, et al. Modeling and analysis of a linear stator permanent-magnet vernier HTS machine[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1-4.
[70]Liu Xianxing, Zou Chunhua, Du Yi, et al. A linear consequent pole stator permanent magnet vernier machine[C]//2014 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014: 1753-1756.
[71]Liu Guohai, Jiang Shan, Zhao Wenxiang, et al. Modular reluctance network simulation of a linear permanent-magnet vernier machine using new mesh generation methods[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5323-5332.
[72]Liu Guohai, Ding Ling, Zhao Wenxiang, et al. Nonlinear equivalent magnetic network of a linear permanent magnet vernier machine with end effect consideration[J]. IEEE Transactions on Magnetics, 2018, 54(1): 1-9.
[73]Ji Jinghua, Zhao Wenxiang, Fang Zhuoya, et al. A novel linear permanent-magnet vernier machine with improved force performance[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-10.
[74]Zhao Wenxiang, Zheng Junqiang, Wang Jiabin, et al. Design and analysis of a linear permanent-magnet vernier machine with improved force density[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2072-2082.
[75]Wang Shiyuan, Zhao Wenxiang, Ji Jinghua, et al. Magnetic gear ratio effects on performances of linear primary permanent magnet vernier motor[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.
[76]Zhong Huan, Liu Guohai, Xu Liang. Comparative study of linear primary permanent-magnet vernier machine and conventional linear permanent-magnet machine[C]// 2019 22nd International Conference on Electrical Machines and Systems,Harbin, China, 2019: 1-5.
[77]Ma Anqi, Zhao Wenxiang, Xu Liang, et al. Influence of armature windings pole numbers on performances of linear permanent-magnet vernier machines[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 385-394.
[78]Wang Shiyuan, Zhao Wenxiang, Kang Mei. Design and analysis of double-sided linear primary permanent magnet vernier motor[C]//2016 19th International Conference on Electrical Machines and Systems, Chiba, Japan, 2016: 1-5.
[79]Zhao Wenxiang, Wang Shiyuan, Ji Jinghua, et al. A new mover separated linear magnetic-field modulated motor for long stroke applications[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5.
[80]Shen Yang, Kang Mei, Ji Jinghua, et al. Design and analysis of a novel modular six-phase linear permanent-magnet vernier machine[C]//2017 20th International Conference on Electrical Machines and Systems,Sydney, NSW, Australia, 2017: 1-5.
[81]Yao Tian, Zhao Wenxiang, Bian Fangfang, et al. Design and analysis of a novel modular-stator tubular permanent-magnet vernier motor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5.
[82]Almoraya A A, Baker N J, Smith K J, et al. Development of a double-sided consequent pole linear vernier hybrid permanent-magnet machine for wave energy converters[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-7.
[83]Raihan M A H, Baker N J, Smith K J, et al. Investigation of a doubly salient halbach array linear permanent magnet machine for wave energy converters[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-5.
[84]Almoraya A A, Baker N J, Smith K J, et al. A new configuration of a consequent pole linear vernier hybrid machine with V-shape magnets[C]//2018 XIII International Conference on Electrical Machines, Alexandroupoli, Greece, 2018: 2002-2008.
[85]Baker N J, Raihan M A H, Almoraya A A, et al. Evaluating alternative linear vernier hybrid machine topologies for integration into wave energy converters[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 2007-2017.
[86]Raihan M A H, Baker N J, Smith K J, et al. Development of low translator mass linear Vernier machine for wave energy power take off[J]. The Journal of Engineering, 2019, 2019(18): 5224-5228.
[87]Almoraya A A, Baker N J, Smith K J, et al. Design and analysis of a flux-concentrated linear vernier hybrid machine with consequent poles[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4595-4604.
[88]Raihan M A H, Baker N, Smith K, et al. Linear consequent pole halbach array flux reversal machine[J]. The Journal of Engineering, 2019, 2019(17): 4560-4565.
[89]Cao Ruiwu, Cheng Ming, Mi Chris, et al. A linear doubly salient permanent-magnet motor with modular and complementary structure[J]. IEEE Transactions on Magnetics, 2011, 47(12): 4809-4821.
[90]Zhao Wenxiang, Zhu Jian, Ji Jinghua, et al. Improvement of power factor in a double-side linear flux-modulation permanent-magnet motor for long stroke applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3391-3400.
[91]Zhao Wenxiang, Ma Anqi, Ji Jinghua, et al. Multiobjective optimization of a double-side linear vernier pm motor using response surface method and differential evolution[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 80-90.
[92]Shen Yiming, Zeng Zhiqiang, Lu Qinfen, et al. Investigation of a modular linear doubly salient machine with dual-PM in primary yoke and slot openings[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-6.
[93]Shoji S, Masayasu F, Katsuhiro H. Studies to decrease cogging force and pulsating thrust in the prototype linear permanent magnet vernier motor[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 3417-3422.
[94]Shimomura S, Takano M. Linear vernier machine with permanent magnets only on armature side[J]. Applied Mechanics and Materials, 2013, 416-417: 233-240.
[95]Imada T, Shimomura S. Magnet arrangement of linear PM vernier machine[C]//2014 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014: 3642-3647.
[96]Ninomiya T, Gasim A, Shimomura S. Magnet arrangement suitable for large air gap length in linear PM vernier motor[C]//2018 International Power Electronics Conference, Niigata, Japan, 2018: 2836-2841.
[97]Shen Yiming, Zeng Zhiqiang, Lu Qinfen, et al. Design optimization and performance investigation of linear doubly salient slot permanent magnet machines[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1524-1535.
[98]Shen Yiming, Lu Qinfen, Huang Xiaoyan. Analysis of a novel linear doubly salient slot permanent magnet motor[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4.
[99]Shen Yiming, Lu Qinfen. Design and analysis of linear hybrid-excited slot permanent magnet machines[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-6.
[100]Shen Yiming, Lu Qinfen. A novel linear hybrid-excited slot permanent magnet machine with dc-biased sinusoidal current[C]//2019 22nd International Conference on Electrical Machines and Systems, Harbin, China, 2019: 1-5.
[101]Lu Qinfen, Yao Yihua, Shi Jiameng, et al. Design and performance investigation of novel linear switched flux PM machines[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4590-4602.
[102]Shuraiji A L, Zhu Z Q, Lu Qinfen. A novel partitioned stator flux reversal permanent magnet linear machine[J]. IEEE Transactions on Magnetics, 2016, 52(1): 1-6.
[103]Zeng Zhiqiang, Lu Qinfen. Investigation of novel partitioned-primary hybrid-excited flux-switching linear machines[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9804-9813.
[104]Zeng Zhiqiang, Shen Yiming, Lu Qinfen, et al. Comparative study of two novel double-sided hybrid-excitation flux-reversal linear motors with surface and interior PM arrangements[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-7.
[105]Zeng Zhiqiang, Shen Yiming, Lu Qinfen, et al. Investigation of a partitioned-primary hybrid-excited flux-switching linear machine with dual-PM[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3649-3659.
[106]王欣, 程明, 花為, 等. 軌道交通用磁通切換永磁直線電機(jī)空間矢量脈寬控制[J]. 微電機(jī), 2013, 46(4): 35-39. Wang Xin, Cheng Ming, Hua Wei, et al. Space-vector PWM control of linear flux-switching permanent magnet motor on rail transportation[J]. Micromotors, 2013, 46(4): 35-39.
[107]陳仲華, 趙文祥, 張建, 等. 高推力永磁游標(biāo)直線電機(jī)的開(kāi)放式繞組SVPWM控制[J]. 電工技術(shù)學(xué)報(bào), 2016, 31(增刊2): 210-218. Chen Zhonghua, Zhao Wenxiang, Zhang Jian, et al. SVPWM control for dual two-level inverter fed open-end winding high thrust permanent magnet vernier linear motor[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 210-218.
[108]Cao Ruiwu, Cheng Ming, Zhang Bangfu. Speed control of complementary and modular linear flux-switching permanent-magnet motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4056-4064.
[109]Zhang Zheng, Cao Ruiwu, Lu Minghang, et al. Speed control of double-sided linear flux-switching permanent magnet motor system for electromagnetic launch system[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-4.
[110]Zhang Yanze, Cao Ruiwu, Jin Yi, et al. Closed-loop position control of complementary and modular linear flux-switching permanent magnet motor[C]//2016 IEEE International Conference on Aircraft Utility Systems, Beijing, China, 2016: 923-926.
[111]Zhang Liqi, Cao Ruiwu, Jiang Ning. Direct thrust control of complementary and modular linear flux-switching permanent magnet motor[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-4.
[112]Wu Binyu, Kang Mei, Ji Jinghua, et al. Direct thrust force control of open-end winding linear vernier permanent-magnet motor with reduced force ripple[C]//IECON 2017 43rd Annual Conference of the IEEE Industrial Electronics Society,Beijing, China, 2017: 3659-3663.
[113]楊瑞. 精密永磁直線同步電機(jī)系統(tǒng)擾動(dòng)抑制方法研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2020.
[114]Wang Mingyi, Yang Rui, Tan Qiang, et al. A high-bandwidth and strong robust current control strategy for PMLSM drives[J]. IEEE Access, 2018, 6: 40929-40939.
[115]Yang Rui, Wang Mingyi, Li Liyi, et al. Robust predictive current control with variable-gain adaptive disturbance observer for PMLSM[J]. IEEE Access, 2018, 6: 13158-13169.
[116]Yang Rui, Wang Mingyi, Li Liyi, et al. Robust predictive current control of PMLSM with extended state modeling based Kalman filter: for time-varying disturbance rejection[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 2208-2221.
[117]Yang Rui, Li Liyi, Wang Mingyi, et al. Force ripple compensation and robust predictive current control of PMLSM using augmented generalized proportional integral observer[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(1): 302-315.
[118]Bascetta L, Rocco P, Magnani G. Force ripple compensation in linear motors based on closed-loop position-dependent identification[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(3): 349-359.
[119]Chen Silu, Tan K K, Huang Sunan, et al. Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 586-594.
[120]Zhu Yuwu, Jin Sangmin, Chung K, et al. Control-based reduction of detent force for permanent magnet linear synchronous motor[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2827-2830.
[121]Tan K K, Huang S N, Lee T H. Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors[J]. IEEE Transactions on Magnetics, 2002, 38(1): 221-228.
[122]Xu Li, Yao Bin. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 444-452.
[123]Yao Bin, Hu Chuxiong, Lu Lu, et al. Adaptive robust precision motion control of a high-speed industrial gantry with cogging force compensations[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1149-1159.
[124]Lu Lu, Chen Zheng, Yao Bin, et al. Desired compensation adaptive robust control of a linear-motor-driven precision industrial gantry with improved cogging force compensation[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(6): 617-624.
[125]Chen Zheng, Yao Bin, Wang Qingfeng. Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 1122-1129.
[126]王立俊, 趙吉文, 董菲, 等. 基于自適應(yīng)內(nèi)模觀測(cè)器的永磁同步直線電機(jī)高帶寬強(qiáng)魯棒預(yù)測(cè)電流控制策略研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2019, 39(10): 3098-3107.
Wang Lijun, Zhao Jiwen, Dong Fei, et al. High-bandwidth and strong robust predictive current control strategy research for permanent-magnet synchronous linear motor based on adaptive internal model observer[J]. Proceedings of the CSEE, 2019, 39(10): 3098-3107.
[127]Yang Rui, Wang Mingyi, Li Liyi, et al. Integrated uncertainty/disturbance compensation with second-order sliding-mode observer for PMLSM-driven motion stage[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2597-2607.
[128]Yang Rui, Li Liyi, Wang Mingyi, et al. Force ripple estimation and compensation of PMLSM with incremental extended state modeling-based Kalman filter: a practical tuning method[J]. IEEE Access, 2019, 7: 108331-108342.
[129]孟高軍, 袁野, 張亮, 等. 基于諧波抑制和擾動(dòng)觀測(cè)器的磁通切換永磁直線電機(jī)聯(lián)合控制方法[J]. 電工技術(shù)學(xué)報(bào), 2018, 33(9): 1957-1966. Meng Gaojun, Yuan Ye, Zhang Liang, et al. A joint control method for linear flux-switching permanent magnet machine based on harmonic suppression and disturbance observer[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1957-1966.
[130]孟高軍, 余海濤, 黃磊, 等. 基于x域重復(fù)控制的磁通切換永磁直線電機(jī)定位力抑制方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2015, 35(16): 4224-4231. Meng Gaojun, Yu Haitao, Huang Lei, et al. A cogging force reduction method for linear flux-switching permanent magnet machines based on the x-domain repetitive controller[J]. Transactions of China Electrotechnical Society, 2015, 35(16): 4224-4231.
[131]Huang Wentao, Hua Wei, Yin Fangbo, et al. Model predictive thrust force control of a linear flux-switching permanent magnet machine with voltage vectors selection and synthesis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4956-4967.
[132]孔龍濤, 程明, 張邦富. 基于模型參考自適應(yīng)系統(tǒng)的模塊化磁通切換永磁直線電機(jī)無(wú)位置傳感器控制[J]. 電工技術(shù)學(xué)報(bào), 2016, 31(17): 132-139. Kong Longtao, Cheng Ming, Zhang Bangfu. Position sensorless control of modular linear flux-switching permanent magnet machine based on model reference adaptive system[J]. Transactions of China Electrote-chnical Society, 2016, 31(17): 132-139.
[133]Cao Ruiwu, Jiang Ning, Lu Minghang, et al. Sliding-mode observer based sensorless vector control of LFSPM motor for long-distance drive system[J]. IET Electric Power Applications, 2019, 13(5): 643-651.
[134]Cao Ruiwu, Jiang Ning, Lu Minghang. Sensorless control of linear flux-switching permanent magnet motor based on extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5971-5979.
[135]Zhao Wenxiang, Jiao Shuai, Chen Qian, et al. Sensorless control of a linear permanent-magnet motor based on an improved disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9291-9300.
[136]Zhao Wenxiang, Yang Anchen, Ji Jinghua, et al. Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7800-7811.
[137]Ji Jinghua, Jiang Yang, Zhao Wenxiang, et al. Sensorless control of linear vernier permanent-magnet motor based on improved mover flux observer[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3869-3877.
[138]Zhao Wenxiang, Wu Binyu, Chen Qian, et al. Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7458-7467.
[139]Zhao Wenxiang, Chen Zhonghua, Xu Dezhi, et al. Unity power factor fault-tolerant control of linear permanent-magnet vernier motor fed by a floating bridge multilevel inverter with switch fault[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9113-9123.
[140]Zhao Wenxiang, Zhao Peng, Xu Dezhi, et al. Hybrid modulation fault-tolerant control of open-end windings linear vernier permanent-magnet motor with floating capacitor inverter[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2563-2572.
Overview of Permanent Magnet Linear Machines with Primary Excitation
Shen Yiming Lu Qinfen
(College of Electrical Engineering Zhejiang University Hangzhou 310027 China)
The permanent magnet linear machine with primary excitation (PE-PMLM) is a new type of special machine derived from the traditional permanent magnet linear machine, which has the advantages of high thrust force density, high efficiency, high precision and high reliability. In the field of long stroke direct drive linear motion, it exhibits unique performance and cost advantages, and has high research value as well as broad application prospect. This paper reviews and summarizes the current status and development trend of the PE-PMLM technology. Based on the flux modulation theory, the harmonic distribution and thrust generation principle of the PE-PMLM are revealed. From the perspective of topology, the technical points and research progress of various kinds of PE-PMLM are reviewed. Based on the characteristics of PE-PMLM, high performance control strategies are introduced. Finally, comprehensive performances of all kinds of PE-PMLM are compared and analyzed, and the future development direction is discussed.
Permanent magnet linear machine, primary excitation, doubly salient, flux modulation theory, high thrust force density, long stroke
TM351
10.19595/j.cnki.1000-6753.tces.201125
國(guó)家自然科學(xué)基金(51777190)和中國(guó)博士后科學(xué)基金(2020M681856)資助項(xiàng)目。
2020-08-21
2020-11-02
沈燚明 男,1993年生,博士,研究方向?yàn)樾滦陀来烹姍C(jī)及其控制技術(shù)等。E-mail:ym_shen@zju.edu.cn
盧琴芬 女,1972年生,教授,博士生導(dǎo)師,研究方向?yàn)橹本€電機(jī)優(yōu)化設(shè)計(jì)、驅(qū)動(dòng)控制及應(yīng)用技術(shù)等。E-mail:luqinfen@zju.edu.cn(通信作者)
(編輯 郭麗軍)