李子言
摘 要 柯西分布是一種基于中位數(shù)與中位數(shù)絕對(duì)偏差的分布,在數(shù)學(xué)、物理學(xué)等中都有重要的意義和作用。其中,一元柯西分布被大眾所熟知,本文以此引入多元柯西分布的分析,初步介紹了多元柯西分布的定義和相關(guān)性質(zhì)。
關(guān)鍵詞 多元柯西分布 特征函數(shù) 密度函數(shù)
中圖分類號(hào):O212 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A ? ?DOI:10.16400/j.cnki.kjdk.2021.10.020
Abstract Cauchy distribution is a kind of distribution based on median and absolute deviation of median, which has important significance and role in mathematics, physics and so on. Among them, the univariate Cauchy distribution is well known by the public. This paper introduces the analysis of multivariate Cauchy distribution, and introduces the definition and related properties of multivariate Cauchy distribution.
Keywords multivariate Cauchy distribution; characteristic function; density function
4 結(jié)語
本文通過一元柯西分布引入,首先給出了多元柯西分布的定義,找到多元柯西分布與一元柯西分布在特征函數(shù)上的關(guān)聯(lián)性、多元柯西分布的例子并推演性質(zhì)。Cauchy分布在許多領(lǐng)域得到了應(yīng)用,包括生物分析、臨床試驗(yàn)、故障率壽命遞減部件的隨機(jī)建模、排隊(duì)理論和可靠性。通過對(duì)多元柯西分布及其性質(zhì)的分析,掌握其特點(diǎn),順利運(yùn)用于更多統(tǒng)計(jì)實(shí)踐當(dāng)中。
參考文獻(xiàn)
[1] Information theoretic approach to statistical properties of multivariate Cauchy-Lorentz distributions,Sumiyoshi Abe and A K Rajagopal 2001 J. Phys. A: Math. Gen. 34 8727.
[2] A representation of the symmetric bivariate Cauchy distribution,Thomas S.Ferguson,University of California,Los Angeles.
[3] On the multivariate skew-normal-Cauchy distribution,F(xiàn). Kahrari,M. Rezaei,F(xiàn). Yousefzadeh,R.B. Arellano-Valle.
[4] Generalized skew-elliptical distributions and their quadratic forms. Genton, M.G., Loperfido, N,2005. Ann. Inst. Statist. Math. 57, 389-401.