• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Least Squares Estimator for Fractional Brownian Bridges of the Second Kind

    2021-06-30 00:09:06WANGYihan汪義漢
    應(yīng)用數(shù)學(xué) 2021年3期

    WANG Yihan(汪義漢)

    (School of Mathematics and Statistics,Anhui Normal University,Wuhu 241000,China)

    Abstract:In this paper,we study the least squares estimator for the drift of a fractional Brownian bridge of the second kind defined under the cases of parameter θ>0 and Hurst parameter H∈We obtain the consistency and the asymptotic distribution of this estimator using the Malliavin calculus.

    Key words:Fractional Brownian motion;Least squares estimator;Bridge

    1.Introduction

    LetT>0 be fixed.For allθ>0,the fractional bridge of the second kind{Xt}t∈[0,T)with initial value 0 is the solution of the stochastic differential equation(SDE)

    In the case when the processXhas Hlder continuous paths of Hurst indexwe can consider the following least squares estimator(LSE)proposed in[8],

    as estimator ofθ,where the integral with respect toXis a Young integral.Thus,thanks to(1.1),it is easily to obtain

    In the same setup as fractional Brownian process of the first kind,the parameter estimation forθhas been studied by using classical maximum likelihood method or least squares technique by Barczy and Pap[4],Tudor and Viens[13],Es-Sebaiy and Nourdin[6],HAN,SHEN and YAN[7],respectively.In this paper,we consider the least squares estimatorin the setup of the fractional bridge of the second kind.The key point is the Lemma 3.6 in Section 3.

    This paper is organized as follows.Section 2 deals with some preliminary results on stochastic integrals with respect to Malliavin derivative,Skorohod integral,Young integral.The consistency and the asymptotic distribution of the estimator are stated in Section 3.Almost all the proofs of the lemmas are provided in Section 4.

    2.Preliminaries

    We start by introducing the elements from stochastic analysis that we will need in the paper(see[1,11]).Letbe a fractional Brownian motion with the covariance function satisfying

    The crucial ingredient is the canonical Hilbert spaceH(is also said to be reproducing kernel Hilbert space)associated to the Gaussian process which is defined as the closure of the linear spaceEgenerated by the indicator functions 1[0,t],t∈[0,T]with respect to the scalar product

    Therefore,the elements of the Hilbert spaceHmay not be functions but distributions of negative order.Let|H|be the set of measurable functionsφon[0,T]such that

    It is not difficult to show that|H|is a Banach space with the norm‖φ‖|H|andEis dense in|H|.Forφ,?∈|H|,we have

    Notice that the above formula holds for any Gaussian process,i.e.,ifGis a centered Gaussian process with covarianceRinL1([0,T]2),then(see[10])

    ifφ,?are such thatdudv<∞.

    LetSbe the space of smooth and cylindrical random variables of the form

    wheren≥1,f:Rn→R is a-function such thatfand all its derivatives have the most polynomial growth,andφi∈H.For a random variableFof the form above we define its Malliavin derivative as theH-valued random variable

    By iteration,one can define themth derivativeDmF,which is an element ofL2(Ω;H?m),for everym≥2.

    For everyq≥1,letHqbe theqth Wiener chaos ofB,that is,the closed linear subspace ofL2(Ω)generated by the random variables{Hq(H(h)),h∈H,‖h‖H=1},whereHqis theqth Hermite polynomial.The mappingIq(h⊙q)=Hq(B(h))provides a linear isometry between the symmetric tensor productH⊙q(equipped with the modified normandHq.Specifically,for allf,g∈H⊙qandq≥1,one has

    On the other hand,it is well-known that any random variableZbelonging toL2(Ω)admits the following chaotic expansion:

    where the series converges inL2(Ω)and the kernelsfq,belonging toH⊙q,are uniquely determined byZ.For a detail account on Malliavin calculus we refer to[11].

    Letf,g:[0,T]R be Hlder continuous functions of orderμ∈(0,1)andν∈(0,1)respectively withμ+ν>1.Young[14]proved that the Riemman-Stiltjes(so called Young integral)exists.Moreover,ifμ=ν∈(1/2,1)andΦ:R2R is a function of classC1,the integralsandexist in the Young sense and the following formula holds:

    for 0≤t≤T.As a consequence,ifand(ut,t∈[0,T])is a process with the Holder paths of orderμ∈(1-H,1),the integralis well defined as a Young integral.Suppose moreover that for anyt∈[0,T],ut∈D1,2(|H|),and

    Then,by the same argument as in[1],we have

    In particular,whenφis a non-random Hlder continuous function of orderμ∈(1-H,1),we obtain

    Finally,we will use the following covariance of the increments of the noiseY(1)satisfying(see Proposition 3.5 in[9])

    where

    withCH=H2H-1(2H-1).Note that the kernelrHis symmetric.

    3.Asymptotic Behavior of the Least Squares Estimator

    In this section we study the strong consistence and the asymptotic distribution of the estimator ofθtast→T.Consider the following processes related to{Xt}t∈[0,T):

    and

    then,fort∈[0,T)and<H<1,

    and

    Using the equations(3.1)and(3.2),the LSEdefined in(1.3)can be written as

    ⅠConsistency of the Estimator LSE

    The following theorem proves the(strong)consistency of the LSEFor simplicity,throughout this paper,letcstand for a positive constant depending only on the subscripts and its value may be different in different appearances,andstands for convergence in distribution(resp.probability,almost surely).

    Theorem 3.1Letbe given by(1.3).Then

    In particular,whenθ<H,Hast→T.

    In order to prove Theorem 3.1 we need the following two lemmas,and their proofs are shown in Section 4.

    Lemma 3.1Supposeθ∈(0,H),H∈and letξtbe given by(3.1).ThenξT:=limt→T ξtexists inL2.Furthermore,for all?∈(0,H-θ)there exists a modification of{ξt}t∈[0,T]with(H-θ-?)-Hlder continuous paths,still denotedξin the sequel.In particular,ξt→ξTalmost surely ast→T.

    Lemma 3.2Assumeθ∈(0,H),H∈and letξtbe defined in(3.1).Then,ast→T:

    1)if 0<θ<,then

    2)ifθ=,then

    Proof of Theorem 3.1By the formula(2.6),we obtain that,for anyt∈[0,T),

    which yields

    Whenusing Lemma 3.2 and Lemma 3.1,we derive that

    ast→T,respectively.Hence,we obtain thatast→T.

    Whenθ=the equality(3.3)becomes

    Analogously,by Lemma 3.2 and Lemma 3.1,we also deduce that

    ast→T,respectively.Hence,we obtainast→T.

    ast→T,respectively.Hence,(3.4)yields thatθ-ast→T,that is,

    Finally,whenθ≥H,by(2.4)and(2.9),and using the elementary inequality|ex-ey|α≤|x-y|αfor-1<α<0,x≥0,y≥0 andxy,we compute that

    Hence,having a look at(3.3)and becauseast→T,we deduce thatast→T,that is,which implies the desired conclusion.

    ⅡAsymptotic Distribution of the Estimator LSE

    Theorem 3.2Assume<H<1 be fixed and setσ2=2H(2H-1)β(1-H,2H-1)withβ(a,b)=LetN~N(0,1)be independent ofY(1),and letC(1)stand for the standard Cauchy distribution.

    1)Ifθ∈(0,1-H)then,ast→T,

    2)Ifθ=1-Hthen,ast→T,

    3)Ifθ∈(1-H,)then,ast→T,

    4)Ifθ=then,ast→T,

    We also apply the following several lammas to prove Theorem 3.2,whose proofs refer to Section 4.

    Lemma 3.3Letθ∈(1-H,H),H∈and letηtbe defined in(3.2).ThenηT:=limt→T ηtexists inL2.Furthermore,there existsγ>0 such that{ηt}t∈[0,T]admits a modification withγ-Hlder continuous paths,still denotedηin the sequel.In particular,ηt→ηTalmost surely ast→T.

    Lemma 3.4Letηtbe defined in(3.2).For anyt∈[0,T),we have

    Lemma 3.5Letθ∈(0,1-H],H∈Then,ast→T,

    Lemma 3.6Fix<H<1 and setσ1=σ2=2H(2H-1)β(1-H,2H-1).LetFbe anyσ{Y(1)}-measurable random variable satisfyingP(F<∞)=1,and letN~N(0,1)be independent ofY(1).

    1)Ifθ∈(0,1-H)then,ast→T,

    2)Ifθ=1-Hthen,ast→T,

    Proof of Theorem 3.21)Assume thatθ∈(0,1-H).By Lemma 3.4,we have

    with clear definitions forat,bt,ct,etandft.Let us begin to consider the termsat,btandct.First,Lemma 3.6 yields

    whereN~N(0,1)is independent ofY(1),whereas Lemmas 3.1,3.2 imply thatandast→T,respectively.On the other hand,by combining Lemma 3.2 with Lemma 3.5,we can get thatandast→T,respectively.Let us summarize all these convergence together,we obtain that

    2)Assume thatθ=1-H.By similar arguments as in the first point above,the counterpart of decomposition is the following:

    By using Lemma 3.6 again,we obtain that,ast→T,

    whereN~N(0,1)is independent ofY(1),whereas Lemmas 3.1,3.2 also imply thatandast→T,respectively.On the other hand,by combining Lemma 3.2 with Lemma 3.5,we deduce thata ndast→T,respectively.By plugging all these convergence together we get that,ast→T,

    3)Assume thatθ∈(1-H,).Using the decomposition

    we immediately obtain that the third point of Theorem 3.2 follows from an obvious consequence of Lemmas 3.3,3.2.

    4)Assume thatθ=By(3.4),

    4.Proofs of Several Lemmas

    In this section,we present here the proofs of several lemmas used in Section 3.

    Proof of Lemma 3.1The idea mainly comes from Lemma 2.2 in[5]and Lemma 4 in[6].We give the main process as following for the completeness.In order to apply the Kolmogorov continuity criterium,we need to evaluate the mean square of the increment

    with 0≤s≤t<T.This is a Gaussian random variable and we will use the formula(2.4)in order to compute itsL2norm.The covariance of the processY(1)can be obtained from the formula(2.9).

    Recall that the elementary inequality|ex-ey|α≤|x-y|αholds for-1<α<0,x≥0,y≥0 and.For all 0≤s≤t<T,using(2.3)and(2.9),we have

    for some positive constantC(H,θ)depending onHandθ.By applying the Cauchy criterion,we deduce thatξT:=limt→T ξtexists inL2.Furthermore,because the processξis centered and Gaussian,for any positive integerm,we have

    Hence,formsufficiently large satisfying 2m(H-θ)-1>0,ξtareγ-Hder continuous for every=Therefore,the result follows directly from an application of the Kolmogorov continuity theorem.

    Proof of Lemma 3.21)By Lemma 3.1,using the-Hlder continuity ofξt,we have

    3)By Lemma 3.1,the processξis continuous on[0,T],hence integrable.Furthermore,becauseu→(T-u)2θ-2is integrable atu=T.The convergence in point 3 holds with a finite limit.

    Proof of Lemma 3.3Letβ1,β2∈(1-H,H)be fixed.We first show that there existsε=ε(β1,β2,H)>0 andc=c(β1,β2,H)>0 such that,for all 0≤s≤t<T,

    In fact,by means of the change of variables,we have

    ≤c(t-s)εfor someε∈(0,1∧(2H-β1)-β2).

    Therefore,the inequality(4.1)holds.

    Now,using(2.7),we shall separateηtinto two terms.Fort<T,

    Set

    The identity(4.2)becomes

    Therefore,by(2.5),we have

    Sinceψt-ψs∈H⊙2,we obtain that

    Notice the fact thatψt-ψsis symmetric,we easily get thatis upper bounded by a sum of integrals of the type

    withβ1,β2,β3,β4∈{θ,1-θ}.Therefore,by(4.1),there existsε>0 small enough andc>0 such that,for alls,t∈[0,T],

    On the other hand,for all 0≤s≤t<T,we obtain again that

    Thus,

    Second,ifθ=2H-1 then

    Thus,

    Third,ifθ<2H-1 then

    Thus,

    To summarize three cases above,there existsc>0 such that,for alls,t∈[0,T],

    Substituting(4.4)and(4.5)into(4.3)yields that there existsε>0 small enough andc>0 such that,for alls,t∈[0,T],

    By using the Cauchy criterion again,we obtain thatηT:=limt→T ηtexists inL2.Furthermore,becauseηt-ηs-E[ηt]+E[ηs]belongs to the second Wiener chaos ofY(1),the result follows directly from an application of the Kolmogorov continuity theorem.

    Proof of Lemma 3.4Lett∈[0,T)be fixed.By(2.6),v)-θdY(1)vbecomes

    Furthermore,it follows from(2.7)that

    Hence,the result follows.

    Proof of Lemma 3.5PutNotice thatφt∈|H|⊙2andwe obtain that

    Sinceθ≤1-H,we obtain that

    Furthermore,since 2H+2θ-3<-1 andθ∈(0,1-H],we obtain that

    Hence,ifθ<1-H,then

    Assume now thatθ=1-H,then

    Thus,by combining all the previous cases,we obtain that lim supt→Tis finite,which completes the proof.

    Proof of Lemma 3.61)We will use the approach from the proof of Lemma 7 in[6].It is enough to prove that for anym≥1 and anys1,...,sm∈[0,T),we shall prove that,ast→T,

    where,for|T-t|sufficiently small,

    with

    Thus,

    On the other hand,by(2.9)we have,for anyv<t<T,

    2)By(2.9),for anyt∈[0∨(T-1),T)and for|T-t|sufficiently small,we have

    On the other hand,fixv∈[0,T),by(2.9),for allt∈[0∨(T-1),T),we have

    whereσ2=2H(2H-1)β(1-H,2H-1).Therefore,the same reasoning as in point 1 allows to go from(4.7)to(3.6).The proof of the lemma is concluded.

    AcknowledgmentsWe thank Professor Shen Guangjun for his guidance,including valuable suggestions and remarks and for his fund support.

    床上黄色一级片| 国产精品国产高清国产av| 欧美中文日本在线观看视频| 精品人妻熟女av久视频| 日韩亚洲欧美综合| 亚洲aⅴ乱码一区二区在线播放| 在线免费观看的www视频| 国内揄拍国产精品人妻在线| 一级a爱片免费观看的视频| 波多野结衣高清无吗| 一区二区三区高清视频在线| 亚洲 欧美 日韩 在线 免费| av天堂中文字幕网| 少妇高潮的动态图| 欧美激情久久久久久爽电影| 国产伦在线观看视频一区| 成人精品一区二区免费| 99热这里只有精品一区| 美女 人体艺术 gogo| 99在线视频只有这里精品首页| 麻豆国产av国片精品| 搡老妇女老女人老熟妇| 亚洲av美国av| 九九久久精品国产亚洲av麻豆| 神马国产精品三级电影在线观看| 成人特级黄色片久久久久久久| 757午夜福利合集在线观看| 日本成人三级电影网站| 日韩欧美国产一区二区入口| 丁香欧美五月| 99国产精品一区二区三区| 脱女人内裤的视频| 久久久精品大字幕| 乱码一卡2卡4卡精品| 一进一出抽搐动态| 国产国拍精品亚洲av在线观看| 国产真实伦视频高清在线观看 | 亚洲国产欧洲综合997久久,| 欧美在线黄色| 午夜免费成人在线视频| 成人国产一区最新在线观看| 动漫黄色视频在线观看| 赤兔流量卡办理| 亚洲国产精品久久男人天堂| 成人性生交大片免费视频hd| 狠狠狠狠99中文字幕| 草草在线视频免费看| 色在线成人网| 免费观看精品视频网站| 亚洲成a人片在线一区二区| 18禁黄网站禁片午夜丰满| av女优亚洲男人天堂| 桃红色精品国产亚洲av| 国产精品嫩草影院av在线观看 | 乱码一卡2卡4卡精品| 久99久视频精品免费| 日韩有码中文字幕| 久久久久九九精品影院| 亚洲精品一区av在线观看| 少妇高潮的动态图| 亚洲一区二区三区不卡视频| 啦啦啦观看免费观看视频高清| 亚洲成人久久爱视频| 一级作爱视频免费观看| 能在线免费观看的黄片| 欧美黑人巨大hd| 国产午夜精品论理片| 99久久成人亚洲精品观看| 美女xxoo啪啪120秒动态图 | 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区 | 亚洲成人免费电影在线观看| 亚洲成av人片在线播放无| 国产又黄又爽又无遮挡在线| 成人鲁丝片一二三区免费| 少妇裸体淫交视频免费看高清| 久久99热这里只有精品18| 深夜精品福利| 成年女人永久免费观看视频| 国产亚洲欧美在线一区二区| 亚洲性夜色夜夜综合| 国产三级黄色录像| 国产一区二区在线观看日韩| 国产精品久久久久久久电影| 精品国产亚洲在线| 12—13女人毛片做爰片一| 中文字幕久久专区| 美女高潮的动态| 国产成人影院久久av| 嫁个100分男人电影在线观看| 欧美成人一区二区免费高清观看| 美女xxoo啪啪120秒动态图 | 日韩欧美在线二视频| 午夜精品在线福利| 99国产精品一区二区蜜桃av| 噜噜噜噜噜久久久久久91| 草草在线视频免费看| 国产主播在线观看一区二区| 一级a爱片免费观看的视频| 搡老岳熟女国产| 我的老师免费观看完整版| 亚洲精品一卡2卡三卡4卡5卡| 国产熟女xx| 夜夜躁狠狠躁天天躁| 国内久久婷婷六月综合欲色啪| 欧美丝袜亚洲另类 | 亚洲av熟女| 淫秽高清视频在线观看| 亚洲av免费在线观看| 午夜a级毛片| 少妇人妻一区二区三区视频| 久久欧美精品欧美久久欧美| 国产精品1区2区在线观看.| 脱女人内裤的视频| 亚洲精品乱码久久久v下载方式| 国产v大片淫在线免费观看| 日韩欧美在线二视频| 天堂网av新在线| 午夜免费男女啪啪视频观看 | 97人妻精品一区二区三区麻豆| 亚洲人成网站在线播放欧美日韩| 丁香六月欧美| 国产精品亚洲美女久久久| 国产乱人伦免费视频| 欧美最新免费一区二区三区 | 午夜精品一区二区三区免费看| 色尼玛亚洲综合影院| 成熟少妇高潮喷水视频| 日韩亚洲欧美综合| 国产成人aa在线观看| 久久草成人影院| 国产 一区 欧美 日韩| 日本黄色片子视频| 在线看三级毛片| 午夜激情欧美在线| 亚洲av熟女| 天天躁日日操中文字幕| 中国美女看黄片| 能在线免费观看的黄片| 好男人在线观看高清免费视频| 成人午夜高清在线视频| 男女之事视频高清在线观看| 国产精品爽爽va在线观看网站| 国产一区二区激情短视频| 亚洲熟妇中文字幕五十中出| 久久精品国产清高在天天线| 久久99热这里只有精品18| av天堂中文字幕网| 国产成+人综合+亚洲专区| 国产白丝娇喘喷水9色精品| 国产亚洲精品久久久久久毛片| 国产高清视频在线播放一区| 国产三级在线视频| 日韩欧美三级三区| 免费在线观看日本一区| 欧美色视频一区免费| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 成年女人毛片免费观看观看9| 午夜福利在线观看吧| 国产精品自产拍在线观看55亚洲| 国产精品一区二区三区四区久久| 成年女人永久免费观看视频| 国产午夜精品久久久久久一区二区三区 | 国产精品爽爽va在线观看网站| 久久亚洲精品不卡| 少妇丰满av| 国产精品影院久久| 午夜影院日韩av| 亚洲综合色惰| 欧美一区二区亚洲| 一边摸一边抽搐一进一小说| 日韩av在线大香蕉| 日本a在线网址| 欧美在线一区亚洲| 日本 欧美在线| 在线观看午夜福利视频| 一本久久中文字幕| 久久久精品欧美日韩精品| 一二三四社区在线视频社区8| 哪里可以看免费的av片| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 国产成人啪精品午夜网站| 国产大屁股一区二区在线视频| 午夜亚洲福利在线播放| 成人毛片a级毛片在线播放| 欧美又色又爽又黄视频| 国产高清激情床上av| a级毛片免费高清观看在线播放| 亚洲欧美日韩无卡精品| 午夜福利高清视频| 国产精品影院久久| 亚洲激情在线av| 日本精品一区二区三区蜜桃| 久久精品国产清高在天天线| 听说在线观看完整版免费高清| 中国美女看黄片| 日韩欧美精品免费久久 | 窝窝影院91人妻| 日韩国内少妇激情av| 国产精品99久久久久久久久| 黄色配什么色好看| 国产爱豆传媒在线观看| 久久精品久久久久久噜噜老黄 | 18禁黄网站禁片午夜丰满| 色视频www国产| 欧美日韩亚洲国产一区二区在线观看| 高清在线国产一区| 中文字幕久久专区| 中文资源天堂在线| 999久久久精品免费观看国产| 国产免费一级a男人的天堂| 精品一区二区三区视频在线观看免费| 999久久久精品免费观看国产| 亚洲 国产 在线| 久久国产乱子伦精品免费另类| 男人舔女人下体高潮全视频| 我的女老师完整版在线观看| 色哟哟·www| 国产黄色小视频在线观看| 欧美成人a在线观看| 美女cb高潮喷水在线观看| bbb黄色大片| 99久国产av精品| 久久国产精品人妻蜜桃| 真人做人爱边吃奶动态| 国产免费男女视频| 久久国产精品影院| 国产爱豆传媒在线观看| 97人妻精品一区二区三区麻豆| 热99在线观看视频| 亚洲国产欧洲综合997久久,| 噜噜噜噜噜久久久久久91| 免费人成视频x8x8入口观看| 亚洲av免费高清在线观看| 免费在线观看成人毛片| 人妻久久中文字幕网| 乱码一卡2卡4卡精品| 国产精品一区二区免费欧美| 两人在一起打扑克的视频| 天堂影院成人在线观看| 国产毛片a区久久久久| 麻豆久久精品国产亚洲av| 高清日韩中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 97超级碰碰碰精品色视频在线观看| 色综合婷婷激情| 成人特级黄色片久久久久久久| av在线蜜桃| 欧美+亚洲+日韩+国产| 国产91精品成人一区二区三区| 男女之事视频高清在线观看| 12—13女人毛片做爰片一| 12—13女人毛片做爰片一| 国产精品影院久久| 久久中文看片网| 九九热线精品视视频播放| 亚洲精华国产精华精| 三级毛片av免费| 国产精品久久电影中文字幕| 搡老熟女国产l中国老女人| 久久热精品热| 久久久成人免费电影| 欧美日韩乱码在线| 桃红色精品国产亚洲av| 人妻久久中文字幕网| 中文字幕久久专区| 两性午夜刺激爽爽歪歪视频在线观看| 国内精品美女久久久久久| 国产精品久久久久久精品电影| 搡老妇女老女人老熟妇| 一级作爱视频免费观看| 蜜桃亚洲精品一区二区三区| 国内精品久久久久精免费| 特级一级黄色大片| 亚洲中文字幕一区二区三区有码在线看| 欧美日本亚洲视频在线播放| 久久中文看片网| 男女之事视频高清在线观看| 精品一区二区三区视频在线| 精品99又大又爽又粗少妇毛片 | 51国产日韩欧美| 亚洲第一电影网av| 亚洲成av人片在线播放无| 夜夜看夜夜爽夜夜摸| 美女免费视频网站| 久久精品影院6| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 夜夜躁狠狠躁天天躁| 亚洲中文字幕一区二区三区有码在线看| 丰满的人妻完整版| 一区二区三区免费毛片| 亚洲av不卡在线观看| 网址你懂的国产日韩在线| 两个人的视频大全免费| 无遮挡黄片免费观看| 天堂动漫精品| 在线观看午夜福利视频| 蜜桃久久精品国产亚洲av| 国产毛片a区久久久久| 久久人人精品亚洲av| 免费看a级黄色片| 亚州av有码| 一边摸一边抽搐一进一小说| 成人鲁丝片一二三区免费| 午夜免费男女啪啪视频观看 | 国产亚洲欧美在线一区二区| 久久九九热精品免费| 午夜福利成人在线免费观看| 国产精品电影一区二区三区| h日本视频在线播放| 国产蜜桃级精品一区二区三区| 在线观看美女被高潮喷水网站 | 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3| 久久国产精品影院| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲av一区麻豆| 欧美最黄视频在线播放免费| 日本与韩国留学比较| 成年女人永久免费观看视频| 1024手机看黄色片| 国产精品久久电影中文字幕| 一本综合久久免费| 又粗又爽又猛毛片免费看| 日本精品一区二区三区蜜桃| 中亚洲国语对白在线视频| 首页视频小说图片口味搜索| 日日夜夜操网爽| 欧美日韩黄片免| 久久精品国产清高在天天线| 亚洲黑人精品在线| 一级av片app| 18+在线观看网站| 国产免费一级a男人的天堂| 国产精品,欧美在线| 欧美黑人巨大hd| 亚洲第一欧美日韩一区二区三区| 99久久99久久久精品蜜桃| 国产爱豆传媒在线观看| 亚洲18禁久久av| 亚洲五月婷婷丁香| 久久久久精品国产欧美久久久| 国产亚洲精品综合一区在线观看| 午夜福利在线观看免费完整高清在 | 一本精品99久久精品77| 亚洲精品一卡2卡三卡4卡5卡| 一进一出好大好爽视频| 成年人黄色毛片网站| netflix在线观看网站| 国产爱豆传媒在线观看| 美女黄网站色视频| 亚洲国产精品成人综合色| 亚洲人成网站在线播| av天堂中文字幕网| 日本精品一区二区三区蜜桃| 给我免费播放毛片高清在线观看| 99久久精品国产亚洲精品| 人妻丰满熟妇av一区二区三区| 亚洲一区二区三区色噜噜| 欧美黄色片欧美黄色片| 精品欧美国产一区二区三| 99久久精品一区二区三区| 女同久久另类99精品国产91| 色吧在线观看| 全区人妻精品视频| 国产av不卡久久| 国产中年淑女户外野战色| 国产亚洲精品综合一区在线观看| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| bbb黄色大片| 国产在线男女| 免费看a级黄色片| 丝袜美腿在线中文| 国内久久婷婷六月综合欲色啪| 精品国产亚洲在线| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 国产精品电影一区二区三区| 麻豆久久精品国产亚洲av| 十八禁网站免费在线| 久久九九热精品免费| 成人美女网站在线观看视频| 亚洲一区二区三区色噜噜| 天堂√8在线中文| 午夜精品久久久久久毛片777| 欧美潮喷喷水| 91久久精品电影网| 久久精品综合一区二区三区| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 国产精品影院久久| 欧美一区二区亚洲| 久久草成人影院| 激情在线观看视频在线高清| 亚洲美女视频黄频| 久久久久国内视频| 又黄又爽又刺激的免费视频.| 一级黄色大片毛片| 他把我摸到了高潮在线观看| 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 国产精品三级大全| 国产视频内射| 欧美激情国产日韩精品一区| 男人舔女人下体高潮全视频| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕 | 床上黄色一级片| 少妇人妻精品综合一区二区 | 免费在线观看成人毛片| 欧美绝顶高潮抽搐喷水| 日韩欧美一区二区三区在线观看| 啪啪无遮挡十八禁网站| 国产精品永久免费网站| 一区二区三区高清视频在线| 欧美激情在线99| 欧美最黄视频在线播放免费| 精品久久久久久久久亚洲 | 国产亚洲av嫩草精品影院| 成人永久免费在线观看视频| 国产欧美日韩一区二区三| xxxwww97欧美| 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 免费看日本二区| 日日摸夜夜添夜夜添av毛片 | 日本免费一区二区三区高清不卡| 91在线精品国自产拍蜜月| 欧洲精品卡2卡3卡4卡5卡区| 1000部很黄的大片| 我要看日韩黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 我的老师免费观看完整版| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆 | 日韩欧美一区二区三区在线观看| 久9热在线精品视频| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app | av天堂中文字幕网| 国内毛片毛片毛片毛片毛片| 午夜福利欧美成人| 国产黄色小视频在线观看| 久久精品国产亚洲av天美| 国内精品美女久久久久久| 天堂动漫精品| 日本黄色片子视频| 久久国产精品影院| 国产亚洲欧美在线一区二区| 久久草成人影院| 亚洲国产高清在线一区二区三| 欧美性猛交黑人性爽| 校园春色视频在线观看| 不卡一级毛片| 免费看美女性在线毛片视频| 又爽又黄a免费视频| 91字幕亚洲| 99久久无色码亚洲精品果冻| 啦啦啦观看免费观看视频高清| av中文乱码字幕在线| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| avwww免费| 精品熟女少妇八av免费久了| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久久黄片| 99热这里只有是精品在线观看 | 欧美一区二区国产精品久久精品| 亚洲欧美精品综合久久99| 午夜福利在线观看免费完整高清在 | 一区二区三区激情视频| 18禁在线播放成人免费| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 亚洲五月天丁香| 国产伦一二天堂av在线观看| 我的女老师完整版在线观看| 国内精品久久久久久久电影| 日韩精品中文字幕看吧| 国产精品三级大全| 97热精品久久久久久| 精品久久久久久久人妻蜜臀av| 91麻豆精品激情在线观看国产| 国产成人欧美在线观看| 欧美一区二区精品小视频在线| 欧美成人一区二区免费高清观看| 伊人久久精品亚洲午夜| 听说在线观看完整版免费高清| 中文字幕久久专区| 丁香欧美五月| 熟女人妻精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 噜噜噜噜噜久久久久久91| 看免费av毛片| 亚洲自偷自拍三级| 国内久久婷婷六月综合欲色啪| 午夜福利18| av女优亚洲男人天堂| .国产精品久久| 色哟哟·www| 老女人水多毛片| eeuss影院久久| aaaaa片日本免费| 1000部很黄的大片| a在线观看视频网站| 国产精品国产高清国产av| 欧美黄色片欧美黄色片| 国产成人欧美在线观看| 成人av一区二区三区在线看| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 国产色爽女视频免费观看| 精品国产三级普通话版| 国产亚洲欧美98| 日本黄色视频三级网站网址| 亚洲五月天丁香| 亚洲成av人片在线播放无| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 日本成人三级电影网站| 99国产精品一区二区蜜桃av| 在线播放无遮挡| 丰满乱子伦码专区| 脱女人内裤的视频| 美女黄网站色视频| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 国产精华一区二区三区| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 免费在线观看日本一区| 欧美午夜高清在线| 午夜福利成人在线免费观看| 国产av在哪里看| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 91久久精品国产一区二区成人| 搡老熟女国产l中国老女人| 精品久久国产蜜桃| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看| 中出人妻视频一区二区| av天堂在线播放| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 亚洲精华国产精华精| 人妻制服诱惑在线中文字幕| 俄罗斯特黄特色一大片| 成人精品一区二区免费| 免费高清视频大片| 十八禁国产超污无遮挡网站| 草草在线视频免费看| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 国产日本99.免费观看| 亚洲 国产 在线| 久久久国产成人免费| 亚洲电影在线观看av| 老鸭窝网址在线观看| 久久精品国产亚洲av涩爱 | 宅男免费午夜| 国产精品永久免费网站| 欧美bdsm另类| 91麻豆av在线| 亚洲精品日韩av片在线观看| 麻豆av噜噜一区二区三区| 亚洲精品在线观看二区| 国产视频内射| 国产三级在线视频| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 久9热在线精品视频| av在线蜜桃| 一级作爱视频免费观看| 久久久久久九九精品二区国产| 能在线免费观看的黄片| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 成人毛片a级毛片在线播放| 99精品久久久久人妻精品| 成人毛片a级毛片在线播放| 久99久视频精品免费| 亚洲专区中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 91久久精品电影网| 国产真实乱freesex| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 国产午夜福利久久久久久| 精品一区二区三区视频在线| 悠悠久久av| 一进一出抽搐动态| 午夜免费成人在线视频| 午夜福利成人在线免费观看| 97超视频在线观看视频| 色综合婷婷激情| 少妇被粗大猛烈的视频| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 亚洲18禁久久av| 色综合婷婷激情| 综合色av麻豆| 亚洲国产日韩欧美精品在线观看| 国产精品自产拍在线观看55亚洲| 欧美日本视频| 少妇裸体淫交视频免费看高清| 久久久久久久久久成人|