袁婷婷,張 栩,向小青,常譯丹,牛 猛,張賓佳,賈才華,許 燕,趙思明
冷凍面團(tuán)品質(zhì)劣變及改良研究進(jìn)展
袁婷婷,張 栩,向小青,常譯丹,牛 猛※,張賓佳,賈才華,許 燕,趙思明
(華中農(nóng)業(yè)大學(xué)食品科學(xué)技術(shù)學(xué)院,武漢 430070)
冷凍面團(tuán)技術(shù)實(shí)現(xiàn)了面團(tuán)制作與烘焙的分離,具有標(biāo)準(zhǔn)化、方便化等優(yōu)勢(shì),因此在世界范圍得到快速發(fā)展。然而,受冰晶形成和凍藏作用的影響,冷凍面團(tuán)仍然存在品質(zhì)容易劣變和缺乏高效改良方法等問(wèn)題。該研究主要從冷凍面團(tuán)的發(fā)酵特性、面團(tuán)主要組分如面筋蛋白和淀粉的特性、面團(tuán)結(jié)構(gòu)、冷凍面團(tuán)的流變學(xué)特性等方面對(duì)冷凍面團(tuán)的劣變現(xiàn)象與機(jī)理進(jìn)行綜述,以及改進(jìn)冷凍工藝,篩選抗凍酵母,添加酶制劑、抗凍劑、乳化劑等改良方法進(jìn)行總結(jié)。通過(guò)對(duì)冷凍面團(tuán)發(fā)酵特性、面筋蛋白結(jié)構(gòu)、面團(tuán)水合狀態(tài)等劣變關(guān)鍵因素的分析,為冷凍面團(tuán)的抗凍研究提供參考,該研究旨在為冷凍面團(tuán)品質(zhì)劣變的抑制與高效改良技術(shù)的開(kāi)發(fā)提供理論基礎(chǔ)與實(shí)踐參考。
冷凍;質(zhì)量控制;冷凍面團(tuán);面筋蛋白;水分分布;蛋白質(zhì)結(jié)構(gòu);酵母活性
隨著人們對(duì)高品質(zhì)食物的不斷追求,以及各類(lèi)連鎖經(jīng)營(yíng)模式的廣泛發(fā)展,冷凍面團(tuán)技術(shù)應(yīng)運(yùn)而生。但是,冷凍面團(tuán)技術(shù)也存在著一些問(wèn)題,如冷凍面團(tuán)所生產(chǎn)的面包或者饅頭會(huì)出現(xiàn)體積變小,硬度增加,貨架期變短等品質(zhì)劣變問(wèn)題[1-5]。其中,引起劣變的原因主要是:酵母細(xì)胞由于冰晶的破壞導(dǎo)致酵母活性及產(chǎn)氣性降低,面筋蛋白的網(wǎng)絡(luò)結(jié)構(gòu)由于冰晶的重結(jié)晶作用遭到破壞,破損淀粉含量增加會(huì)與面筋蛋白競(jìng)爭(zhēng)水分導(dǎo)致面筋蛋白失水[6-10]。目前國(guó)內(nèi)外學(xué)者已經(jīng)對(duì)冷凍面團(tuán)品質(zhì)劣變問(wèn)題做了大量的研究,針對(duì)品質(zhì)劣變問(wèn)題的研究主要聚焦在面團(tuán)結(jié)構(gòu)特征、流變特性、加工性能[11-12],以及對(duì)冷凍面團(tuán)中面筋蛋白、麥谷蛋白、麥醇溶蛋白的聚集行為和理化特性等方面[13-14]。而針對(duì)品質(zhì)改良方面的研究多數(shù)停留在改進(jìn)冷凍工藝,篩選抗凍酵母,以及乳化劑、親水膠體、酶制劑、變性淀粉等添加劑的使用。而單一食品添加劑的使用具有一定的局限性,抗凍蛋白類(lèi)生產(chǎn)成本高,限制其廣泛應(yīng)用,乳化劑的過(guò)量攝入會(huì)引起自身免疫疾病[15]。本文主要對(duì)引起冷凍面團(tuán)劣變的因素進(jìn)行綜合分析,以期從提高酵母活性、穩(wěn)定面筋蛋白結(jié)構(gòu)、降低水分的流動(dòng)性、穩(wěn)定淀粉結(jié)構(gòu)這些方面,為解決冷凍面團(tuán)劣變提供全面的理論指導(dǎo),解決冷凍面團(tuán)所面臨的困境,同時(shí)為高效健康改良劑的開(kāi)發(fā)提供思路。
在面團(tuán)的制作過(guò)程中,相比化學(xué)膨松劑,酵母更具優(yōu)勢(shì)[16],且酵母活性與面團(tuán)的醒發(fā)時(shí)間、體積、硬度和孔隙率存在密切關(guān)系[17]。冷凍面團(tuán)中酵母細(xì)胞的生存能力取決于細(xì)胞膜的組成和完整性[18],而冰晶的形成會(huì)對(duì)酵母細(xì)胞膜造成機(jī)械損傷,導(dǎo)致酵母細(xì)胞損傷或死亡[19],還會(huì)導(dǎo)致還原劑如谷胱甘肽的釋放,最后通過(guò)破壞面筋蛋白的二硫鍵來(lái)削弱面團(tuán)的結(jié)構(gòu)[20]。面團(tuán)在凍藏過(guò)程中酵母活性降低,發(fā)酵特性減弱,具體表現(xiàn)為最大發(fā)酵高度和最終發(fā)酵高度降低。生產(chǎn)上使用的酵母在28 ℃左右快速生長(zhǎng),并進(jìn)行有氧和無(wú)氧呼吸[21],孟露等[22]對(duì)面包酵母在-20 ℃無(wú)糖環(huán)境下模擬面團(tuán)發(fā)酵7 d,發(fā)現(xiàn)酵母的存活率為43%,發(fā)酵力下降42%,也有研究發(fā)現(xiàn)同樣溫度凍藏28 d的時(shí)候,面團(tuán)中酵母存活率為48.5%[23],主要原因是后者的酵母存活率是在添加10%蔗糖的條件下測(cè)定的。劉玫[19]研究發(fā)現(xiàn)凍結(jié)后和凍藏28d后的酵母存活率分別為87.53%和25.02%。溫度的波動(dòng)也會(huì)破壞酵母細(xì)胞[24],Jia等[25]研究表明,面團(tuán)的最大發(fā)酵高度和最終發(fā)酵高度可反映面團(tuán)在發(fā)酵過(guò)程中的產(chǎn)氣能力和持氣能力。酵母細(xì)胞在-18 ℃下凍藏28 d后死亡率為47.4%,繼續(xù)凍藏6周后,面團(tuán)發(fā)酵階段的m從28.7 mm降低至24.3 mm,在氣體釋放階段,氣體保留率從90.4%降低至85.3%[26]。面團(tuán)在經(jīng)歷6次凍融循環(huán)之后,生產(chǎn)的面包比容顯著降低(<0.05),可能是由于冰晶刺穿了酵母細(xì)胞,降低了冷凍保存過(guò)程中酵母存活率,減少了面筋網(wǎng)絡(luò)在發(fā)酵過(guò)程中保留CO2的能力[27]。湯曉娟[28]研究也得到相同的結(jié)論,凍藏使酵母存活率呈顯著下降的趨勢(shì)(<0.05),且面團(tuán)的產(chǎn)氣和持氣能力顯著降低(<0.05)。表1是酵母在凍藏期間的變化情況,即凍藏過(guò)程中,酵母活性降低,面團(tuán)最大發(fā)酵高度m和最終發(fā)酵高度降低,總產(chǎn)氣量T和持氣量1減少。
表1 酵母在凍藏期間變化情況表征
注:m:面團(tuán)最大發(fā)酵高度,m;:面團(tuán)最終發(fā)酵高度,m;T:總產(chǎn)氣量,mL;1:持氣量,mL。
Note:m: maximum dough fermentation height, m;:the final dough fermentation height, m;T: total gas volume, mL;1: gas retention volume, mL.
凍藏對(duì)酵母活性的影響主要是因?yàn)楸б鸬腫29],冰晶對(duì)冷凍面團(tuán)的影響可以概括為以下兩個(gè)方面:1)凍結(jié)過(guò)程中酵母細(xì)胞內(nèi)冰晶的形成會(huì)對(duì)細(xì)胞膜造成破壞,降低酵母活性[30];2)細(xì)胞外的面團(tuán)基質(zhì)中會(huì)形成冰晶,則鹽、糖、其他分子的濃度會(huì)增加,導(dǎo)致細(xì)胞內(nèi)滲透壓增加,使酵母細(xì)胞失水死亡[31]。凍藏過(guò)程中冰晶的形成和重結(jié)晶作用會(huì)破壞酵母細(xì)胞壁,造成酵母活性降低,進(jìn)而影響面團(tuán)的產(chǎn)氣能力與持氣量,發(fā)酵性能降低,因此冷凍面團(tuán)生產(chǎn)的產(chǎn)品質(zhì)構(gòu)特性下降,體積減小,孔隙率減小,硬度增加。
針對(duì)冷凍面團(tuán)中酵母活性和產(chǎn)氣性能低的問(wèn)題,目前國(guó)內(nèi)的研究大多集中在篩選抗凍酵母:1)篩選天然抗凍酵母:汪正強(qiáng)等[32]從土壤、谷物、果蔬、空氣等不同來(lái)源篩選分離得到60多株酵母菌,得到三株耐凍酵母菌;2)特定的培養(yǎng)條件選育抗凍酵母:艾羽函[33]發(fā)現(xiàn)用20%質(zhì)量分?jǐn)?shù)的葡萄糖培養(yǎng)酵母時(shí),酵母的抗凍能力和面團(tuán)的產(chǎn)氣能力最佳,這是由于高滲環(huán)境有利于酵母合成海藻糖、甘油和乙醇,而海藻糖和甘油能夠增強(qiáng)酵母的抗凍性[34],因此可以通過(guò)高滲培養(yǎng)酵母提高酵母的抗凍能力;3)生物技術(shù)培養(yǎng)抗凍酵母:譚海剛等[35]研究發(fā)現(xiàn),敲除NTH1基因后能明顯改善酵母菌株的耐凍特性。其他方法:李娜等[36]的研究表明,通過(guò)酵母與碳酸氫鈉混配,也可以解決冷凍面團(tuán)酵母細(xì)胞活性和持氣力,當(dāng)碳酸氫鈉用量為0.2%~0.4%時(shí),冷凍面團(tuán)饅頭表現(xiàn)出較好的表面色澤、外觀形狀、內(nèi)部氣孔分布、氣味、口味以及口感,且能促進(jìn)面筋蛋白二硫鍵的形成。
面團(tuán)作為一個(gè)復(fù)雜的體系,主要包括面筋蛋白、淀粉、水分等成分,在一定含水率的情況下,小麥蛋白質(zhì)與淀粉相互作用,促進(jìn)了面筋網(wǎng)絡(luò)結(jié)構(gòu)的形成。其中面筋蛋白作為面團(tuán)的骨架結(jié)構(gòu),淀粉顆粒通過(guò)吸水膨脹支撐和強(qiáng)化面團(tuán)結(jié)構(gòu)。面團(tuán)在凍藏過(guò)程中,由于冰晶的生長(zhǎng)和重結(jié)晶作用,面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)遭到破壞,損傷淀粉含量也會(huì)增加,面筋蛋白中的水分發(fā)生轉(zhuǎn)移,造成水分重新分布[37],同時(shí)冷凍面團(tuán)中的可凍結(jié)水含量增加。因此,冷凍面團(tuán)的劣變主要可概括為以下3個(gè)方面:1)面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)的破壞;2)水分重新分布;3)損傷淀粉的影響。表2是面團(tuán)在凍藏期間結(jié)構(gòu)和品質(zhì)劣變的表征,冷凍面團(tuán)的結(jié)構(gòu)和功能特性都發(fā)生改變,主要表現(xiàn)為麥谷蛋白和醇溶蛋白的共價(jià)鍵發(fā)生斷裂,非共價(jià)鍵發(fā)生改變,麥谷蛋白大分子聚合體(Glutenin Macropolymer,GMP)含量降低,可凍結(jié)水含量增加,損傷淀粉含量增加,面筋蛋白微觀結(jié)構(gòu)遭到破壞,最后導(dǎo)致面團(tuán)的黏彈性降低,品質(zhì)劣變。
表2 面團(tuán)凍藏期間結(jié)構(gòu)和品質(zhì)劣變的表征
注:SDS-PAGE:十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳;SEC-MALLS:尺寸排阻色譜-多角度激光光散射;FTIR:傅里葉轉(zhuǎn)換紅外光譜;DSC:差示掃描量熱;Δ:焓;SEM, TEM:掃描電子顯微鏡,透射電子顯微鏡;、、tan:彈性模量,黏性模量,損耗角正切。
Note: SDS-PAGE: Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis; SEC-MALLS: Size Exclusion Chromatography Multi-Angle Laser Light Scattering; FTIR: Fourier Transform Infrared Spectroscopy; DSC: Differential Scanning Calorimetry; Δ: Enthalpy; SEM, TEM: Scanning Electron Microscopy, Transmission Electron Microscopy;、、tan: Elastic Modulus, Viscous Modulus, Loss Tangent.
面筋蛋白的構(gòu)架蛋白麥谷蛋白和醇溶蛋白在面團(tuán)的形成過(guò)程中產(chǎn)生了連續(xù)的黏彈性網(wǎng)絡(luò)結(jié)構(gòu),面筋網(wǎng)絡(luò)在面團(tuán)發(fā)酵和蒸煮過(guò)程中對(duì)面團(tuán)的延展性、產(chǎn)品尺寸和質(zhì)量方面起著決定性的作用[49]。面筋網(wǎng)絡(luò)可以保持酵母發(fā)酵過(guò)程中產(chǎn)生的CO2氣體[50],現(xiàn)代聚合物理論認(rèn)為面筋蛋白分子量大小和結(jié)構(gòu)與其功能特性緊密相關(guān),而GMP的數(shù)量、面團(tuán)結(jié)構(gòu)特性與冷凍面團(tuán)制作的產(chǎn)品質(zhì)量之間存在相關(guān)性[51]。面團(tuán)在凍藏過(guò)程中由于冰晶的作用使水分發(fā)生重新分布,面筋蛋白作為面團(tuán)的主要功能性成分,凍藏過(guò)程中高分子量的面筋蛋白發(fā)生解聚,導(dǎo)致面筋網(wǎng)絡(luò)退化。對(duì)面筋蛋白結(jié)構(gòu)的具體研究包括分子量大小、二硫鍵的變化、表面疏水性及二級(jí)結(jié)構(gòu)的變化。
2.1.1 蛋白質(zhì)分子量
面筋蛋白在十二烷基硫酸鈉(Sodium Dodecyl Sulfate,SDS)溶液中的溶解度可以反映面筋蛋白的聚合程度,GMP解聚被認(rèn)為是表征面筋蛋白品質(zhì)劣變的主要指標(biāo)之一[52],因此研究?jī)霾剡^(guò)程中面筋蛋白和麥谷蛋白SDS溶解度和GMP含量可以解釋面筋蛋白的劣變機(jī)制。劉玫[19]研究發(fā)現(xiàn)經(jīng)歷凍結(jié)和凍藏處理的面筋蛋白和麥谷蛋白的SDS溶解度增加,GMP含量降低,且SDS-LMW(Low Molecular Weight)(<91 000 Da)部分含量增加程度高于SDS-HMW(High Molecular Weight)(91 000~688 000 Da)部分。經(jīng)歷60 d冷凍儲(chǔ)藏導(dǎo)致GMP含量顯著降低(<0.05),而SDS可溶性單體組分增加[38],推測(cè)凍結(jié)和凍藏階段由于冰晶的形成和重結(jié)晶導(dǎo)致GMP發(fā)生解聚,生成了SDS可溶性蛋白。Zhao等[53]研究發(fā)現(xiàn),經(jīng)歷凍融循環(huán)后的面筋蛋白分子量顯著降低(<0.05)。高分子量麥谷蛋白(High Molecular Weight Glutenin Subunits,HMW-GS)和低分子量麥谷蛋白(Low Molecular Weight Glutenin Subunits,LMW-GS)亞基比例也是分子量分布的決定因素之一,Jia等[54]研究表明,凍藏5周之后,HMW/LMW的比率降低為新鮮面團(tuán)的31.3%,由于谷蛋白的解聚導(dǎo)致高分子量麥谷蛋白亞基數(shù)量減少,而低分子量亞基數(shù)量增加。此外,王沛[39]的研究也得到相同的結(jié)論,可溶性蛋白的分子量分布范圍不隨冷凍時(shí)間的延長(zhǎng)而變化,但可溶性蛋白的含量隨冷凍時(shí)間的延長(zhǎng)而增加,并研究了麥醇溶蛋白對(duì)面筋蛋白結(jié)構(gòu)形成的阻礙作用,建立了GMP的解聚度和凍藏時(shí)間及醇溶蛋白含量呈線(xiàn)性正相關(guān)的關(guān)系,證實(shí)了面筋蛋白和谷蛋白中GMP的解聚過(guò)程主要通過(guò)鏈外二硫鍵的斷裂作用進(jìn)行。因此,凍藏過(guò)程中由于冰晶的作用導(dǎo)致面筋蛋白的關(guān)鍵組分GMP發(fā)生了解聚作用,使其骨架結(jié)構(gòu)遭到破壞,進(jìn)而弱化了面團(tuán)的網(wǎng)絡(luò)結(jié)構(gòu)。
2.1.2 二硫鍵
麥谷蛋白和醇溶蛋白主要通過(guò)共價(jià)鍵來(lái)進(jìn)行分子內(nèi)/分子間的相互作用并形成面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)。作為面筋蛋白的功能基團(tuán),游離巰基(Free Thiol,S-H)通??赏ㄟ^(guò)形成二硫鍵(Disulfide Bond,S-S)來(lái)參與到蛋白聚集行為中,同時(shí)S-S鍵也是維持面筋蛋白三維網(wǎng)絡(luò)結(jié)構(gòu)的主要作用力,通過(guò)鏈內(nèi)和鏈間的共價(jià)S-S鍵決定面筋蛋白的功能特性,從而決定面團(tuán)的最終使用質(zhì)量[55]。劉玫[19]對(duì)面筋蛋白的S-S鍵含量進(jìn)行了測(cè)定,發(fā)現(xiàn)S-S鍵含量在凍藏28 d后顯著降低(<0.05),說(shuō)明二硫鍵在凍藏過(guò)程中發(fā)生了斷裂。王沛[39]研究發(fā)現(xiàn)在凍藏60 d后,冷凍面團(tuán)中面筋蛋白的S-H 含量由 6.89mol/g 升至11.03mol/g,推測(cè)S-S鍵的斷裂形成游離S-H,進(jìn)而導(dǎo)致面筋蛋白網(wǎng)絡(luò)弱化。Xuan等[56]的研究發(fā)現(xiàn),凍藏60 d后面筋蛋白的游離S-H含量增加了82.93%,但面筋蛋白中游離S-H含量在凍藏15 d時(shí)出現(xiàn)了下降的趨勢(shì),推測(cè)冷凍收縮現(xiàn)象導(dǎo)致面筋蛋白內(nèi)部形成了更多的鏈內(nèi)/鏈間S-S鍵[57]。朱建[58]發(fā)現(xiàn)面筋蛋白經(jīng)歷凍融循環(huán)后的S-S鍵含量顯著降低(<0.05),S-H含量顯著升高(<0.05),證實(shí)了凍融循環(huán)對(duì)面筋蛋白的結(jié)構(gòu)造成破壞。趙雷[40]發(fā)現(xiàn),與恒溫凍藏相比,凍融對(duì)S-S鍵的破壞比較大,由于面筋蛋白的自由氨基含量沒(méi)有變化,面筋蛋白的亞基也沒(méi)有發(fā)生變化,游離S-H含量隨著凍藏時(shí)間的增加而增加,這就表明,由于二硫鍵斷裂使得面筋蛋白的大聚合體發(fā)生了解聚現(xiàn)象導(dǎo)致了面筋蛋白分子量的下降,這與上述蛋白質(zhì)分子量的研究結(jié)果一致。凍藏期間蛋白質(zhì)空間構(gòu)象的重排是由S-S鍵和疏水相互作用共同作用的[59],溫度波動(dòng)引起的水分遷移和冰晶的重結(jié)晶對(duì)面筋蛋白和谷蛋白的網(wǎng)絡(luò)結(jié)構(gòu)造成擠壓和破壞,造成二硫鍵密度分布不均勻從而使鍵合作用變?nèi)?,氧氣將這部分鍵合作用較弱的二硫鍵氧化,從而使部分二硫鍵斷裂[40]。
2.1.3 表面疏水性
疏水相互作用是維持蛋白質(zhì)結(jié)構(gòu)的作用力,它對(duì)蛋白質(zhì)的功能特性和穩(wěn)定性具有重要作用,相比蛋白質(zhì)的整體疏水性,表面疏水性更能揭示蛋白質(zhì)結(jié)構(gòu)的變化[60],8-苯胺-1-萘磺酸熒光探針?lè)ㄊ且环N常用的測(cè)定蛋白質(zhì)表面疏水性的方法。面筋蛋白中的疏水氨基酸主要包括亮氨酸、脯氨酸等,這些氨基酸之間一般以疏水相互作用存在,朱建[58]研究發(fā)現(xiàn)經(jīng)凍融循環(huán)處理的面筋蛋白的表面疏水性增加。柳小軍[61]研究表明,隨凍藏時(shí)間和凍融循環(huán)次數(shù)的增多,面筋蛋白表面疏水性顯著增加(<0.05)。因此,凍藏過(guò)程中冰晶破環(huán)了面筋蛋白結(jié)構(gòu),導(dǎo)致結(jié)構(gòu)弱化,面筋蛋白構(gòu)象發(fā)生改變,使疏水基團(tuán)暴露,因此表面疏水性增加。
2.1.4 二級(jí)結(jié)構(gòu)
蛋白質(zhì)的二級(jí)結(jié)構(gòu)與面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)特征密切相關(guān)。二級(jí)結(jié)構(gòu)的分析可以用傅里葉轉(zhuǎn)換紅外光譜(Fourier Transform Infrared Spectroscope,F(xiàn)TIR)進(jìn)行分析,主要有-螺旋,-折疊,-轉(zhuǎn)角和-反平行4種結(jié)構(gòu),其中-螺旋、-折疊是有序結(jié)構(gòu),-螺旋一般為支撐多肽的主要骨架結(jié)構(gòu),-折疊含量一般在各二級(jí)結(jié)構(gòu)中占主要地位,而-轉(zhuǎn)角和-反平行是無(wú)序結(jié)構(gòu)。表3為冷凍面團(tuán)二級(jí)結(jié)構(gòu)的變化的表征,主要表現(xiàn)為-螺旋結(jié)構(gòu)的降低,不同的研究顯示的二級(jí)結(jié)構(gòu)變化存在差異,可能與冷凍面團(tuán)的配方有關(guān)。-折疊主要依賴(lài)于麥谷蛋白的水合作用,-螺旋是醇溶蛋白的特征結(jié)構(gòu),維持-螺旋結(jié)構(gòu)的主要作用力為氫鍵,冷凍破壞了-螺旋結(jié)構(gòu)中的氫鍵等非共價(jià)鍵,蛋白質(zhì)的親水和疏水殘基暴露在外界環(huán)境中,導(dǎo)致蛋白分子間、分子內(nèi)出現(xiàn)新的交聯(lián)現(xiàn)象,從而改變了蛋白質(zhì)的二級(jí)結(jié)構(gòu)[14]。
表3 冷凍面團(tuán)二級(jí)結(jié)構(gòu)變化的表征
注:“—”未顯示反平行-折疊結(jié)構(gòu)含量。
Note: “—” The content of antiparallel-sheets structure is not showed.
由上可見(jiàn),面筋蛋白在凍藏過(guò)程結(jié)構(gòu)的破壞主要概括為以下過(guò)程:凍藏過(guò)程中冰晶的形成和重結(jié)晶導(dǎo)致面筋蛋白GMP發(fā)生解聚,這種解聚主要是二硫鍵的斷裂引起的,通過(guò)對(duì)面筋蛋白的表面疏水性進(jìn)行分析發(fā)現(xiàn),表面疏水性增加,進(jìn)而引起面筋蛋白二級(jí)結(jié)構(gòu)發(fā)生變化,主要表現(xiàn)為-螺旋和-折疊結(jié)構(gòu)弱化,最終導(dǎo)致面筋蛋白結(jié)構(gòu)破壞。
酶制劑類(lèi)食品添加劑能夠增強(qiáng)面筋蛋白結(jié)構(gòu),因具有高效、天然、安全的特性被廣泛應(yīng)用于冷凍面團(tuán)的加工中[15],常用的酶制劑有:葡萄糖氧化酶,轉(zhuǎn)谷氨酰胺酶,纖維素酶等。袁永利[64]研究發(fā)現(xiàn),添加葡萄糖氧化酶之后的面團(tuán)凍藏35 d仍然有大量的連續(xù)的面筋網(wǎng)絡(luò)存在。葡萄糖氧化酶在有氧條件下發(fā)生氧化反應(yīng)生成葡萄糖酸內(nèi)酯,釋放的過(guò)氧化氫可以將面筋蛋白中的游離S-H氧化成S-S,進(jìn)而增強(qiáng)面筋網(wǎng)絡(luò)的結(jié)構(gòu)[65]。Tang等[66]研究表明,轉(zhuǎn)谷氨酰胺酶可以降低高分子量谷蛋白亞基與低分子量谷蛋白亞基的比例,并增加GMP的粒徑。轉(zhuǎn)谷氨酰胺酶可用于蛋白質(zhì)的交聯(lián),可以減少冷凍面團(tuán)中由于冰晶導(dǎo)致的面筋強(qiáng)度降低。谷氨酰胺轉(zhuǎn)氨酶存在的情況下,賴(lài)氨酸殘基上的-氨基酸和谷氨酰胺殘基上的-羥酰胺基反應(yīng)生成-賴(lài)氨酸異肽鍵,-賴(lài)氨酸異肽鍵作用力比氫鍵和其他非共價(jià)鍵強(qiáng),從而起到增強(qiáng)筋力的作用[65]。
持水性是蛋白質(zhì)的重要功能性質(zhì),柳小軍[61]研究了凍藏對(duì)小麥面筋蛋白持水性的影響,結(jié)果顯示凍藏會(huì)使面筋蛋白的持水性顯著性下降(<0.05),且經(jīng)歷凍融循環(huán)后,面筋蛋白的持水性進(jìn)一步降低。湯曉娟[28]研究發(fā)現(xiàn),濕面筋的含水率隨凍融循環(huán)次數(shù)的增多而減少,這主要是由于冰晶的生長(zhǎng)和重結(jié)晶作用,小麥面筋蛋白低溫變性導(dǎo)致隱藏在其內(nèi)部的部分疏水基團(tuán)暴露,使得小麥面筋蛋白網(wǎng)絡(luò)對(duì)水分子的束縛力減弱[59]。具體來(lái)說(shuō),面筋蛋白在凍藏過(guò)程中的吸水能力下降是由S-S共價(jià)鍵及非共價(jià)鍵變化共同作用引起的蛋白空間構(gòu)象重排所致,最終導(dǎo)致小麥面筋蛋白持水性的下降。
2.2.1 水分的遷移與重新分布
冷凍面團(tuán)中水分的分布情況直接影響著面團(tuán)的發(fā)酵活力和面筋的網(wǎng)絡(luò)結(jié)構(gòu),最終影響冷凍面團(tuán)產(chǎn)品的質(zhì)量[67]。面團(tuán)中的水分分布一般用時(shí)域核磁共振(Time-Domain Nuclear Magnetic Resonance,TD-NMR)測(cè)定橫向弛豫時(shí)間來(lái)表示,面團(tuán)中的水一般可以分成3部分,分別對(duì)應(yīng)冷凍面團(tuán)在弛豫時(shí)間內(nèi)的3個(gè)峰21、22、23。21表示與淀粉或蛋白質(zhì)氨基酸殘基結(jié)合最為緊密的深層結(jié)合水,22表示介于深層結(jié)合水和自由水之間的弱結(jié)合水,23表示可凍結(jié)的自由水,而自由水是面團(tuán)在凍藏過(guò)程中極易失去的一部分水。隨著凍藏時(shí)間的延長(zhǎng),深層結(jié)合水比例從17.40%下降至14.40%,而自由水占比上升了3.40%[68],Jiang等[41]研究發(fā)現(xiàn)凍藏120 d后,冷凍面團(tuán)中的深層結(jié)合水含量顯著降低(<0.05),自由水含量顯著增加(<0.05),弱結(jié)合水含量無(wú)顯著改變(>0.05)。面筋蛋白中的深層結(jié)合水和弱結(jié)合水對(duì)凍藏敏感,它們的2弛豫時(shí)間峰值的寬度和幅度的變化受凍藏時(shí)間的增加而變化[13]。隨著凍融循環(huán)次數(shù)的增多,自由水含量顯著增加(<0.05),深層結(jié)合水含量顯著降低(<0.05),表明面筋網(wǎng)絡(luò)在經(jīng)歷凍融循環(huán)之后脫水[69]。Zhang等[70]研究發(fā)現(xiàn)經(jīng)歷凍融循環(huán)處理后,冷凍面團(tuán)中的深層結(jié)合水顯著降低(<0.05),而自由水顯著增加(<0.05),表明凍融處理后冷凍面團(tuán)中的水分流動(dòng)性進(jìn)一步增加。Ding等[43]用低場(chǎng)核磁共振(Low Field-Nuclear Magnetic Resonance,LF-NMR)在高空間分辨率下無(wú)損實(shí)時(shí)顯示水分分布,發(fā)現(xiàn)新鮮面團(tuán)的彩色圖像均勻且邊緣清晰,表明水分均勻的分布在新鮮面團(tuán)的內(nèi)部和表面,凍融循環(huán)后,這種均勻狀態(tài)被破壞,水分主要集中在面團(tuán)的中心,邊緣分布較少,這是由于凍融處理后面團(tuán)中的水分含量降低,導(dǎo)致質(zhì)子密度的信號(hào)強(qiáng)度降低[27]。冷凍面團(tuán)中的水分由于重結(jié)晶作用會(huì)發(fā)生重新分布,經(jīng)過(guò)凍藏和凍融處理后,面筋蛋白的疏水相互作用增強(qiáng),導(dǎo)致面筋蛋白與深層結(jié)合水和弱結(jié)合水的作用力減弱,導(dǎo)致面團(tuán)中水分流動(dòng)性增加,進(jìn)一步導(dǎo)致面團(tuán)失水。圖1[39]是冷凍面團(tuán)中水分在宏觀、微觀及分子水平的分布情況。
Fig 1 Water distribution in frozen dough at the macroscopic, microscopic and molecular levels
2.2.2 可凍結(jié)水含量
冰晶是破壞冷凍面團(tuán)面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)的主要因素之一,而可凍結(jié)水的含量決定了在凍藏過(guò)程中冰晶的生成量,可凍結(jié)水含量的測(cè)定通過(guò)差示掃描量熱(Differential Scanning Calorimetry,DSC)儀。冷凍面團(tuán)中可凍結(jié)水比例隨凍藏時(shí)間的延長(zhǎng)而增加[41],冷凍面團(tuán)經(jīng)歷了30 d凍藏處理后可凍結(jié)水比例從31.7%增加到47.5%[44]。經(jīng)歷5次凍融循環(huán)之后,面團(tuán)中可凍結(jié)水比例從38.70%增加到44.34%[72],由于在凍結(jié)過(guò)程中,只有可凍結(jié)水轉(zhuǎn)化為冰晶,因此冰晶的熔融焓值(Δ)可以反映樣品中的可凍結(jié)水比例[43]。經(jīng)歷12周凍藏處理的面團(tuán)的焓值從76 J/g增長(zhǎng)到86 J/g,而同時(shí)經(jīng)歷凍融循環(huán)面團(tuán)的焓值從76 J/g增長(zhǎng)到89 J/g,且焓值在前四周會(huì)增加明顯,水分遷移和冷凍后可凍結(jié)水立即增加,主要?dú)w因于面團(tuán)初次暴露在這樣的低溫環(huán)境中引起的面筋網(wǎng)絡(luò)結(jié)構(gòu)的劣變[12]。Xuan等[56]研究發(fā)現(xiàn),經(jīng)歷60 d的凍藏之后,焓值Δ從134.20 J/g增加至166.27 J/g??蓛鼋Y(jié)水含量和焓值Δ的升高可能是因?yàn)閮霾剡^(guò)程中冰晶的生長(zhǎng)和重結(jié)晶作用,減弱了面筋蛋白中非極性、極性氨基酸之間的相互作用,使面團(tuán)中不能凍結(jié)的松散的結(jié)合水與小麥面筋蛋白的相互作用減弱,這部分結(jié)合水從面筋網(wǎng)絡(luò)中釋放出來(lái),進(jìn)而轉(zhuǎn)變成了自由水,導(dǎo)致冷凍面團(tuán)中的可凍結(jié)水含量增加[57,61],這也與上述自由水含量增加的結(jié)果一致。
目前食品膠體和抗凍劑類(lèi)食品添加劑主要用于控制冷凍面團(tuán)中水分子的遷移,進(jìn)而阻止大冰晶的形成。常用的食品膠有黃原膠、海藻酸鈉、卡拉膠等。其中黃原膠有很強(qiáng)的吸水性,能夠使水分均勻分散在面筋網(wǎng)絡(luò)結(jié)構(gòu)中,減緩因冰晶的遷移與生長(zhǎng)帶來(lái)的面筋蛋白結(jié)構(gòu)破壞,汪星星[72]的研究表明,添加黃原膠、卡拉膠能夠有效抑制二硫鍵的斷裂,抑制冷凍面團(tuán)黏彈性模量的降低,保護(hù)面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)。常用的抗凍劑有抗凍蛋白,海藻糖,抗凍肽類(lèi)。其中抗凍蛋白主要有3種作用:1)熱滯活性;2)重結(jié)晶抑制活性;3)細(xì)胞膜保護(hù)作用,因此抗凍蛋白通過(guò)抑制冰晶的作用保護(hù)面筋蛋白結(jié)構(gòu)[73],目前抗凍肽已經(jīng)成功應(yīng)用于冷凍面團(tuán)。Chen等[74]的研究表明,添加抗凍肽減弱了在凍融處理過(guò)程中水分的流動(dòng)性,并改善了冷凍面團(tuán)中的水分分布。海藻糖具有很強(qiáng)的抗脫水作用,可以有效防止面筋蛋白在寒冷環(huán)境下遭受損傷,周一鳴等[75]的研究表明,通過(guò)復(fù)配海藻糖、食品膠、乳化劑、酶制劑能夠使冷凍面團(tuán)面筋蛋白網(wǎng)絡(luò)結(jié)構(gòu)清晰完整,使冷凍面團(tuán)饅頭比容極顯著提高(<0.01),增強(qiáng)面團(tuán)的抗凍性。
淀粉作為面團(tuán)中占比最大的物質(zhì),在冷凍面團(tuán)的劣變過(guò)程中也發(fā)揮著重要作用。面團(tuán)在經(jīng)歷凍藏/凍融循環(huán)之后,損傷淀粉(Damaged Starch,DS)含量會(huì)增加,導(dǎo)致吸水率增加,使水分從面筋基質(zhì)中流出[8],損傷淀粉的含量高也會(huì)使面團(tuán)發(fā)黏且不易成型,彈性和可伸展性的下降,與此同時(shí),由于面筋與損傷淀粉之間競(jìng)爭(zhēng)水分,也會(huì)導(dǎo)致面團(tuán)的結(jié)構(gòu)較弱[76]。圖2[45]為天然淀粉和損傷淀粉的SEM圖,觀察到天然淀粉的表面光滑平坦,損傷淀粉表面粗糙。DS的含量會(huì)影響面團(tuán)對(duì)水的吸收和面粉的混合特性,但是適量的DS(12.2%~21.9%)可以改善粉質(zhì)特性,將水分保留在面團(tuán)中,對(duì)冷凍面團(tuán)更有利[77]。凍藏過(guò)程中DS含量顯著增加(<0.05)[78],DS含量增加會(huì)降低雙螺旋結(jié)構(gòu),導(dǎo)致面團(tuán)的穩(wěn)定性受到影響。且DS增加1%可使面團(tuán)吸水能力提高約4倍,慢速(-0.14 ℃/min)冷凍面團(tuán)的DS在凍藏期間含量高于快速(-1.75 ℃/min)冷凍面團(tuán)的DS。Tao等[79]研究發(fā)現(xiàn),經(jīng)歷10次凍融循環(huán)處理的淀粉使面團(tuán)的彈性模量(Elastic Modulus,), 黏性模量(Viscous Modulus,)增加,且損耗角正切(Loss Tangenttan)值沒(méi)有顯著變化(>0.05),主要原因是損傷淀粉含量增加導(dǎo)致更少的水分來(lái)形成面團(tuán)[80]。經(jīng)歷凍藏后的淀粉使面筋蛋白的-螺旋、-折疊轉(zhuǎn)換成無(wú)序的-轉(zhuǎn)角和無(wú)規(guī)則卷曲,使面團(tuán)形成時(shí)間增加,tan值降低,面包芯的硬度顯著增加(<0.05),最終導(dǎo)致面包的品質(zhì)下降,因此,損傷淀粉的增加將導(dǎo)致面團(tuán)品質(zhì)的下降[46]。凍藏處理改變了小麥淀粉結(jié)構(gòu)性質(zhì),弱化了淀粉顆粒與蛋白質(zhì)分子之間的相互作用,導(dǎo)致面筋蛋白的二級(jí)結(jié)構(gòu)變得無(wú)序化,面筋網(wǎng)絡(luò)結(jié)構(gòu)疏松,面團(tuán)的黏彈特性發(fā)生改變,最后降低冷凍面團(tuán)品質(zhì)。
Fig 2 Scanning electron micrographs of native and damaged starch granules
面筋蛋白在凍藏過(guò)程中結(jié)構(gòu)的變化可以通過(guò)SEM觀察,也可以通過(guò)激光共聚焦電子顯微鏡觀察。在凍藏初期,冷凍面團(tuán)面筋蛋白維持著高度的三維網(wǎng)狀結(jié)構(gòu),孔洞致密且均勻,尺寸范圍從8~20m[41]。凍藏之后面筋網(wǎng)絡(luò)發(fā)生斷裂,面筋結(jié)構(gòu)變得非常粗糙,更多的淀粉顆粒被暴露出來(lái)[28]。凍藏60 d的面筋蛋白由于相鄰孔洞之間的網(wǎng)絡(luò)破壞導(dǎo)致孔徑變大,且分布不規(guī)則,這是由于冰晶的形成和生長(zhǎng),導(dǎo)致S-H增加,S-S鍵斷裂[56]。Wang等[13]研究發(fā)現(xiàn),經(jīng)歷60 d的凍藏之后,連續(xù)的面筋網(wǎng)絡(luò)結(jié)構(gòu)遭到破壞,可以觀察到在面筋蛋白和冰晶之間發(fā)生相分離,面筋網(wǎng)絡(luò)的冷凍收縮過(guò)程減少了分離相鄰冰晶的蛋白質(zhì)的間隙區(qū)域,從而對(duì)微觀結(jié)構(gòu)造成機(jī)械損傷[39]。忻晨[81]發(fā)現(xiàn)面筋蛋白的網(wǎng)絡(luò)結(jié)構(gòu)在經(jīng)歷凍藏之后,由平滑完整的結(jié)構(gòu)變得孔徑變大,導(dǎo)致網(wǎng)絡(luò)結(jié)構(gòu)的完整性和連續(xù)性遭到破壞,這是由于面筋蛋白在凍藏過(guò)程脫水,使得冰晶含量增多導(dǎo)致的。水的相變會(huì)引起冰晶的體積增大,面筋蛋白的間隙區(qū)域由于冷凍收縮過(guò)程受到擠壓,導(dǎo)致面筋蛋白的微觀結(jié)構(gòu)受到機(jī)械損傷[82]。隨著凍藏時(shí)間的延長(zhǎng),面筋網(wǎng)絡(luò)出現(xiàn)了不同程度的破損,面筋膜變得稀薄,并且出現(xiàn)了較多不同形狀的孔洞,凍融處理會(huì)導(dǎo)致更為嚴(yán)重的網(wǎng)絡(luò)結(jié)構(gòu)的破壞,面筋網(wǎng)絡(luò)斷裂,連續(xù)性變差,可能導(dǎo)致最終產(chǎn)品的持氣性降低,產(chǎn)品品質(zhì)不佳[83]。
面團(tuán)是一種具有黏彈性的物料,它的黏彈性主要來(lái)源于具有彈性的麥谷蛋白和黏性的醇溶蛋白,面團(tuán)的流變性能在一定程度上決定其最終產(chǎn)品品質(zhì)。面筋蛋白和麥谷蛋白的彈性模量(Elastic Modulus,)都大于黏性模量(Viscous Mudulus,),說(shuō)明其主要體現(xiàn)固體性質(zhì)。凍藏過(guò)程中,損耗角正切(Loss Tangent,tan)是衡量蛋白質(zhì)品質(zhì)的重要指標(biāo)之一,其值越大說(shuō)明蛋白劣變程度越高[84]。研究表明面筋蛋白的彈性模量隨著凍藏時(shí)間的延長(zhǎng)而降低,醇溶蛋白的黏彈特性在凍藏過(guò)程中沒(méi)有顯著差異(>0.05)[85-86],因此推測(cè)面筋蛋白的黏彈特性在凍藏期間的變化主要由麥谷蛋白導(dǎo)致的。Ribotta等[11]研究發(fā)現(xiàn)冷凍和凍藏導(dǎo)致面團(tuán)和顯著降低(<0.05),證明冷凍和凍藏會(huì)使面團(tuán)彈性和黏性降低。凍藏過(guò)程中,面團(tuán)的彈性模量和黏性模量都逐漸降低,可能是面筋蛋白和淀粉顆粒之間的結(jié)構(gòu)被破壞。經(jīng)歷5次凍融循環(huán)處理后,面團(tuán)的和降低,且tan值隨凍融循環(huán)次數(shù)的增加而增加,表明面團(tuán)的黏彈性都下降了[70]。Tang等[69]發(fā)現(xiàn)經(jīng)歷凍融循環(huán)處理后,和顯著降低(<0.05),tan值顯著增加(<0.05),隨著凍融循環(huán)次數(shù)的增多,這是由于冰的重結(jié)晶等因素對(duì)面筋蛋白的破壞較為嚴(yán)重,導(dǎo)致流變學(xué)性能下降[83]。凍藏過(guò)程中,面筋蛋白和谷蛋白的與GMP含量存在顯著正相關(guān)關(guān)系(gluten=0.964,glutenin=0.985),表明二者彈性的降低與其中的GMP解聚直接相關(guān)[39]。Li等[87]研究分析冰晶可以使面筋網(wǎng)絡(luò)變得無(wú)序,導(dǎo)致面團(tuán)質(zhì)構(gòu)特性改變。冷凍面團(tuán)流變學(xué)特性的改變也可以用冷凍過(guò)程中冰晶的形成來(lái)解釋?zhuān)У闹亟Y(jié)晶破壞了面筋蛋白的網(wǎng)絡(luò)結(jié)構(gòu)[7,11,88-89],導(dǎo)致其黏彈性降低,且黏彈性損失與GMP解聚也存在顯著正相關(guān)。因此,GMP解聚也是引起面筋蛋白黏彈性下降的主要原因之一。面筋蛋白流變學(xué)特性在凍藏過(guò)程中的劣變主要概括為以下3個(gè)方面:1)相對(duì)分子量,一般分子量越大,面筋蛋白的黏彈性越好[90];2)面筋蛋白結(jié)構(gòu),凍藏由于冰晶作用對(duì)面筋蛋白的結(jié)構(gòu)造成破壞,因此導(dǎo)致其黏彈性下降[54];3)面團(tuán)中的水分分布及水分狀態(tài)也會(huì)影響其黏彈特性[91]。面團(tuán)在凍藏過(guò)程中,水分重新分布及重結(jié)晶作用導(dǎo)致面筋蛋白GMP解聚,共價(jià)及非共價(jià)鍵變化,因此面筋蛋白結(jié)構(gòu)遭到破壞,流變學(xué)特性發(fā)生變化,和減小,tan值增加,對(duì)面團(tuán)的加工特性產(chǎn)生不利影響并在一定程度上決定產(chǎn)品品質(zhì)。
乳化劑可以與冷凍面團(tuán)中的蛋白質(zhì)、淀粉相結(jié)合,防止淀粉老化,降低面筋蛋白和淀粉之間的水分遷移,增強(qiáng)面團(tuán)的凍融穩(wěn)定性,進(jìn)而改善冷凍面團(tuán)的品質(zhì)。其中蔗糖酯和聚山梨醇酯可以與麥谷蛋白形成復(fù)合物,強(qiáng)化面團(tuán)結(jié)構(gòu);單甘酯則與淀粉相互作用形成復(fù)合物,延緩冷凍面團(tuán)產(chǎn)品硬化[92];雙乙酰酒石酸單(雙)甘油酯(Diacetyl Tartaric acid Ester of Monoglycerides, DATEM)能夠強(qiáng)化面筋網(wǎng)絡(luò)機(jī)構(gòu),增強(qiáng)面包的持氣能力[11]。周錦楓等[93]的研究表明,DATEM可以降低冷凍面團(tuán)中水分遷移速度,并提高其所生產(chǎn)面包的比容。-淀粉酶通過(guò)分解損傷淀粉為糊精、麥芽糖或葡萄糖等的簡(jiǎn)單化合物,為酵母提供營(yíng)養(yǎng)物質(zhì),促進(jìn)酵母的生長(zhǎng)和繁殖,極大的提高冷凍面團(tuán)的發(fā)酵特性[94],Thuy等[95]的研究表明,添加0.01%的-淀粉酶可以顯著增強(qiáng)冷凍面團(tuán)的筋力。而變性淀粉有良好的持水性及抗凍融效果,應(yīng)用于冷凍面團(tuán)中可以提高其質(zhì)量。王亞楠等[96-97]的研究表明醋酸酯馬鈴薯淀粉顯著增加冷凍面團(tuán)的持水力,減弱水分子的流動(dòng)性,且增大了面包的比容,改善面包的品質(zhì)。目前也有研究發(fā)現(xiàn)一些兼具抗凍和營(yíng)養(yǎng)特性的原料,Wang等[98]的研究表明加入2%的黑麥麩皮阿拉伯木聚糖能夠改善冷凍面團(tuán)的品質(zhì);Bea等[99]的研究發(fā)現(xiàn)添加50%全麥面粉的冷凍面團(tuán)有很好的凍融穩(wěn)定性,這些新型冷凍面團(tuán)改良劑還具有一定的生理功能。
除了外源添加改良劑,冷凍面團(tuán)的加工工藝也會(huì)影響面團(tuán)的品質(zhì),采用速凍的方式進(jìn)行凍結(jié)會(huì)使形成的冰晶細(xì)小且均勻,對(duì)面團(tuán)的影響較??;凍藏條件也會(huì)影響冰晶的生長(zhǎng)和水分重結(jié)晶。Kenny等[100]的研究表明,冷凍面團(tuán)的適宜凍藏溫度為-18~-22 ℃,Du等[101]的研究發(fā)現(xiàn),在-35℃速凍溫度下,能減緩冷凍面團(tuán)的品質(zhì)劣變,采用冷凍前不發(fā)酵和快速發(fā)酵的方式能夠降低酵母的敏感性,增強(qiáng)面團(tuán)的抗凍效果[102-103]。
本文從面團(tuán)在凍藏過(guò)程中酵母活性和產(chǎn)氣性能、面團(tuán)主要組分特性、面團(tuán)結(jié)構(gòu)和流變學(xué)特性4個(gè)方面對(duì)冷凍面團(tuán)的劣變規(guī)律進(jìn)行了綜述,針對(duì)冷凍工藝方面,采用先進(jìn)的冷凍設(shè)備,減少溫度波動(dòng)來(lái)降低冷凍面團(tuán)的裂變;針對(duì)酵母活性降低,一般通過(guò)篩選抗凍酵母提升冷凍面團(tuán)產(chǎn)氣性低的問(wèn)題;針對(duì)面筋蛋白結(jié)構(gòu)弱化,酶制劑類(lèi)食品添加劑被用來(lái)增強(qiáng)面筋蛋白結(jié)構(gòu);針對(duì)水分遷移的問(wèn)題,添加食品膠和抗凍劑類(lèi)來(lái)阻止水分遷移引起的大冰晶的形成;針對(duì)淀粉結(jié)構(gòu)的破壞,變性淀粉的添加可以通過(guò)增強(qiáng)面團(tuán)的持水力來(lái)改善冷凍面團(tuán)品質(zhì)。乳化劑可以降低水分遷移,防止淀粉老化,但是過(guò)量攝入會(huì)誘發(fā)自身免疫疾病。酶制劑具有天然、安全、高效的優(yōu)點(diǎn)。抗凍蛋白雖然可以修復(fù)細(xì)胞超微結(jié)構(gòu),但是成本高。變性淀粉原料來(lái)源廣、方便、經(jīng)濟(jì)。單一的食品添加劑有一定的局限性,通過(guò)復(fù)配使用添加劑已經(jīng)成為一種趨勢(shì)。綜上可見(jiàn),隨著人們對(duì)營(yíng)養(yǎng)、健康的追求越來(lái)越高,開(kāi)發(fā)天然、綠色、健康、營(yíng)養(yǎng)型抗凍劑具有廣闊的應(yīng)用前景。
[1] 周舟,杜險(xiǎn)峰. 凍藏過(guò)程中面團(tuán)組分的變化及改良劑的研究進(jìn)展[J]. 食品科技,2020,45(12):144-149.
Zhou Zhou, Du Xianfeng. Research progress of changes in dough components and improvers during frozen storage[J]. Food Science and Technology, 2020, 45(12): 144-149. (in Chinese with English abstract)
[2] Dalvi-Isfahan M, Jha P K, Tavakoli J, et al. Review on identification, underlying mechanisms and evaluation of freezing damage[J]. Journal of Food Engineering, 2019, 255: 50-60.
[3] Maity T, Saxena A, Raju P S. Use of hydrocolloids as cryoprotectant for frozen foods[J]. Critical Reviews in Food Science & Nutrition, 2018, 58(3): 420-435.
[4] Yang S, Jeong S, Lee S. Elucidation of rheological properties and baking performance of frozen doughs under different thawing conditions[J]. Journal of Food Engineering, 2020, 284: 110084.
[5] 范會(huì)平,李瑞,鄭學(xué)玲,等. 酵母對(duì)冷凍面團(tuán)發(fā)酵特性及饅頭品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):298-305.
Fan Huiping, Li Rui, Zheng Xueling, et al. Effect of yeast products on fermentation characteristics of frozen dough and quality of steamed bread[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 298-305. (in Chinese with English abstract)
[6] Feng W J, Ma S, Wang X X. Quality deterioration and improvement of wheat gluten protein in frozen dough[J]. Grain & Oil Science and Technology, 2020, 3(1): 29-37.
[7] Baier-schenk A, Handschin S, Vonsch?nau M, et al. In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): Formation of ice and changes in the gluten network[J]. Journal of Cereal Science, 2005, 42(2): 255-260.
[8] Yang Y, Zheng S S, Li Z, et al. Influence of three types of freezing methods on physicochemical properties and digestibility of starch in frozen unfermented dough[J]. Food Hydrocolloids,2021, 115: 106619-106626.
[9] Omedi J O, Huang W N. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends: A review[J]. Cereal Chemistry, 2019, 96(1): 34-56.
[10] Kim H J, Yoo S H. Effects of combined-amylase and endo-xylanase treatments on the properties of fresh and frozen doughs and final breads[J]. Polymers, 2020, 12(6): 1349-1358.
[11] Ribotta P D, Perez G T, Len A E, et al. Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough[J]. Food Hydrocolloids, 2004, 18(2): 305-313.
[12] Lu L, Yang Z, Guo X N, et al. Effect of NaHCO3and freeze–thaw cycles on frozen dough: From water state, gluten polymerization and microstructure[J]. Food Chemistry, 2021, 358:129869-129879.
[13] Wang P, Xu L, Nikoo M, et al. Effect of frozen storage on the conformational, thermal and microscopic properties of gluten: Comparative studies on gluten-, glutenin- and gliadin-rich fractions[J]. Food Hydrocolloids, 2014, 35: 238-246.
[14] Wang P, Chen H Y, Mohanad B, et al. Effect of frozen storage on physico-chemistry of wheat gluten proteins: Studies on gluten-, glutenin- and gliadin-rich fractions[J]. Food Hydrocolloids, 2014, 39: 187-194.
[15] 王岸娜,施桂林,吳立根,等. 食品添加劑對(duì)冷凍面團(tuán)品質(zhì)影響的研究綜述[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2018,39(5):127-132.
Wang Anna, Shi Guilin, Wu Ligen, et al. Review on effects of food additives on frozen dough[J]. Journal of Henan University of Technology: Natural Science Edition, 2018, 39(5): 127-132. (in Chinese with English abstract)
[16] Wang P, Yang R Q, Gu Z X, et al. Comparative study of deterioration procedure in chemical-leavened steamed bread dough under frozen storage and freeze/thaw condition[J]. Food Chemistry, 2017, 229: 464-471.
[17] Akbarian M, Dehkordi M S M, Ghasemkhani N, et al. Hydrocolloids and cryoprotectant used in frozen dough and effect of freezing on yeast survival and dough structure: A review[J]. Research Laboratory for Agricultural Biotechnology & Biochemistry, 2015, 9(3): 1-9.
[18] Meziani S, Jasniewski J, Ribotta P, et al. Influence of yeast and frozen storage on rheological, structural and microbial quality of frozen sweet dough[J]. Journal of Food Engineering, 2012, 109(3): 538-544.
[19] 劉玫. 重組抗凍蛋白對(duì)冷凍面團(tuán)品質(zhì)劣變的干預(yù)及其機(jī)制研究[D]. 無(wú)錫:江南大學(xué),2018.
Liu Mei. Intervention and Mechanism Study of Recombinant Antifreeze Proteins on Quality Deterioration of Frozen Dough[D]. Wuxi: Jiangnan University, 2018. (in Chinese with English abstract)
[20] ?ztürk S, Cerit ?, Mutlu S, et al. Enrichment of cookies with glutathione by inactive yeast cells (): Physicochemical and functional properties[J]. Journal of Cereal Science, 2017, 78: 19-24.
[21] Yi J, Kerr W L. Combined effects of freezing rate, storage temperature and time on bread dough and baking properties[J]. LWT - Food Science and Technology, 2009, 42(9): 1474-1483.
[22] 孟露,劉晗誠(chéng),劉雅涵,等. 代謝組和轉(zhuǎn)錄組學(xué)分析工業(yè)面包酵母 () ABY3冷凍脅迫應(yīng)答機(jī)制[J/OL]. 食品科學(xué),[2020-01-14]2020:1-14. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPKX2020041600R&v=17WwU59A5kCjiDB%25mmd2B68XkFFc9FiSdlydmZtnyvXegsX6M0rH%25mmd2Bp1sNMuOLO6xGEMPi.
Meng Lu, Liu Hancheng, Liu Yahan, et al. Metabolome and transcriptome analysis of response mechanism of baker's yeast under freeze stress[J]. Food Science, [2020-01-14]2020:1-14. https://kns.cnki.net/kcms/detail/ detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPKX2020041600R&v=17WwU59A5kCjiDB%25mmd2B68XkFFc9FiSdlydmZtnyvXegsX6M0rH%25mmd2Bp1sNMuOLO6xGEMPi. (in Chinese with English abstract)
[23] Nguyen C T, Yuan M, Yu J S, et al. Isolation of ice structuring collagen peptide by ice affinity adsorption, its ice-binding mechanism and breadmaking performance in frozen dough[J]. Journal of Food Biochemistry, 2018, 42(3): e12506.
[24] Berglund P T, Shelton D R, Freeman T P. Frozen bread dough ultrastructure as affected by duration of frozen storage and freeze-thaw cycles[J]. Cereal Chemistry, 1991, 68(1): 105-107.
[25] Jia C L, Huang W N, Wu C, et al. Frozen bread dough properties modified by thermostable ice structuring proteins extract from Chinese privet () leaves[J]. Cereal Chemistry, 2012, 89(3): 162-167.
[26] Zhang C, Zhang H, Wang L. Effect of carrot () antifreeze proteins on the fermentation capacity of frozen dough[J]. Food Research International, 2007, 40(6): 763-769.
[27] Chen X, Wu J H, Li L, et al. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze–thaw cycles[J]. European Food Research & Technology, 2017, 243(7): 1149-1156.
[28] 湯曉娟. 產(chǎn)胞外多糖酸面團(tuán)發(fā)酵及其冷凍面團(tuán)抗凍機(jī)理研究[D]. 無(wú)錫:江南大學(xué),2019.
Tang Xiaojuan. Sourdough Fermented by Exopolysaccharide Forming Strain: Application and Mechanism Studies in Frozen Dough[D]. Wuxi: Jiangnan University, 2019. (in Chinese with English abstract)
[29] Luo W H, Sun D W, Zhu Z W. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality: A review of effective methods[J]. Trends in Food Science & Technology, 2018, 72: 25-33.
[30] Muldrew K, Mcgann L E. Mechanisms of intracellular ice formation[J]. Biophysical Journal, 1990, 57(3): 525-532.
[31] Randez-gil F, Sanz P, Prieto J A. Engineering baker's yeast: Room for improvement[J]. Trends in Biotechnology, 1999, 17(6): 237-244.
[32] 江正強(qiáng),王怡斯,李里特. 低糖面團(tuán)用耐冷凍酵母的篩選及其性質(zhì)[J]. 中國(guó)糧油學(xué)報(bào),2009,24(6):15-19.
Jang Zhengqiang, Wang Yisi, Li Lite. Screening and characterization of freeze-tolerant yeast[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(6): 15-19. (in Chinese with English abstract)
[33] 艾羽函. 不同酵母對(duì)發(fā)酵速凍面團(tuán)品質(zhì)影響及凍藏過(guò)程中蛋白質(zhì)變化的研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué),2019.
Ai Yuhan. Effects of Different Yeasts on the Quality of Frozen Dough and Protein Changes During Freezing and Storage[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese with English abstract)
[34] 李曉軍,徐鵬,欒靜,等. 耐高滲釀酒酵母的代謝流分析[J]. 食品與生物技術(shù)學(xué)報(bào),2009,28(3):356-360.
Li Xiaojun, Xu Peng, Luan Jing, et al. The metabolic flux analysis of the osmotolerant[J]. Journal of Food Science and Biotechnology, 2009, 28(3): 356-360. (in Chinese with English abstract)
[35] 譚海剛,董健,王光路,等. 中性海藻糖酶基因缺失對(duì)面包酵母耐冷凍性的影響[J]. 現(xiàn)代食品科技,2014,30(2):66-71, 16.
Tan Haigang, Dong Jian, Wang Guanglu, et al. Effect of neutral trehalase genes deletion on the freeze-tolerant characteristics of bread yeast[J]. Modern Food Science and Technology, 2014, 30(2): 66-71, 16. (in Chinese with English abstract)
[36] 李娜,繆治煉,邢麗,等. 碳酸氫鈉對(duì)酵母細(xì)胞活性及冷凍面團(tuán)品質(zhì)的影響[J]. 生物加工過(guò)程,2020,18(5):642-649.
Li Na, Miu Zhilian, Xing Li, et al. Effects of sodium bicarbonate on yeast cell activity and frozen dough quality[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(5): 642-649. (in Chinese with English abstract)
[37] Li J, Kang J, Wang L, et al. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI)[J]. Journal of Agricultural & Food Chemistry, 2012, 60(26): 6507-6514.
[38] Yu W J, Xu D, Zhang H, et al. Effect of pigskin gelatin on baking, structural and thermal properties of frozen dough: Comprehensive studies on alteration of gluten network[J]. Food Hydrocolloids, 2020, 102: 105591-105601.
[39] 王沛. 冷凍面團(tuán)中小麥面筋蛋白品質(zhì)劣變機(jī)理及改良研究[D]. 無(wú)錫:江南大學(xué),2016.
Wang Pei. Gluten Deterioration in Frozen Dough: Mechanism and Improvement Study[D]. Wuxi: Jiangnan University, 2016. (in Chinese with English abstract)
[40] 趙雷. 凍藏對(duì)面筋蛋白分子量、鏈結(jié)構(gòu)及聚集態(tài)影響的研究[D]. 廣州:華南理工大學(xué),2012.
Zhao Lei. Study on Effect Frozen Storage on Molecular Weight and Distribution, Chain Conformation and Aggregated State Structure of Gluten[D]. Guangzhou: South China University of Technology, 2012. (in Chinese with English abstract)
[41] Jiang Y L, Zhao Y M, Zhu Y F, et al. Effect of dietary fiber-rich fractions on texture, thermal, water distribution, and gluten properties of frozen dough during storage[J]. Food Chemistry, 2019, 297: 124902-124911.
[42] 王世新,楊強(qiáng),李新華.水分對(duì)冷凍小麥面團(tuán)質(zhì)構(gòu)及面筋蛋白二級(jí)結(jié)構(gòu)的影響[J].食品科學(xué),2017,38(09):149-155.
Wang Shixin, Yang Qiang, Li Xinhua. Effect of moisture on texture and gluten protein secondary structure in frozen wheat dough[J]. Food Science, 2017,38(09):149-155. (in Chinese with English abstract)
[43] Ding X L, Zhang H, Wang L, et al. Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles[J]. Food Hydrocolloids, 2015, 47: 32-40.
[44] Huang L Q, Wan J J, Huang W N, et al. Effects of glycerol on water properties and steaming performance of prefermented frozen dough[J]. Journal of Cereal Science, 2011, 53(1): 19-24.
[45] Barrera G N, Georgina C D, Jorge C P, et al. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis[J]. Carbohydrate Polymers, 2013, 98(2): 1449-1457.
[46] 陶晗. 小麥淀粉在凍藏過(guò)程中品質(zhì)劣變機(jī)理及其對(duì)面團(tuán)品質(zhì)影響的研究[D]. 無(wú)錫:江南大學(xué),2017.
Tao Han. Wheat Starch Deterioration during Frozen Storage: Mechanism and Effect on the Quality of Dough[D]. Wuxi: Jiangnan University, 2017. (in Chinese with English abstract)
[47] Kieffer R, Schurer F, K?hler P, et al. Effect of hydrostatic pressure and temperature on the chemical and functional properties of wheat gluten: Studies on gluten, gliadin and glutenin[J]. Journal of Cereal Science, 2006, 45(3): 285-292.
[48] Leray G, Oliete B, Mezaize S, et al. Effects of freezing and frozen storage conditions on the rheological properties of different formulations of non-yeasted wheat and gluten-free bread dough[J]. Journal of Food Engineering, 2010, 100(1): 70-76.
[49] Wang X Y, Guo X N, Zhu K X. Polymerization of wheat gluten and the changes of glutenin macropolymer (GMP) during the production of Chinese steamed bread[J]. Food Chemistry, 2016, 201: 275-283.
[50] Zhu F. Influence of ingredients and chemical components on the quality of Chinese steamed bread[J]. Food Chemistry, 2014, 163: 154-162.
[51] Sapirstein H D, Suchy J. SDS-protein gel test for prediction of bread loaf volume[J]. Cereal Chemistry, 1999, 76(1): 144-150.
[52] Hayta M, Schofield J D. Heat and additive induced biochemical transitions in gluten from good and poor breadmaking quality wheats[J]. Journal of Cereal Science, 2004, 40(3): 245-256.
[53] Zhao L, Li L, Liu G Q, et al. Effect of freeze–thaw cycles on the molecular weight and size distribution of gluten[J]. Food Research International, 2013, 53(1): 409-416.
[54] Jia C L, Huang W N, Rayas-duarte P, et al. Hydration, polymerization and rheological properties of frozen gluten-water dough as influenced by thermostable ice structuring protein extract from Chinese privet () leaves[J]. Journal of Cereal Science. 2014, 59(2): 132-136.
[55] Herbert W. Chemistry of gluten proteins[J]. Food Microbiology, 2006, 24(2): 115-119.
[56] Xuan Y F, Zhang Y, Zhao Y Y, et al. Effect of hydroxypropylmethylcellulose on transition of water status and physicochemical properties of wheat gluten upon frozen storage[J]. Food Hydrocolloids, 2017, 63: 35-42.
[57] Kontogiorgos V, Goff H D, Kasapis S. Effect of aging and ice-structuring proteins on the physical properties of frozen flour-water mixtures[J]. Food Hydrocolloids, 2008, 22(6): 1135-1147.
[58] 朱建. 凍融循環(huán)對(duì)小麥HMW-GS近等基因系面筋蛋白的物理性能及結(jié)構(gòu)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
Zhu Jian. Effects of Freeze–thaw Cycles on the Physical and Structural Properties of Wheat Gluten with Variations in the HMW-GS at the Glu-B1 Locus[D]. Yangling: Northwest A&F University, 2019. (in Chinese with English abstract)
[59] Esselink E F J, Vanaalst H, Maliepaard M, et al. Process in dough processing and cereal science from unilever research and development: Long-term storage effect in frozen dough by spectroscopy and microscopy[J]. Cereal Chemistry, 2003, 80(4): 396-403.
[60] Srinivasan D. Refolding of thermally unfolded soy proteins during the cooling regime of the gelation process: Effect on gelation[J]. Journal of Agricultural & Food Chemistry, 1988, 36(2): 262-269.
[61] 柳小軍. 凍藏對(duì)面筋蛋白性能的影響及脫水機(jī)理研究[D]. 鄭州:河南工業(yè)大學(xué),2011.
Liu Xiaojun. The Studies of Frozen Storage on Gluten Properties and Mechanism of Dehydration[D]. Zhengzhou: Henan University of Technology, 2011. (in Chinese with English abstract)
[62] 孫麗潔. 魚(yú)皮抗凍多肽的制備及其提高冷凍面團(tuán)抗凍性的研究[D]. 無(wú)錫:江南大學(xué),2017.
Sun Lijie. Study on the Preparation of Antifreeze Peptide from Fish Skin and Its Cryoprotective Effects on Frozen Doughs[D]. Wuxi: Jiangnan University, 2017. (in Chinese with English abstract)
[63] Yang J J, Zhang B, Zhang Y Q, et al. Effect of freezing rate and frozen storage on the rheological properties and protein structure of non-fermented doughs[J]. Journal of Food Engineering, 2021, 293: 110377-110384.
[64] 袁永利. GOD和TGase在冷凍面團(tuán)中的應(yīng)用研究[D]. 無(wú)錫:江南大學(xué),2007.
Yuan Yongli. Studies on the Application of GOD and TGase in Frozen Doughs[D]. Wuxi: Jiangnan University, 2007. (in Chinese with English abstract)
[65] 史爽. Ana-rLOX和rGOx-m對(duì)冷凍非發(fā)酵面團(tuán)的品質(zhì)影響及其對(duì)冷凍面條的應(yīng)用研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2015.
Shi Shuang. Effect of Ana-rLOX and rGOx-m on Frozen Non-fermented Dough Quality and Its Application on Frozen Noodles[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)
[66] Tang X, Wang F, Huang W, et al. The combination of rhizopus chinensis lipase and transglutaminase affects the rheology and glutenin macropolymer properties of frozen dough[J]. Cereal Chemistry, 2016, 93: 377-385.
[67] Ban C, Yoon S, Han J, et al. Effects of freezing rate and terminal freezing temperature on frozen croissant dough quality[J]. LWT - Food Science and Technology, 2016, 73: 219-225.
[68] 龔維,吳磊燕,鐘雅云,等. 刺槐豆膠對(duì)冷凍面團(tuán)水分分布及面包品質(zhì)的影響[J]. 現(xiàn)代食品科技,2018,34(12):67-73.
Gong Wei, Wu Leiyan, Zhong Yayun, et al. Effect of locust bean gum on water distribution and bread quality of frozen dough[J]. Modern Food Science and Technology, 2018, 34(12): 67-73. (in Chinese with English abstract)
[69] Tang X J, Zhang B L, Huang W N, et al. Hydration, water distribution and microstructure of gluten during freeze thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813[J]. Food Hydrocolloids, 2019, 90: 377-384.
[70] Zhang Y Y, Li Y L, Liu Y, et al. Effects of multiple freeze–thaw cycles on the quality of frozen dough[J]. Cereal Chemistry, 2018, 95(4): 499-507.
[71] 賈春利. 熱穩(wěn)定冰結(jié)構(gòu)蛋白提高冷凍面團(tuán)體系抗凍性的機(jī)制研究[D]. 無(wú)錫:江南大學(xué),2013.
Jia Chunli. Studies on Cryoprotective Characteristics of Frozen Doughs Using Thermostable Ice Structuring Protein[D]. Wuxi: Jiangnan University, 2013. (in Chinese with English abstract)
[72] 汪星星. 凍融凍藏過(guò)程中三種食品膠對(duì)面筋蛋白結(jié)構(gòu)影響的研究[D]. 廣州:華南農(nóng)業(yè)大學(xué),2016.
Wang Xingxing. Effect of Hydrocolloids on Protein Structure of Gluten during Freeze-thaw Cycles Storage[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese with English abstract)
[73] 丁香麗. 大麥籽??箖龅鞍椎闹苽浼翱箖龌|(zhì)的研究[D]. 無(wú)錫:江南大學(xué),2015.
Ding Xiangli. Study on the Preparation and the Antifreeze Mechanism of Antifreeze Protein from Barley ()[D]. Wuxi: Jiangnan University, 2015. (in Chinese with English abstract)
[74] Chen X, Wu J H, Li L, et al. The cryoprotective effects of antifreeze peptides from pigskin collagen on texture properties and water mobility of frozen dough subjected to freeze–thaw cycles[J]. European Food Research and Technology, 2017, 243: 1149-1156.
[75] 周一鳴,張亞園,呂欣東,等. 復(fù)合改良劑對(duì)后發(fā)酵饅頭冷凍面團(tuán)凍藏品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(16):274-282.
Zhou Yiming, Zhang Yayuan, Lv Xindong, et al. Effect of compound quality improver on the frozen quality of frozen dough for steamed bread[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 274-282. (in Chinese with English abstract)
[76] Barrera G N, León A E, Ribotta P D. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.[J]. Journal of the Science of Food and Agriculture, 2016, 96(7): 2539-2546.
[77] Ma S, Li L, Wang X X, et al. Effect of mechanically damaged starch from wheat flour on the quality of frozen dough and steamed bread[J]. Food Chemistry, 2016, 202: 120-124.
[78] Irene S-G M, Benjamín R-W, Isabel T-C P, et al. Effect of freezing rate and storage on the rheological, thermal and structural properties of frozen wheat dough starch[J]. Starch - St?rke, 2016, 68(11/12): 1103-1110.
[79] Tao H, Wang P, Ali B, et al. Fractionation and reconstitution experiments provide insight into the role of wheat starch in frozen dough[J]. Food Chemistry, 2016, 190: 588-593.
[80] León A E, Barrera G N, Pérez G T, et al. Effect of damaged starch levels on flour-thermal behaviour and bread staling[J]. European Food Research & Technology, 2006, 224(2): 187-192.
[81] 忻晨. 不同結(jié)構(gòu)羧甲基纖維素鈉影響冷凍面團(tuán)品質(zhì)及其機(jī)制探究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2018.
Xi Chen. Effect on Sodium Carboxymethyl Cellulose with Different Structures on Quality of Frozen Dough and Its Mechanism[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
[82] Nicolas Y, Smit R J M, Aalst H V, et al. Effect of storage time and temperature on rheological and microstructural properties of gluten[J]. Cereal Chemistry, 2003, 80(4): 371-377.
[83] 潘志琴. 漆酶協(xié)同阿魏酸對(duì)小麥面團(tuán)微觀結(jié)構(gòu)及凍藏穩(wěn)定性的影響機(jī)制[D]. 廣州:華南理工大學(xué),2019.
Pan Zhiqin. Effect of Laccase and Ferulic Acid on the Microstructure and Frozen Stability of Wheat Dough[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
[84] Song Y H, Zheng Q. Dynamic rheological properties of wheat flour dough and proteins[J]. Trends in Food Science & Technology, 2007, 18(3): 132-138.
[85] Adams V, Ragaee S M, Abdel-Aal E-S M. Rheological properties and bread quality of frozen yeast-dough with added wheat fiber[J]. Journal of the Science of Food and Agriculture, 2017, 97(1): 191-198.
[86] Jasim A, Linu T, Al-Hazza A. Effects of frozen storage on texture, microstructure, water mobility and baking quality of brown wheat flour/-glucan concentrate Arabic bread dough[J]. Journal of Food Measurement and Characterization, 2020, 15(4): 1258-1269.
[87] Li M, Sun Q J, Han C W, et al. Comparative study of the quality characteristics of fresh noodles with regular salt and alkali and the underlying mechanisms[J]. Food Chemistry, 2018, 246: 335-342.
[88] Selomulyo V O, Zhou W B. Frozen bread dough: Effects of freezing storage and dough improvers[J]. Journal of Cereal Science, 2007, 45(1): 1-17.
[89] Havet M, Mankai M, Bail A L. Influence of the freezing condition on the baking performances of French frozen dough[J]. Journal of Food Engineering, 2000, 45(3): 139-145.
[90] Lefebvre J, Mahmoudi N. The pattern of the linear viscoelastic behaviour of wheat flour dough as delineated from the effects of water content and high molecular weight glutenin subunits composition[J]. Journal of Cereal Science, 2007, 45(1): 49-58.
[91] Meerts M, Cardinaels R, Oosterlinck F, et al. The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough[J]. Food Biophysics, 2017, 12(2): 151-163.
[92] Gómez M, Del Real S, Rosell C M, et al. Functionality of different emulsifiers on the performance of breadmaking and wheat bread quality[J]. European Food Research and Technology, 2004, 219(2): 145-150.
[93] 周錦楓,吳磊燕,鐘雅云,等. 三種甘油酯對(duì)冷凍面團(tuán)及其面包品質(zhì)的對(duì)比分析[J]. 現(xiàn)代食品科技,2020,36(3):38-47, 112.
Zhou Jinfeng, Wu Leiyan, Zhong Yayun, et al. Comparative analysis of three glycerides on the quality of frozen dough and bread[J]. Modern Food Science and Technology, 2020, 36(3): 38-47, 112. (in Chinese with English abstract)
[94] Michal H. Effects of trehalose and dough additives incorporating enzymes on physical characteristics and sensory properties of frozen savory danish dough[J]. LWT-Food Science and Technology, 2017, 86: 603-610.
[95] Thuy N T T, Phuong N N M. Improving of bread quality from frozen dough using ascorbic acid and α-amylase[J]. Can Tho University Journal of Science, 2017, 6: 121-126.
[96] 王亞楠,侯召華,檀琮萍,等. 變性淀粉對(duì)冷凍面團(tuán)面包焙烤特性的影響[J]. 糧食與油脂,2017,30(8):81-83.
Wang Yanan, Hou Zhaohua, Tan Congping, et al. Effect of modified starch on baking properties of frozen dough bread[J]. Cereals & Oils, 2017, 30(8): 81-83. (in Chinese with English abstract)
[97] 王亞楠,侯召華,檀琮萍,等. 變性淀粉對(duì)冷凍面團(tuán)水分特性的影響[J]. 糧食與油脂,2017,30(6):63-65.
Wang Yanan, Hou Zhaohua, Tan Congping, et al. Effect of modified starch on water characteristics of frozen dough[J]. Cereals & Oils, 2017, 30(6): 63-65. (in Chinese with English abstract)
[98] Wang P, Tao H, Jin Z Y, et al. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality[J]. Food Chemistry, 2016, 200: 117-124.
[99] Bea W, Lee B, Hou G G, et al. Physicochemical characterization of whole-grain wheat flour in a frozen dough system for bake off technology[J]. Journal of Cereal Science, 2014, 60(3): 520-525.
[100] Kenny S, Wehrle K, Auty M, et al. Influence of sodium caseinate and whey protein on baking properties and rheology of frozen dough[J]. Cereal Chemistry, 2001, 78(4):458-463.
[101] 杜浩冉,鄭學(xué)玲,韓小賢,等.冷凍條件和解凍方式對(duì)酵子冷凍面團(tuán)饅頭品質(zhì)的影響[J].糧食與飼料工業(yè),2015 (05):14-18.
Du Haoran, Zheng Xueling, Han Xiaoxian, et al. Effects of freezing conditions and thawing methods on the qualities of emptins frozen dough for steamed bread[J]. Cereal & Feed Industry, 2015(05):14-18. (in Chinese with English abstract)
[102] 潘振興. 冷凍保護(hù)劑影響冷凍面團(tuán)發(fā)酵與烘焙特性的研究[D]. 無(wú)錫:江南大學(xué),2008.
Pan Zhenxing. Study on the Effects of Cryoprotectants on the Fermentation and Baking Characteristics of Frozen Dough[D]. Wuxi: Jiangnan University, 2008. (in Chinese with English abstract)
[103] Rasanen J, Harkonen H, Autio K. Freeze-thaw stability of prefermented frozen lean wheat dough: Effect of flour quality and fermentation time[J]. Cereal Chemistry, 1995, 72(6): 637-642.
Research progress in the deterioration and improvement of frozen dough quality
Yuan Tingting, Zhang Xu, Xiang Xiaoqing, Chang Yidan, Niu Meng※, Zhang Binjia, Jia Caihua, Xu Yan, Zhao Siming
(,430070,)
Frozen dough technology has widely been used beyond family bread production at present. The procedures of dough making and baking have therefore been separated to effectively extend the shelf life of bread, while free of starch aging to ensure the freshness for the convenience of transport and consumption of dough products. Therefore, the technology has been rapidly developed to promote the chain operation of the baking industry in the world. Meanwhile, it is necessary to explore the efficient improvement in response to the frozen dough being easy to deteriorate, due to the formation of ice crystals under freezing storage. This study aims to systematically review the degradation mechanism of frozen dough from the following aspects: the yeast activity and gas production, the changes of key components (such as gluten protein, water distribution, and damaged starch), the microstructure of gluten protein, as well as the rheological properties of frozen dough. The improvement of frozen dough was covered ranging from the freezing technology, the screening of antifreeze yeast, together with the addition of enzyme preparation, antifreeze agents, and emulsifiers. In freezing, the yeast activity and gas production decreased, resulting from the changes in the cell membrane of yeast. The screening of antifreeze yeast effectively strengthened the activity of yeast for a higher quality of frozen dough. Nevertheless, the structure of gluten protein was deteriorated, due to the formation of ice crystals. Specifically, the content of glutenin macromolecular polymer was significantly reduced, and the content of soluble protein increased. The elasticity and hardness of dough relied mainly on the depolymerization of glutenin macromolecular polymer, further on the break of the disulfide bond. Non-covalent bond was also involved in the polymerization of gluten protein. The surface hydrophobicity of gluten protein increased during the frozen storage, where the aggregation state of gluten protein molecular was destroyed to rearrange the gluten protein structure with the exposure of hydrophobic sites. In frozen storage, the secondary structure in gluten protein also changed significantly to damage the whole structure, where there were some changes in the content of-helix and-sheet orderly structure, while an increase in the anti-parallel-sheet, and-turns disorderly structure. As such, the enzyme preparations were used to enhance the structure of gluten protein. The water in the frozen dough was redistributed due to the recrystallization of ice crystals, where the spatial conformation rearrangement of gluten protein was caused by the change of disulfide and non-covalent bond. Thus, the interaction between tightly bound water and gluten protein was weakened, and the water holding capacity of gluten protein decreased. Correspondingly, food gums and antifreeze agents were added to prevent the formation of large ice crystals caused by water migration. Damaged starch transferred the water in gluten protein, and further weakened the interaction between starch granules and gluten protein, indicating an adverse influence on the gluten structure and processing characteristics of dough. The modified starch was generally added to enhance the water holding of dough for the better quality of frozen dough. These approaches contributed to preventing the deterioration of gluten structure, while enhancing the viscoelastic properties of frozen dough. The emulsifier was used to reduce water migration resistance to starch aging. The improvement of freezing technology was a benefit to the antifreeze effect of dough and the less sensitivity of yeast. This review can provide a promising theoretical basis and practical reference to inhibit the quality deterioration of frozen dough. The efficient improvement technology was also evaluated from three key factors, including the fermentation characteristics, the structure of gluten, and the state of water.
freezing; quality control; frozen dough; gluten protein; water distribution; protein structure; yeast activity
袁婷婷,張栩,向小青,等. 冷凍面團(tuán)品質(zhì)劣變及改良研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(8):296-306.doi:10.11975/j.issn.1002-6819.2021.08.034 http://www.tcsae.org
Yuan Tingting, Zhang Xu, Xiang Xiaoqing, et al. Research progress in the deterioration and improvement of frozen dough quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 296-306. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.034 http://www.tcsae.org
2020-12-16
2021-04-12
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC1604001)
袁婷婷,博士生,研究方向:食品大分子結(jié)構(gòu)與功能特性。Email:794845173@qq.com
牛猛,博士,副教授,研究方向:食品大分子結(jié)構(gòu)與功能特性。Email:nmjay@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.08.034
TS213.2
A
1002-6819(2021)-08-0296-11