• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      青花椒真空脈動(dòng)干燥特性及干燥品質(zhì)工藝優(yōu)化

      2021-06-29 01:42:46代建武付琪其李廉潔許麗佳
      關(guān)鍵詞:常壓花椒脈動(dòng)

      代建武,付琪其,黃 歡,李 銘,李廉潔,許麗佳

      ·農(nóng)產(chǎn)品加工工程·

      青花椒真空脈動(dòng)干燥特性及干燥品質(zhì)工藝優(yōu)化

      代建武,付琪其,黃 歡,李 銘,李廉潔,許麗佳

      (四川農(nóng)業(yè)大學(xué)機(jī)電學(xué)院,雅安 625014)

      為提升青花椒的干燥品質(zhì),減少其色澤褐變和風(fēng)味物質(zhì)流失等問題,該研究采用真空脈動(dòng)干燥技術(shù)加工青花椒,并以熱風(fēng)干燥試驗(yàn)為對(duì)照組,研究了不同干燥溫度、真空保持時(shí)間和常壓保持時(shí)間對(duì)青花椒干燥特性及其品質(zhì)的影響。在單因素試驗(yàn)基礎(chǔ)上進(jìn)行Box-Behnken中心組合試驗(yàn)設(shè)計(jì),以青花椒的平均干燥速率、揮發(fā)油、酰胺含量、色差、開口率5個(gè)指標(biāo)進(jìn)行響應(yīng)面優(yōu)化分析。試驗(yàn)結(jié)果表明,Weibull模型可精確擬合青花椒真空脈動(dòng)干燥曲線(2>0.99)。干燥溫度升高可在一定程度上提高青花椒的干燥效率和開口率,減少褐變和揮發(fā)油損失,同時(shí)酰胺類含量隨干燥溫度上升而有所下降。根據(jù)響應(yīng)面試驗(yàn)結(jié)果,各因素對(duì)青花椒干燥綜合評(píng)分的影響效果由大到小順序?yàn)椋焊稍餃囟?、真空保持時(shí)間、常壓保持時(shí)間。優(yōu)化的工藝參數(shù)為真空脈動(dòng)干燥溫度61.4 ℃、真空保持時(shí)間5 min、常壓保持時(shí)間5 min,綜合評(píng)分值達(dá)8.06,驗(yàn)證試驗(yàn)結(jié)果偏差僅為2.6%。研究結(jié)果為青花椒真空脈動(dòng)干燥應(yīng)用提供參考。

      干燥;動(dòng)力學(xué);真空脈動(dòng)干燥;青花椒;品質(zhì)評(píng)價(jià);參數(shù)優(yōu)化

      0 引 言

      青花椒又名野椒、天椒、崖椒等,其麻味純正濃烈、氣味清香[1],是中國(guó)主要的食物調(diào)味品之一。青花椒具有溫中止痛,殺蟲抑菌,擴(kuò)張血管,降低血壓等藥用功效[2-3],經(jīng)濟(jì)效益與利用價(jià)值極高。目前,中國(guó)青花椒的總產(chǎn)量為1 000 t左右[1],并廣泛種植于四川漢源、重慶江津、云南昆明、四川金陽(yáng)等地[4],市場(chǎng)需求極大。成熟的鮮青花椒含水率高達(dá)66%~70%[5],且在存儲(chǔ)和運(yùn)輸?shù)倪^程中極易出現(xiàn)霉?fàn)€和褐變[5-7],對(duì)其色澤和品質(zhì)產(chǎn)生不利影響,同時(shí)造成青花椒的風(fēng)味成分流失。干燥可保證青花椒的品質(zhì),延長(zhǎng)其貯藏時(shí)間,同時(shí)也是青花椒進(jìn)行深加工前的必要處理步驟。

      目前,花椒的干燥方式主要包括:自然晾曬、熱風(fēng)干燥[8]、微波干燥[9-10]、真空干燥[11]、熱泵干燥[12]等。自然晾曬耗時(shí)長(zhǎng),易受外界環(huán)境影響,且衛(wèi)生安全不達(dá)標(biāo)。熱風(fēng)干燥成本低,設(shè)備簡(jiǎn)單易操作,但干燥過程中物料極易發(fā)生氧化和褐變。微波干燥速率較高,但受微波功率的影響,花椒干燥品質(zhì)不穩(wěn)定,且單批次加工量小,不適于大規(guī)模生產(chǎn)。真空干燥處于負(fù)壓狀態(tài),可減少物料品質(zhì)的損失,但其產(chǎn)量較低,動(dòng)力消耗高。而熱泵干燥存在設(shè)備較大,運(yùn)輸成本相對(duì)較高的限制。

      真空脈動(dòng)干燥是一種新型干燥技術(shù),通過控制真空與常壓環(huán)境的脈動(dòng)循環(huán),使物料內(nèi)部的微觀孔道被不斷擠壓與擴(kuò)張,從而形成微型通道,可顯著提高水分遷移速率[13]。且真空脈動(dòng)干燥的過程中,由于物料大部分干燥時(shí)間處于真空環(huán)境,可有效改善干燥過程中物料的褐變和風(fēng)味成分流失[14]。近年來(lái),真空脈動(dòng)干燥已被廣泛應(yīng)用于茯苓[15]、玉米[16]、枸杞[17]等物料的加工,但針對(duì)青花椒的真空脈動(dòng)干燥的品質(zhì)研究較少報(bào)道。

      本研究采用真空脈動(dòng)干燥青花椒,探討了干燥溫度、真空保持時(shí)間和常壓保持時(shí)間對(duì)干燥速率及色澤、開口率、揮發(fā)油和酰胺類含量等品質(zhì)的影響,以獲得青花椒真空脈動(dòng)干燥的最佳工藝參數(shù)。

      1 材料及方法

      1.1 試驗(yàn)材料

      采用江津九葉青花椒,購(gòu)于重慶江津,平均粒徑為5~7 mm。選出顆粒飽滿、顏色青綠、無(wú)霉?fàn)€的成熟鮮青花椒果粒置于恒溫恒濕箱(4±1) ℃中密封保存,保存時(shí)間不超過24 h。鮮青花椒的初始含水率測(cè)定參照GB5009.3—2016 《食品中水分的測(cè)定》,采用熱風(fēng)干燥(溫度設(shè)定為105 ℃,干燥至恒量)測(cè)定青花椒的初始濕基含水率為66%±0.5%。干燥后的青花椒過篩去籽,利用真空機(jī)密封并保存于溫度為-20 ℃冰柜中待測(cè)。

      1.2 試驗(yàn)儀器與設(shè)備

      所用主要儀器包括:OHAUS-AR522CN型電子精密天平(奧豪斯儀器(上海)有限公司);HCJYET HT-866型紅外線測(cè)溫計(jì)(宏城科技有限公司);WE NVIEW型真空脈動(dòng)干燥實(shí)驗(yàn)臺(tái)(葫蘆島市向日葵智能裝備有限公司);CR-10型色彩色差計(jì)(柯尼卡美能達(dá)控股公司);FD112型熱風(fēng)干燥試驗(yàn)臺(tái)(上海博訊實(shí)業(yè)有限公司);FSJ-A05B1型粉碎機(jī)(廣東小熊電器有限公司);KH-300DE型超聲波清洗機(jī)(昆山禾創(chuàng)儀器有限公司);UV-1800型分光光度計(jì)(上海美譜達(dá)儀器有限公司)。

      1.3 單因素試驗(yàn)方法

      試驗(yàn)前將青花椒從恒溫恒濕箱中取出,每組試驗(yàn)稱取100 g鮮青花椒單層均勻鋪放于物料盤內(nèi)。根據(jù)前期預(yù)試驗(yàn),干燥溫度為70 ℃時(shí),青花椒果皮色澤變黑,口感變差,嚴(yán)重影響其品質(zhì),而溫度低于50 ℃時(shí),青花椒干燥時(shí)間明顯延長(zhǎng),故本試驗(yàn)方案設(shè)定70 ℃為最高試驗(yàn)溫度。此外,結(jié)合真空脈動(dòng)干燥相關(guān)的研究結(jié)論,發(fā)現(xiàn)真空脈動(dòng)干燥的常壓保持時(shí)間變化范圍較小,且真空保持時(shí)間取值過長(zhǎng)后干燥動(dòng)力學(xué)差異并不顯著[17-19],因此本研究選擇真空保持時(shí)間分別為5、10、15和20 min,常壓保持時(shí)間分別為1、3、5、7 min,干燥溫度為55、60、65、70 ℃條件下研究青花椒干燥的動(dòng)態(tài)變化規(guī)律,并以不同溫度條件的熱風(fēng)干燥作為試驗(yàn)對(duì)照組,試驗(yàn)設(shè)計(jì)和試驗(yàn)參數(shù)如表1所示。干燥過程中,設(shè)置青花椒干燥終點(diǎn)為濕基含水率低于10%[20],間隔固定時(shí)間測(cè)定其質(zhì)量。每組試驗(yàn)設(shè)置3次平行,結(jié)果取3次平行試驗(yàn)的平均值。

      1.4 響應(yīng)面試驗(yàn)設(shè)計(jì)

      基于單因素試驗(yàn)結(jié)果,使用Design-Expert 10 軟件對(duì)各因素進(jìn)行Box-Behnken中心組合試驗(yàn)。設(shè)計(jì)三因素三水平的響應(yīng)面試驗(yàn),選取干燥溫度、真空保持時(shí)間和常壓時(shí)間為試驗(yàn)因素,以1、0、-1代表變量的水平,選取因素與水平如表2所示。

      表2 響應(yīng)面試驗(yàn)因素與水平

      1.5 干燥參數(shù)計(jì)算

      1.5.1 水分比

      不同時(shí)刻的水分比M按式(1)計(jì)算[21-22]

      式中M為青花椒干燥至?xí)r刻的干基含水率,g/g;0為青花椒初始干基含水率,g/g。

      1.5.2 干燥速率

      青花椒在干燥過程中的干燥速率(DR,Drying Rate,g/(g·min))按式(2)計(jì)算[23-24]

      式中12為不同干燥時(shí)刻;M1和M2分別為12時(shí)刻的青花椒干基含水率,g/g

      1.6 Weibull分布函數(shù)

      相比于Page等經(jīng)典干燥模型,Weibull分布函數(shù)的模型參數(shù)可與干燥速率、傳熱傳質(zhì)有效結(jié)合,有利于解析干燥中的“黑箱”階段,對(duì)精確模擬物料干燥過程的變化趨勢(shì)更具指導(dǎo)意義[14-15]?;赪eibulll分布函數(shù)的水分比計(jì)算如式(3)[25-26]

      式中為干燥時(shí)間,min;為尺度參數(shù),min;為形狀參數(shù),無(wú)量綱。

      決定系數(shù)2、卡方檢驗(yàn)值2和均方根誤差RMSE可用于表示W(wǎng)eibull模型的擬合程度,2值越大、2和 RMSE 越小,說(shuō)明模型的擬合性越好[27]。其表達(dá)式如下

      式中MR,i為利用模型預(yù)測(cè)的第個(gè)水分比;MR,i為干燥試驗(yàn)實(shí)際測(cè)得第個(gè)水分比;為試驗(yàn)測(cè)得的數(shù)據(jù)個(gè)數(shù),預(yù)測(cè)集及測(cè)試集均為10組數(shù)據(jù);為因素水平個(gè)數(shù)。

      1.7 青花椒品質(zhì)指標(biāo)的測(cè)定

      1.7.1 色澤測(cè)定

      利用色彩色差計(jì)測(cè)定青花椒干燥前后的明亮度、紅綠值和藍(lán)黃值,每組測(cè)3次,取平均值。采用色澤差異值Δ進(jìn)行色澤綜合評(píng)價(jià)[28-29]

      式中L、ab為干青花椒明亮度、紅綠值、藍(lán)黃值;0、0、0為鮮花椒的明亮度、紅綠及藍(lán)黃值。

      1.7.2 開口率測(cè)定

      將不同單因素試驗(yàn)的青花椒過篩去籽,果皮按質(zhì)量均勻分為三組(每組質(zhì)量誤差0.1 g),除去雜質(zhì)后進(jìn)行計(jì)數(shù),得出每組開口椒所占的比例,取平均值。其中一級(jí)青花椒開口所占比例≥90%[30-31]。

      開口率如式(8)進(jìn)行計(jì)算

      式中為開口椒粒數(shù);為每組花椒總粒數(shù)。

      1.7.3 揮發(fā)油和酰胺物質(zhì)含量測(cè)定

      青花椒揮發(fā)油的測(cè)定方法參照標(biāo)準(zhǔn)LY/T 1652—2005《花椒質(zhì)量等級(jí)》測(cè)定。酰胺為花椒主要的呈麻物質(zhì),青花椒中酰胺類物質(zhì)含量的測(cè)定參照標(biāo)準(zhǔn)GH/T 1290—2020《花椒及花椒加工產(chǎn)品花椒酰胺總含量的測(cè)定》。青花椒酰胺類物質(zhì)含量[32]按式(9)計(jì)算

      式中為花椒酰胺類物質(zhì)的含量,mg/g;為樣品溶液270 nm處的吸光度;為樣品溶液測(cè)定稀釋的倍數(shù);為定容體積,mL;為樣品質(zhì)量,g;為吸光系數(shù),花椒的系數(shù)為410。

      1.8 綜合評(píng)分

      不同評(píng)價(jià)指標(biāo)量綱不同,為保證綜合評(píng)分可靠性,需按式(10)對(duì)各項(xiàng)評(píng)價(jià)指標(biāo)進(jìn)行標(biāo)準(zhǔn)化處理[33]。指標(biāo)中最優(yōu)值為10分,最差值為1分。

      式中d為評(píng)價(jià)指標(biāo)的規(guī)范化值;X為指數(shù)實(shí)際值;X為指數(shù)最大值;X為指數(shù)最小值。

      指標(biāo)權(quán)重系數(shù)w用熵權(quán)法確定,如式(11)[34]

      不同干燥條件下的青花椒干燥質(zhì)量綜合評(píng)分可根據(jù)公式(12)計(jì)算[33]:

      式中為綜合評(píng)分分?jǐn)?shù);1、2、3、4、5分別為青花椒揮發(fā)干燥速率、色澤、開口率、揮發(fā)油含量、酰胺含量規(guī)范化值;1、2、3、4、5分別為各評(píng)價(jià)指標(biāo)對(duì)應(yīng)的權(quán)重系數(shù)。根據(jù)各試驗(yàn)條件下的品質(zhì)指標(biāo)進(jìn)行標(biāo)準(zhǔn)化處理,計(jì)算出1、2、3、4、5權(quán)重依次為0.43、0.15、0.15、0.13和0.14。

      綜合評(píng)分相對(duì)偏差的計(jì)算公式見(13)所示[34]

      式中為優(yōu)化試驗(yàn)預(yù)測(cè)綜合評(píng)分值,為驗(yàn)證試驗(yàn)測(cè)定綜合評(píng)分值。

      1.9 數(shù)據(jù)處理方法

      青花椒品質(zhì)測(cè)定試驗(yàn)每組均設(shè)置3個(gè)平行,取平均值。試驗(yàn)數(shù)據(jù)采用Excel 2010和SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)分析,通過Matlab 2018軟件將干燥數(shù)據(jù)進(jìn)行Weibull模型擬合。利用 Design-Expert 10對(duì)Box-Behnken中心組合試驗(yàn)進(jìn)行線性回歸和優(yōu)化。

      2 結(jié)果與分析

      2.1 青花椒干燥特性研究

      2.1.1 不同干燥溫度的青花椒干燥特性

      青花椒在不同溫度條件下的干燥特性曲線如圖1所示。真空脈動(dòng)真空保持時(shí)間15 min,常壓保持時(shí)間5 min,干燥溫度為55、60、65、70 ℃條件下,青花椒真空脈動(dòng)干燥至目標(biāo)含水率所需時(shí)間分別為240、220、200、180 min(圖1a),增大溫度可顯著提高其干燥速率(<0.05),縮短干燥時(shí)長(zhǎng)。由圖1b可知,青花椒在不同溫度條件下的干燥速率曲線呈短暫的升速段,而后轉(zhuǎn)變?yōu)槊黠@的降速干燥。這是由于干燥前期含水率較高,青花椒內(nèi)部溫度不斷升高,其內(nèi)部水分?jǐn)U散速率大于表面水分汽化速率,實(shí)現(xiàn)快速脫水;干燥中后期花椒內(nèi)部遷移到表面的水分不斷減少,籽皮分離的腔殼結(jié)構(gòu)使得干燥過程主要受內(nèi)部水分?jǐn)U散控制的影響,干燥速率逐漸下降。

      如圖1c,在熱風(fēng)對(duì)照組干燥溫度為55、60、65、70 ℃所需的干燥時(shí)間分別為190、165、145、135 min。相同干燥溫度下,青花椒熱風(fēng)干燥所需時(shí)間較真空脈動(dòng)干燥減少約50 min(圖1c)。這可能是因?yàn)檎婵彰}動(dòng)干燥依靠接觸和輻射傳熱,當(dāng)物料干燥一定程度時(shí),由于物料內(nèi)部組織形成一定空腔,對(duì)傳熱產(chǎn)生影響,導(dǎo)致物料吸收熱量變少。圖1d為熱風(fēng)干燥不同溫度下的干燥速率曲線,干燥過程均呈先升速后降速的趨勢(shì)。在干燥中后期,由于花椒腔殼結(jié)構(gòu)的影響和熱風(fēng)對(duì)流效應(yīng)減弱,其干燥過程由升速段轉(zhuǎn)入降速階段的變化趨勢(shì)相比真空脈動(dòng)干燥更為明顯[35]。

      2.1.2 不同真空保持時(shí)間的青花椒干燥特性

      干燥溫度為65 ℃、常壓保持時(shí)間為5 min,真空保持時(shí)間分別為5、10、15、20 min的干燥曲線如圖2所示,青花椒干燥所需時(shí)間分別為170、165、200、175 min。真空保持時(shí)間為10 min 時(shí)青花椒干燥時(shí)間最短,較15 min和20 min時(shí)分別縮短了17.5%和5.7%。由于真空保持時(shí)間增加導(dǎo)致每個(gè)循環(huán)范圍內(nèi)常壓時(shí)間的相對(duì)減少,物料吸收熱量的時(shí)間也隨之減少,使得干燥時(shí)間延長(zhǎng)[36]。真空保持時(shí)間20 min時(shí),其干燥速率曲線存在一定程度的波動(dòng)起伏,干燥速率不穩(wěn)定。這因?yàn)楦稍镞^程中常壓與真空的交替循環(huán)次數(shù)變少,減少了青花椒內(nèi)部管道的擴(kuò)張效應(yīng),但同時(shí)真空時(shí)間的延長(zhǎng)對(duì)促進(jìn)水分?jǐn)U散具有促進(jìn)作用,綜合導(dǎo)致其干燥速率波動(dòng)變化[19]。

      2.1.3 不同常壓保持時(shí)間的青花椒的干燥特性

      不同常壓保持時(shí)間下青花椒的干燥特性如圖3所示。常壓時(shí)間為1、3、5、7 min條件下到達(dá)目標(biāo)含水率的時(shí)間分別約為115、160、165、170 min,干燥時(shí)間隨常壓保持時(shí)間的增加而延長(zhǎng)。由圖3a可知,試驗(yàn)參數(shù)范圍內(nèi),常壓保持時(shí)間為1 min時(shí)平均干燥速率達(dá)到最大值,整體耗時(shí)較7 min時(shí)縮短約48%。這可能是因?yàn)槌罕3謺r(shí)間縮短后,青花椒真空脈動(dòng)循環(huán)次數(shù)隨之增加,物料內(nèi)部壓力的交變頻率不斷提升,加速了內(nèi)部水分氣化和逸散速度,因而干燥速率明顯增加(<0.05)。由圖3b可觀察到,常壓保持時(shí)間為3、5、7 min下干燥速率較為接近,說(shuō)明常壓保持時(shí)間增加至3 min后對(duì)干燥速率的影響已不明顯。因此在一定范圍內(nèi)采用適宜的常壓保持時(shí)間,可有效提高干燥速率,而且減少了真空泵的運(yùn)行時(shí)間,突顯了真空脈動(dòng)技術(shù)的優(yōu)勢(shì)。

      2.2 基于Weibull分布函數(shù)的花椒干燥動(dòng)力學(xué)

      Weibull分布函數(shù)模擬青花椒干燥曲線結(jié)果如表3所示。決定系數(shù)2值均大于0.99,均方根RMSE值在9.13×10-3~30.07×10-3之間,2值為1.033×10-4~11.622×10-4,表明Weibull模型可較精確的模擬不同干燥條件下青花椒的干燥曲線。

      尺度參數(shù)為干燥過程中的速率常數(shù)[19],約等于青花椒內(nèi)部水分減少63%所需時(shí)間[37-38]。由表3可知,不同條件下的尺度參數(shù)值在64.59~124.95 min之間,且值隨著溫度的升高而減小。干燥溫度為70 ℃時(shí)值相比55 ℃條件下減小約34%。值隨真空保持時(shí)間和常壓時(shí)間的增長(zhǎng)而有所提高??梢娞岣邷囟?,減少真空和常壓保持時(shí)間可相對(duì)提高干燥速率,此結(jié)果與2.1節(jié)中結(jié)論一致。

      表3 不同真空脈動(dòng)干燥條件下Weibull模擬結(jié)果

      形狀參數(shù)可用于區(qū)分青花椒干燥初期的干燥特性變化[26]。當(dāng)1時(shí),青花椒的干燥過程表現(xiàn)為短暫的升速干燥而后呈降速干燥[39]。由表3分析可得,不同干燥溫度、真空和常壓保持時(shí)間下的值均大于1,表明青花椒真空脈動(dòng)干燥前期均存在一定的升速干燥階段,而后干燥速率轉(zhuǎn)為下降態(tài)勢(shì)。不同干燥條件值無(wú)顯著差異(0.05),說(shuō)明干燥條件對(duì)青花椒的形狀參數(shù)值影響較小。

      2.3 干燥條件對(duì)青花椒品質(zhì)的影響

      2.3.1 色澤

      青花椒在不同單因素試驗(yàn)條件下的色澤見表4。干燥溫度、真空保持時(shí)間與常壓保持時(shí)間對(duì)青花椒的明亮度和色差均存在顯著影響(<0.05)。將色差作為干燥后的青花椒色澤變化程度評(píng)判標(biāo)準(zhǔn)。越小,表明干燥后的青花椒色澤更接近鮮品,其色澤品質(zhì)愈優(yōu)。

      從表4可知,隨干燥溫度的升高,值呈先減小后增大的趨勢(shì),當(dāng)溫度高達(dá)70℃時(shí),值顯著增大(0.05)。這可能是由于溫度較低時(shí)干燥速率低,花椒處于慢速干燥過程中,酶活反應(yīng)促進(jìn)葉綠素分解而發(fā)生褐變;隨溫度升高、干燥時(shí)間的相對(duì)縮短抑制了酶促反應(yīng),從而降低了干燥過程中色澤褐變的程度。而當(dāng)溫度高達(dá)70 ℃時(shí),溫度過高將導(dǎo)致青花椒油胞破裂,葉綠素短時(shí)間內(nèi)發(fā)生酶降解[39],青花椒出現(xiàn)焦黑現(xiàn)象,嚴(yán)重影響其色澤,并產(chǎn)生不良的風(fēng)味。不同真空保持時(shí)間下,20 min時(shí)其值達(dá)到最大,10 min時(shí)值降至最小值3.14。其原因可能是真空時(shí)間的增加將導(dǎo)致干燥時(shí)間延長(zhǎng),加劇了干燥過程中青花椒的氧化和褐變。真空保持時(shí)間為5 min時(shí),色差值亦有所升高,為7.03。這可能是真空保持時(shí)間的減少促進(jìn)了青花椒在真空和常壓間快速更替循環(huán),青花椒的內(nèi)部組織結(jié)構(gòu)被不斷的擴(kuò)張與收縮,易導(dǎo)致青花椒油胞破裂且揮發(fā)油滲入果皮,從而形成了果皮表面的色澤褐變。上述結(jié)果表明在一定范圍內(nèi)控制真空保持時(shí)間,有利于提高青花椒干燥后的色澤品質(zhì)。

      綜合不同干燥條件下青花椒色澤參數(shù),真空脈動(dòng)干燥溫度為65℃、真空保持時(shí)間10 min、常壓保持時(shí)間5 mim,以及熱風(fēng)干燥溫度為60 ℃時(shí)值最小,兩種工藝條件下青花椒干燥成品如圖4所示。

      表4 不同單因素試驗(yàn)條件對(duì)青花椒干燥速率與品質(zhì)的影響

      注:同一列不同小寫字母表示有顯著差異(0.05)。

      Note: Different lowercase letters in the same column indicate significant differences (<0.05).

      2.3.2 開口率

      不同單因素干燥試驗(yàn)條件下青花椒的開口率如表 4所示。溫度低于60℃時(shí),開口率有所下降,提高溫度干燥可在一定程度上提高開口率。這可能是因?yàn)闇囟仍礁?,青花椒表面水分的蒸發(fā)越快,果皮迅速收縮變形,其內(nèi)部花椒籽阻礙果皮收縮而受擠壓[40],壓縮應(yīng)力使得果皮閉合處產(chǎn)生裂口,果皮持續(xù)收縮致使花椒籽落出。不同真空保持時(shí)間和常壓保持時(shí)間對(duì)開口率則影響不大。

      2.3.3 揮發(fā)油和酰胺物質(zhì)含量

      揮發(fā)油與酰胺類物質(zhì)為青花椒的主要香氣和麻味成分,同時(shí)是其品質(zhì)評(píng)價(jià)的重要指標(biāo)。如表 4所示,真空脈動(dòng)干燥與熱風(fēng)干燥下青花椒揮發(fā)油含量均隨干燥溫度升高呈先增大后減少的趨勢(shì),當(dāng)溫度上升到70 ℃時(shí),其值均達(dá)到最小值0.20 mL/10g。真空脈動(dòng)干燥溫度65 ℃,真空保持時(shí)間10 min,常壓保持時(shí)間7 min時(shí),青花椒的揮發(fā)油含量最高可達(dá)0.70 mL/10g,為干燥溫度70 ℃下?lián)]發(fā)油含量的3.5倍。這可能是因?yàn)榇嬖谟诠そM織油胞中的揮發(fā)油在水分減少的同時(shí)蒸發(fā)逸散,溫度升高后干燥過程不斷縮短,從而降低了揮發(fā)油的逸散量;同時(shí),當(dāng)干燥溫度提高至70 ℃時(shí),過高溫度導(dǎo)致青花椒果皮的細(xì)胞壁破裂,促使了油化合物降解和氧化,導(dǎo)致?lián)]發(fā)油損失增多。因此,適當(dāng)提高干燥溫度和干燥速率可在一定程度上減少青花椒揮發(fā)油的損失。

      不同干燥條件下,酰胺含量隨干燥溫度升高均有所降低,表明高溫對(duì)青花椒中麻味物質(zhì)造成了破壞,導(dǎo)致含量減少。而真空保持時(shí)間對(duì)酰胺含量的影響較小。試驗(yàn)參數(shù)范圍內(nèi),真空脈動(dòng)干燥溫度65 ℃、真空時(shí)間5 min,常壓時(shí)間5 min時(shí),青花椒酰胺類物質(zhì)的含量達(dá)到最大值33.97 mg/g。

      2.4 響應(yīng)面優(yōu)化試驗(yàn)

      2.4.1 回歸模型的建立

      對(duì)響應(yīng)面試驗(yàn)的各品質(zhì)指標(biāo)進(jìn)行歸一化,計(jì)算出青花椒綜合評(píng)分值,如表5所示。根據(jù)試驗(yàn)數(shù)據(jù)使用 Design-Expert 10軟件進(jìn)行響應(yīng)面優(yōu)化試驗(yàn)分析,建立綜合評(píng)分的二次多項(xiàng)回歸模型,得到綜合評(píng)分?jǐn)M合方程:= 3.62 + 0.72- 0.57+ 0.15+ 0.37+ 0.064- 0.79- 0.752+ 1.552+ 1.332。

      表5 響應(yīng)面設(shè)計(jì)與試驗(yàn)結(jié)果

      綜合評(píng)分顯著性檢驗(yàn)結(jié)果如表6所示,干燥溫度和真空保持時(shí)間對(duì)綜合評(píng)分影響顯著,而常壓保持時(shí)間則無(wú)顯著性影響?;貧w模型的失擬項(xiàng)不顯著,表明模型與試驗(yàn)數(shù)據(jù)相符。各因素對(duì)綜合評(píng)分的影響效果由大到小依次為:干燥溫度、真空保持時(shí)間、常壓保持時(shí)間。

      表6 綜合評(píng)分回歸方程的方差分析

      注:“**”表示差異極顯著,<0.01;“*”表示差異顯著,<0.05.

      Note: “**” means the difference is extremely significant,<0.01; “*” means the difference is significant,<0.05.

      2.4.2 試驗(yàn)結(jié)果驗(yàn)證

      使用Design-Expert 10軟件進(jìn)行響應(yīng)面優(yōu)化試驗(yàn)分析,得出真空脈動(dòng)干燥青花椒工藝的優(yōu)化條件為干燥溫度61.4 ℃,真空保持時(shí)間5 min,常壓保持時(shí)間5 min,此條件下模型預(yù)測(cè)為最高評(píng)分值8.06。為便于實(shí)際生產(chǎn)過程中參數(shù)的控制,將最優(yōu)條件修正為干燥溫度62 ℃、真空保持時(shí)間5 min、常壓保持時(shí)間5 min。根據(jù)優(yōu)化條件進(jìn)行3組平行驗(yàn)證試驗(yàn),并取平均值計(jì)算各品質(zhì)指標(biāo)與預(yù)測(cè)值偏差,結(jié)果如表7所示。實(shí)際綜合評(píng)分值與響應(yīng)面模型的預(yù)測(cè)值相對(duì)偏差僅為2.6%,部分試驗(yàn)結(jié)果優(yōu)于預(yù)測(cè)值,達(dá)到了多目標(biāo)優(yōu)化的目的。

      表7 優(yōu)化條件驗(yàn)證試驗(yàn)結(jié)果

      3 結(jié) 論

      1)干燥溫度和常壓保持時(shí)間對(duì)青花椒干燥速率影響顯著(<0.05)。常壓保持時(shí)間越短,到達(dá)目標(biāo)含水率的時(shí)間隨之減少。

      2)Weibull模型可精確擬合青花椒的干燥動(dòng)力學(xué)特性。不同干燥條件下決定系數(shù)2值均大于0.99,尺度參數(shù)值隨著干燥溫度的升高、真空和常壓保持時(shí)間的降低而減小,尺度參數(shù)均大于1。青花椒真空脈動(dòng)干燥過程在前期均存在短暫的升速階段,而后轉(zhuǎn)變?yōu)榻邓俑稍铩?/p>

      3)升高干燥溫度可在一定程度上改善青花椒干燥的色澤、開口率和揮發(fā)油含量,酰胺類物質(zhì)含量則隨溫度升高有所降低。采用綜合評(píng)分法分析各因素對(duì)青花椒綜合評(píng)分的影響效果由大到小依次為:干燥溫度、真空保持時(shí)間、常壓保持時(shí)間。由響應(yīng)面模型得出真空脈動(dòng)干燥優(yōu)化工藝參數(shù)為干燥溫度61.4 ℃、真空保持時(shí)間5 min、常壓保持時(shí)間5 min,此時(shí)理論綜合評(píng)分最高,達(dá)8.06分,驗(yàn)證試驗(yàn)結(jié)果偏差僅為2.6%。

      [1]田冰,王玲,彭林,等. 多指標(biāo)綜合評(píng)分法優(yōu)化青花椒熱泵-微波聯(lián)合干燥工藝[J]. 食品研究與開發(fā),2019,40(19):149-155.

      Tian Bing, Wang Ling, Peng Lin, et al. Optimization of heat pump-microwave combined drying process for Zanthoxylum schinifolium by multi-index comprehensive scoring method[J]. Food Research and Development, 2019, 40(19): 149-155. (in Chinese with English abstract)

      [2]麻琳,何強(qiáng),趙志峰,等. 三種花椒精油的化學(xué)成分及其抑菌作用對(duì)比研究[J]. 中國(guó)調(diào)味品,2016,41(8):11-16.

      Ma Lin, He Qiang, Zhao Zhifeng, et al. Comparative study on the chemical components and antibacterial activity of essential oil from three kinds of Zanthoxylum bungeanum[J]. China Condiment, 2016, 41(8): 11-16. (in Chinese with English abstract)

      [3]中國(guó)藥典委員會(huì). 中國(guó)藥典[M]. 北京:化學(xué)工業(yè)出版社,2005.

      [4]楊森,陳鴻平,劉友平,等. 花椒干燥技術(shù)研究進(jìn)展[J]. 中國(guó)調(diào)味品,2021,46(3):175-178.

      Yang Sen, Chen Hongping, Liu Youping, et al. Research progress on the drying technology of zanthoxylum bungeanum[J]. China Condiment, 2021, 46(3): 175-178. (in Chinese with English abstract)

      [5]楊瑞麗. 不同處理和貯藏條件對(duì)花椒及其制品麻味物質(zhì)穩(wěn)定性影響的研究[D]. 邯鄲:河北工程大學(xué),2018.

      Yang Ruili. The Study on the Stability of Numb-taste of Zanthoxylum and Its Product in Different Treatments and Storage Conditions[D]. Handan: Hebei University of Engineering, 2018.

      [6]黎斌,彭桂蘭,羅傳偉,等. 基于Weibull分布函數(shù)的花椒真空干燥動(dòng)力學(xué)特性[J]. 食品與發(fā)酵工業(yè),2017,43(11):58-64.

      Li Bin, Peng Guilan, Luo Chuanwei, et al. Vacuum drying kinetics characteristics of Chinese prickly ash based on Weibull distribution[J]. Food and Fermentation Industries, 2017, 43(11): 58-64. (in Chinese with English abstract)

      [7]楊凌,談濤,孫華富,等. 微波燙漂對(duì)青花椒酶活性與品質(zhì)的影響[J]. 四川林業(yè)科技,2019,40(2):53-57.

      Yang Ling, Tan Tao, Sun Huafu, et al. The effect of microwave blanching on enzyme activity and quality of Zanthoxylum schinifolium[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(2): 53-57. (in Chinese with English abstract)

      [8]楊兵,梅曉飛,彭林,等. 熱風(fēng)干制對(duì)青花椒品質(zhì)的影響及工藝優(yōu)化[J]. 食品與發(fā)酵工業(yè),2018,44(11):251-258.

      Yang Bing, Mei Xiaofei, Peng Lin, et al. Effects of hot air drying on the quality of Zanthoxylum schinifolium and its optimization[J]. Food and Fermentation Industries, 2018, 44(11): 251-258. (in Chinese with English abstract)

      [9]彭林,田冰,王玲,等. 微波干燥對(duì)青花椒揮發(fā)油含量的影響及工藝優(yōu)化[J]. 食品與機(jī)械,2017,33(12):169-173.

      Peng Lin, Tian Bing, Wang Ling, et al. Effect of microwave drying conditions on volatile oil content in zanthoxylum schinifolium and its process optimization[J]. Food and Machinery, 2017, 33(12): 169-173. (in Chinese with English abstract)

      [10]王玲,田冰,彭林,等. 熱風(fēng)-微波聯(lián)合干燥青花椒工藝優(yōu)化[J]. 食品與發(fā)酵工業(yè),2019,45(18):176-182.

      Wang Ling, Tian Bing, Peng Lin, et al. Optimization of hot air-microwave combined drying of Zanthoxylum schinifolium[J]. Food and Fermentation Industries, 2019, 45(18): 176-182. (in Chinese with English abstract)

      [11]孟國(guó)棟,彭桂蘭,羅傳偉,等. 花椒真空干燥特性分析及動(dòng)力學(xué)模型研究[J]. 食品與發(fā)酵工業(yè),2018,44(4):89-96.

      Meng Guodong, Peng Guilan, Luo Chuanwei, et al. Vacuum drying characteristics and kinetics modeling study of Zanthoxylum bungeanum[J]. Food and Fermentation Industries, 2018, 44(4): 89-96. (in Chinese with English abstract)

      [12]楊兵,梅小飛,闞建全. 熱泵干制對(duì)青花椒色差和品質(zhì)的影響及工藝優(yōu)化[J]. 食品與發(fā)酵工業(yè),2019,45(12):140-145.

      Yang Bing, Mei Xiaofei, Kan Jianquan. Effects of heat pump drying on chromatism and quality of. and process optimization[J]. Food and Fermentation Industries, 2019, 45(12): 140-145. (in Chinese with English abstract)

      [13]謝永康,鄭志安,劉大會(huì),等. 真空脈動(dòng)蒸制對(duì)天麻升溫速率與品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):307-315.

      Xie Yongkang, Zheng Zhian, Liu Dahui, et al. Effects of pulsed vacuum steaming on the heating rate and quality of gastrodiaelata[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 307-315. (in Chinese with English abstract)

      [14]白竣文,周存山,蔡健榮,等. 南瓜片真空脈動(dòng)干燥特性及含水率預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):290-297.

      Bai Junwen, Zhou Cunshan, Cai Jianrong, et al. Vacuum pulse drying characteristics and moisture content prediction of pumpkin slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 290-297. (in Chinese with English abstract)

      [15]張衛(wèi)鵬,鄭志安,陳暢,等. 茯苓真空脈動(dòng)中試干燥裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(7):362-371.

      Zhang Weipeng, Zheng Zhi’an, Chen Chang, et al. Design and test of pilot pulsed vacuum infrared drying equipment for Poria cocos[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(7): 362-371. (in Chinese with English abstract)

      [16]Wang J, Dai J W, Yang S L, et al. Influence of pulsed vacuum drying on drying kinetics and nutritional value of corn kernels[J]. Journal of Food Process Engineering, 2020, 43(12): e13550.

      [17]Xie L, Mujumdar A S, Fang X M, et al. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (): Effects on drying kinetics and quality attributes[J]. Food and Bioproducts Processing, 2017, 102, 320-331.

      [18]Xie Y, Gao Z, Liu Y, et al. Pulsed vacuum drying of rhizoma dioscoreae slices[J]. LWT- Food Science and Technology, 2017, 80: 237-249.

      [19]方小明,張曉琳,王軍,等. 荷花粉真空脈動(dòng)干燥特性和干燥品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):287-295.

      Fang Xiaoming, Zhang Xiaolin, Wang Jun, et al. Vacuum pulsed drying characteristics and quality of lotus pollen[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32 (10): 287 -295. (in Chinese with English abstract)

      [20]孟國(guó)棟,彭桂蘭,羅傳偉,等. 基于響應(yīng)面法的花椒真空干燥工藝參數(shù)優(yōu)化[J]. 食品與發(fā)酵工業(yè),2017,43(10);137-143.

      Meng Guodong, Peng Guilan, Luo Chuanwei, et al. Optimization of vacuum drying parameters of Zanthoxylum bungeanum based on the response surface methodology[J]. Food and Fermentation Industries, 2017, 43(10): 137-143. (in Chinese with English abstract)

      [21]馬有川,畢金峰,易建勇,等. 預(yù)凍對(duì)蘋果片真空冷凍干燥特性及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):241-250.

      Ma Youchuan, Bi Jinfeng, Yi Jianyong, et al. Effects of pre-freezing on the drying characteristics and quality parameters of freeze drying apple slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020,36(18): 241-250. (in Chinese with English abstract)

      [22]韋玉龍,于寧,許銘強(qiáng),等. 熱風(fēng)干制溫度對(duì)棗果微觀組織結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):244-251.

      Wei Yulong, Yu Ning, Xu Mingqiang, et al. Effect of hot air drying temperature on microstructure of Chinese jujube[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 244-251. (in Chinese with English abstract)

      [23]郝啟棟,喬旭光,鄭振佳,等. 超高壓和超聲波預(yù)處理對(duì)蒜片熱風(fēng)干燥過程及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(3):278-286.

      Hao Qidong, Qiao Xuguang, Zheng Zhenjia, et al. Effects of ultrahigh pressure and ultrasound pretreatments on hot-air drying process and quality of garlic slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 278-286. (in Chinese with English abstract)

      [24]羅東升,朱玉麗,王梅,等. 預(yù)處理對(duì)紅棗分段間歇微波耦合熱風(fēng)干燥特性及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):261-267.

      Luo Donsheng, Zhu Yuli, Wang Mei, et al. Effects of pretreatment on characteristics and qualities of Chinese jujube drying by segmented intermittent microwave coupled with hot air[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 261-267. (in Chinese with English abstract)

      [25]趙丹丹,彭郁,李茉,等. 枸杞熱泵干燥室系統(tǒng)設(shè)計(jì)與應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(S1):359-365.

      Zhao Dandan, Peng Yu, Li Mo, et al. Design and application of wolfberry heat pump drying system[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(S1): 359-365. (in Chinese with English abstract)

      [26]尹慧敏,聶宇燕,沈瑾,等. 基于Weibull分布函數(shù)的馬鈴薯丁薄層熱風(fēng)干燥特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):252-258.

      Yin Huimin, Nie Yuyan, Shen Jin, et al. Drying characteristics of diced potato with thin-layer by hot-wind based on Weibull distribution function[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 252-258. (in Chinese with English abstract)

      [27]Jing L, Teng Z S, Lin H J. Improved method for prediction of milled rice moisture content based on Weibull distribution[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 159-165.

      [28]張海偉,魯加惠,張雨露,等. 干燥方式對(duì)香菇品質(zhì)特性及微觀結(jié)構(gòu)的影響[J]. 食品科學(xué),2020,41(11):150-156.

      Zhang Haiwei, Lu Jiahui, Zhang Yulu, et al. Effects of drying methods on the quality characteristics and microstructure of shiitake effects of drying methods on the quality characteristics and microstructure of shiitake[J]. Food Science, 2020, 41(11): 150-156. (in Chinese with English abstract)

      [29]徐鳳英,黃木水,陳震,等. 稻谷烘干過程中的水分?jǐn)U散特性與品質(zhì)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):261-267.

      Xu Fengying, Huang Mushui, Chen Zhen, et al. Moisture diffusion characteristics and quality characteristics of rice during drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 261-267. (in Chinese with English abstract)

      [30]國(guó)家林業(yè)局. LY/T1652—2005花椒質(zhì)量等級(jí)[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2005.

      [31]中華全國(guó)供銷合作總社. GH/T 1284—2020青花椒[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2020.

      [32]中華人民共和國(guó)供銷合作行業(yè). GH/T 1290—2020花椒及花椒加工產(chǎn)品花椒酰胺總含量的測(cè)定:紫外分光光度法[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2020.

      [33]朱廣飛,劉海,李衛(wèi),等. 油茶籽儲(chǔ)藏品質(zhì)變化規(guī)律及條件優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):301-311.

      Zhu Guangfei, Liu Hai, Li Wei, et al. Change rule of storage quality and optimization of storage condition for Camellia oleifera seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 301-311. (in Chinese with English abstract)

      [34]楊石,秦雪,李山,等. 血清降鈣素原2種檢測(cè)系統(tǒng)測(cè)定結(jié)果可比性及相對(duì)偏差評(píng)估[J]. 臨床檢驗(yàn)雜志,2014,32(1):67-68.

      Yang Shi, Qin Xue, Li Shan, et al. Evaluation of comparability and relative deviation between two serum procalcitonin detection systems[J]. Journal of Clinical Laboratory, 2014, 32(1): 67-68. (in Chinese with English abstract)

      [35]王慶惠,李忠新,楊勁松,等. 圣女果分段式變溫變濕熱風(fēng)干燥特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(3):271-276.

      Wang Qinghui, Li Zhongxin, Yang Jinsong, et al. Dried characteristics of cherry tomatoes using temperature and humidity by stages changed hot-air drying method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 271-276. (in Chinese with English abstract)

      [36]喬宏柱,高振江,王軍,等. 大蒜真空脈動(dòng)干燥工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):256-263.

      Qiao Hongzhu, Gao Zhenjiang, Wang Jun, et al. Optimization of vacuum pulsed drying process of garlic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 256-263. (in Chinese with English abstract)

      [37]張付杰,辛立東,代建武,等. 獼猴桃片旋轉(zhuǎn)托盤式微波真空干燥特性分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S1):501-508.

      Zhang Fujie, Xin Lidong, Dai Jianwu, et al. Rotating tray microwave vacuum drying characteristics of kiwifruit slices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 501-508. (in Chinese with English abstract)

      [38]代建武,楊升霖,王杰,等. 微波真空干燥對(duì)香蕉片干燥特性及品質(zhì)的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S1):493-500.

      Dai Jianwu, Yang Shenglin, Wang Jie, et al. Effect of microwave vacuum drying conditions on drying characteristics and texture structure of banana chips[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 493-500. (in Chinese with English abstract)

      [39]羅傳偉. 花椒真空干燥動(dòng)力學(xué)模型及干燥工藝研究[D]. 重慶:西南大學(xué),2017.

      Luo Chuanwei. The Study on Vacuum Drying Model and Method of the Zanthoxylum Bungeanum[D]. Chongqing: Southwest University, 2017. (in Chinese with English abstract)

      [40]Ju H Y, Zhao S H, Mujumdar A S, et al. Energy efficient improvements in hot air drying by controlling relative humidity based on Weibull and Bi-Di models[J]. Food and Bioproducts Processing, 2018, 111: 20-29.

      Drying characteristics and quality optimization of green prickly ashes during vacuum pulsed drying

      Dai Jianwu, Fu Qiqi, Huang Huan, Li Ming, Li Lianjie, Xu Lijia

      (,,625014,)

      Green prickly ash is one of the main flavoring spices in Chinese food, with a strong numb taste and medicinal effects, such as antipruritic, vasodilation, and lowering blood pressure. The initial moisture content of green prickly ash is up to 66%-70% (w.b.), easy to cause browning reaction and mildew during storage and transportation. Drying has also been a necessary step before deep processing of green prickly ash, in order to ensure the quality of products while prolonging the shelf life. A pulsed vacuum drying can keep the material in a circulating state of alternating vacuum and atmospheric pressure, where the microscopic pores inside the material are continuously squeezed or expanded to form micro-channels, which significantly improves the moisture migration rate for high drying efficiency. The vacuum environment is also beneficial to reducing the browning reaction and the loss of flavor components during drying. In this study, an investigation was made to clarify the effects of drying temperature (55, 60, 65 and 70℃), holding time of vacuum (5, 10, 15, and 20 min), and holding time of atmospheric pressure (1, 3, 5, 7 min) on the drying characteristics and quality attributes of green prickly ash under a pulsed vacuum drying. The hot air drying was treated as the controlled group. A Weibull model was used to simulate the drying curves of green prickly ash. A single factor experiment was performed on the Box-Behnken platform. A response surface optimization was conducted, where five indicators were included of the average drying rate, color, aperture opening ratio, volatile oil and amide content of green pepper. The results showed that the Weibull model accurately simulated the vacuum pulsating drying. The pulsed vacuum drying of green prickly ash behaved a brief rise in the early stage, and then a slow-down drying stage. Both drying temperature and holding time of atmospheric pressure posed a significant effect on the drying rate of green prickly ash (<0.05). Specifically, the drying rate was higher, as the holding time was shorter at atmospheric pressure. The drying rate, color and aperture opening ratio were improved, while the browning reaction and the loss of volatile oil content were reduced, as the drying temperature increased. Meanwhile, the amide content decreased with the rise of drying temperature. Once the temperature exceeded 70°C, a significant downward trend occurred in the quality indicators of green prickly ash. The influencing factors in green pepper drying were ranked as follows: drying temperature, vacuum holding time, atmospheric pressure holding time. The optimized processing parameters of pulsed vacuum drying were fixed at the drying temperature of 61.4℃, the vacuum holding time of 5 min, and the atmospheric pressure holding time of 5 min. The comprehensive score was up to the maximum of 8.06 in the response surface model under this condition. Three verification tests were carried out to take the average value.The relative deviation between the test and predicted value was only 2.6% in the response surface model, indicating that the optimization data was reliable. A verification test was determined as the average drying rate of 0.81 g/(g·min), Δvalue of 6.31, aperture opening ratio of 92.3%, volatile oil content of 0.72 mL/10 g, and amide content of 27.65 mg/g. The optimal processing parameters of green prickly ash can provide a sound reference for the practical application of similar materials under pulsed vacuum drying.

      drying; kinetics; vacuum pulsed drying; green prickly ashes; quality evaluation;parameter optimization

      代建武,付琪其,黃歡,等. 青花椒真空脈動(dòng)干燥特性及干燥品質(zhì)工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(8):279-287.doi:10.11975/j.issn.1002-6819.2021.08.032 http://www.tcsae.org

      Dai Jianwu, Fu Qiqi, Huang Huan, et al. Drying characteristics and quality optimization of green prickly ashes during vacuum pulsed drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 279-287. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.032 http://www.tcsae.org

      2021-01-13

      2021-04-07

      四川科技創(chuàng)新人才計(jì)劃項(xiàng)目(2020JDRC0066)

      代建武,博士,講師,研究方向?yàn)檗r(nóng)產(chǎn)品加工技術(shù)與裝備。Email:daijianwu@126.com

      10.11975/j.issn.1002-6819.2021.08.032

      TS255.3

      A

      1002-6819(2021)-08-0279-09

      猜你喜歡
      常壓花椒脈動(dòng)
      新學(xué)期,如何“脈動(dòng)回來(lái)”?
      家教世界(2023年25期)2023-10-09 02:11:56
      RBI在超期服役脈動(dòng)真空滅菌器定檢中的應(yīng)用
      常壓儲(chǔ)罐底板泄漏檢測(cè)技術(shù)
      我國(guó)古代的玫瑰:花椒
      一種基于常壓消解儀同時(shí)測(cè)定煙用有機(jī)肥中總氮、總磷、總鉀含量的樣品前處理方法
      云南化工(2020年11期)2021-01-14 00:50:44
      當(dāng)前花椒價(jià)格走低 椒農(nóng)如何積極應(yīng)對(duì)
      低溫常壓等離子技術(shù)在腫瘤學(xué)中的應(yīng)用
      地球脈動(dòng)(第一季)
      摘花椒
      花椒泡腳好處多
      海峽姐妹(2017年9期)2017-11-06 08:39:39
      丰镇市| 舟山市| 泸水县| 合江县| 定远县| 阜宁县| 讷河市| 崇礼县| 青神县| 拜泉县| 涿鹿县| 博白县| 凤冈县| 伊春市| 青阳县| 柳林县| 万盛区| 积石山| 公安县| 隆化县| 张家口市| 无棣县| 中卫市| 星子县| 壤塘县| 渭源县| 浙江省| 江北区| 安达市| 凤凰县| 灵台县| 牡丹江市| 中江县| 贵港市| 湘西| 来安县| 怀化市| 平武县| 塔河县| 永胜县| 平远县|