• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures*

    2021-07-30 07:40:14ChaoJin金超FengZhuRen任鳳竹WeiSun孫偉JingYuLi李靜玉BingWang王冰andQinFenGu顧勤奮
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王冰孫偉

    Chao Jin(金超) Feng-Zhu Ren(任鳳竹) Wei Sun(孫偉) Jing-Yu Li(李靜玉)Bing Wang(王冰) and Qin-Fen Gu(顧勤奮)

    1Institute for Computational Materials Science,School of Physics and Electronics,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province,Henan University,Kaifeng 475004,China

    2Australian Synchrotron,ANSTO,800 Blackburn Rd,Clayton,VIC,3168,Australia

    Keywords: first-principles calculations, BiFeO3/LaTiO3 heterostructures, magnetoelectric coupling effect,polarization regulation

    1. Introduction

    Traditional perovskite-type multiferroic compounds are a class of materials with general formula ABO3,A-site deviates from the center of symmetry of the crystal to achieve spontaneous polarization and B-sites with unpaired electrons provides for spontaneous magnetic order, so they can accommodate various electronic and magnetic ground states.[1,2]These materials exhibit simultaneous ferromagnetism(FM)and ferroelectricity(FE),and the two ferric properties change with an external magnetic field and electric field. The novel magnetoelectric(ME)coupling effect enables multiferroics application in information storage,spintronic devices,magnetic sensors,and capacitor and inductor integrated devices.[3-8]However,single-phase multiferroics are quite rare at room temperature, because the ferromagnetic requires unpaired electrons in partially occupied d-orbitals or f-orbitals and ferroelectricity requires empty d-orbitals which is mutually exclusive in nature.[9-11]The ME coefficient is usually weak because there is associated with different ions, which is far from the application. Therefore, many researchers make a concerted effort to find the multiferroic composite materials and a study of the ME coefficient improvement at room temperature has become a research hotspot.

    Heterogeneous multiferroics combining ferromagnetic and ferroelectric materials together can produce a strong magnetoelectric coupling effect.[9]Based on the heterostructures(HSs) of perovskite oxides, the FE and FM phases at the interface have been designed through advanced thin film material preparation technology to achieve the magnetoelectric coupling at the atomic scale.[12-14]Due to the strong correlation effect of d-orbital electrons,[15,16]the surface/interface of the HSs has lattice reorganization and electron reorganization which can produce a multi-degree-of-freedom interaction of“spin-orbit-charge-lattice”,[1,6,17-19]such as,transition between metal and insulator,magnetism,two-dimensional electron gas (2DEG),etc.[17,20-22]2DEG with high electron mobility has important applications in spintronic devices, and its existence strongly depends on the composition of the interface.[23]Once the material is synthesized,the characteristics of its interface are fixed,it is difficult to grow the system that can regulate 2DEG and magnetoelectric coupling.[24,25]Therefore,it is necessary to control the polarization direction of the ferroelectric material by applying electric field and then realize the control of properties at the interface.[2,26-28]

    In the typical Mott-Hubbard insulator perovskite oxideRTiO3(Rrepresents the trivalent rare-earth ions),[29-31]LaTiO3(LTO) exhibits G-type antiferromagnetic (GAFM),[32,33]and its band gap is small (~0.2 eV). At low carrier doping levels, LTO can easily become a metal, and thus lead to a metal-to-insulation transition occurs.[34,35]The 2DEG was found at the interface of two insulators SrTiO3/LaTiO3and SrTiO3/LaAlO3.[36,37]In LaAlO3/LTO HSs, the spin orbits in LTO could be effectively controlled by introducing LaAlO3,[38,39]which is particularly important in magnetoelectric coupling devices. The BiFeO3(BFO)is the only room temperature single-phase multiferroic material with significant spontaneous polarization.[40,41]Compared with the rhombohedral phase BFO,the tetragonal phase BFO possesses larger spontaneous polarization and charge transfer excitation.[42-44]Due to the strong magnetoelectric coupling,the tetragonal BFO is often chosen as the substrate.[28]For instance, the study by Yinet al.showed that Fe4N/BFO was anisotropy under the condition of adjustable electric field.[44,45]Yinet al.also found that the BFO/LTO superlattices had metal-insulation transition and 2DEG with different terminations.[19]It is well known, in artificially prepared superlattices, that the application of an external electric field can only affect the magnetic properties of the superlattice surface (it has little internal impact). However, the method of ferroelectric polarization control can effectively regulate the overall magnetic properties of the superlattice. Therefore,the BFO/LTO HSs are constructed, not only to introduce the surface/interface effect into the structure(we hope that the surface/interface effects can bring new characteristics to the HS),but also to control the spontaneous polarization of the material by applying electric field. This may achieve the purpose of controlling magnetism with polarization simultaneously.In addition, it is worthy of attention that the influence of the same interface and different polarization configurations on the electronic structure and magnetic properties for LTO thin films.

    In our work, by using density functional theory (DFT)method, we mainly investigate the effect of the magnetic order and magnetic moment of the LTO film by changing the polarization direction of the BFO.The ideal interface without any defects and adsorption in the heterogeneous structure has been fully considered in our calculation model. In depth analysis shows that the difference of magnetic properties attributes to charge transfer from Ti-t2gorbital to O-px,yorbital and the electronic rearrangement inside Ti-t2g. Besides, the 2DEG is also found in BFO/LTO HSs,and the inversion of the polarization direction gives rise to the change in the density of 2DEG.This work will be of great significance in the practical application of magnetoelectric storage materials.

    2. Methods

    Our first-principles calculations are carried out within the Perdew-Burke-Ernzerhof functional revised for solids(PBEsol).[46]The generalized gradient approximation(GGA)and projector-augmented wave (PAW) method are employed for the core-valance interaction and the exchange-correlations function,[5,47]which implemented in the Viennaab initiosimulation package (VASP).[46,48]The valance electrons configurations had been employed for Bi-5d106s26p3, Fe-3d74s1,O-2s22p4, La-5s25p65d16s2, and Ti-3p63d24s2, respectively.The energy cut off for plane wave is chosen to be 500 eV andΓ-centered 7×7×1 Monkhorst-Packk-points meshes are performed in the Brillouin zones integration for the BFO/LTO HSs. Structural relaxation is performed until the Hellmann-Feynman force on each ion converged to be less than 0.03 eV/?A. The thickness of the vacuum layer is set to be 15 ?A to avoid the interaction between periodic images of thezaxis. In addition,to partially correct the Coulomb interaction on d orbitals, we adopt HubbardUeff=4 eV of Fe 3d orbitals andUeff=3 eV for Ti 3d orbitals by the GGA+Umethod of Dudarevet al.’s approach.[10,19,28]Previous studies have shown that spin orbit coupling(SOC)has small influence on BFO and LTO.[19,28,49]Therefore, the SOC effect is not considered in this work.

    Fig.1. (a)-(d)Side view along c axis of the BFO/LTO HSs for different terminals. Panels(a)and(b)are BiO/TiO2 interface;(c)and(d)are FeO2/LaO interface. The grey arrows represent the FE polarization of BFO,the up and down arrows mean respectively+P and-P states. The part enclosed by the yellow solid line is the interface part of the BFO/LTO HSs.

    3. Results and discussion

    In order to determine the stability of our established HSs models,the interfacial formation energy is calculated,which is defined asEform=(EBFO/LTO-EBFO-ELTO)/A,whereEformis the formation energy of per unit area;EBFO/LTO,EBFO,andELTOare the total energy of the BFO/LTO HS, the BFO surface, and the LTO surface, respectively.A(30.264 ?A2)is the interface area of the BFO/LTO HS.The adsorption energies of the all BFO/LTO HSs models are listed in Table 1. The FLtype HSs have lower formation energies (Eform) than the BTtype HSs,indicating the FL-type HSs are more stable than the BT-type HSs. For the BT-type HSs,whether in the case of+Por-P, the overall behaviour is a metallic state, meanwhile,the calculated magnetic order of BFO and LTO parts are all the G-AFM order and ferrimagnetic(FiM)order respectively(Table 1 and Table S1),which means that the physical properties of the BT-type HSs are not regulated by FE polarization.However,for the FL-type HSs,the magnetic order of LTO part changes FiM order from A-AFM when the polarization direction of BFO changes-Pfrom +P, which is also confirmed by the calculated exchange constants (Fig. S1 and Table S2).Thus, it is successfully realized the local FM order switched by the FE polarization at the I-LTO layer. More interestingly,changing the directions of polarization, the direction of the easy magnetization axis (EMA) also changes from [001] to[100]. By switching the different states of the easy magnetization axis, it is expected to be applied to logic devices. Based on the above analysis,it shows that the FL-type HSs are more energetically favourable and their magnetic order as well as magnetic anisotropy can be effectively controlled by FE polarization. Therefore, we only focus on the properties of the FL-type HSs in the below.

    Table 1. Physical properties of the BFO/LTO HSs in the case of +P and-P.

    Fig.2. (a)The average displacements between anions and cations(D)in the interlayer for FL-type HSs. (b)The deformation of the LTO part is described by the Jahn-Teller model of oxygen octahedra(Q2 and Q3). Panels(c),(d),(e)are the schematic diagrams of the tilting and rotation of the oxygen octahedron,Q2 distortion,and Q3 distortion,respectively.

    It is well known that the anion and cation displacement of the system reflects the change of its structure and interlayer electric dipole moment. The average displacements between anions and cations for the FL-type HSs are given in Fig.2(a),the two vertical dotted portion represents the interface portion of the HSs. Firstly, we found that the central positions of the anion could not overlap with that of the cation in each layer at the interface of the LTO parts under the BFO polarization, which indicates that the LTO parts are polarized and the oxygen octahedra of the LTO parts appear ferroelectric distortion and built-in electric field. Secondly, the change trend of the displacements between cations and anions under polarized states+Pis just the same as that of-Pin the LTO parts,which implies the LTO part is not sensitive to the BFO polarization direction. However, the average displacements between anions and cations near the interface in the case of-Pare larger than that of in the case of+P,owing that the direction of the built-in electric field due to ferroelectric distortion in the LTO part is the same as the direction of the polarized electric field of the BFO.[52]This qualitatively shows that the amount of charge transfer in the case of-Pis greater than that of in the case of +P. The transferred electrons caused by this kind of ferroelectric distortion ultimately lead to the emergence of 2DEG in the HSs.

    The magnetic moments of the FL-type HSs and net magnetization of Fe and Ti atoms are further investigated as listed in Table 2. Combined with Tables 1 and 2,we find out that the BFO part always maintains the G-AFM order (in-plane antiparallel magnetic order and out-plane antiparallel magnetic order)for all the studied systems. This shows that the built-in electric field in the LTO part and interface reconstruction only affect the magnetic moment of the Fe atoms,but not alter the magnetic order of the BFO part. However,due to the reversal of polarization, the magnetic order of the LTO part changes from A-AFM to FiM, and the magnetic moment of Ti atoms decreases significantly. In addition, when LTO (space groupPbnm)and BFO(space groupP4mm)form a heterostruction,BFO will suppress the GdFeO3-type distortion of LTO.Moreover, in the process of structural relaxation, the symmetry of the system is broken due to the joint action of interface reconstruction,substrate fixation and FE polarization. This will cause the magnetic moments of the same layer of magnetic atoms to be slightly different,but this will not affect the qualitative analysis of magnetism. We also measured the average bond lengths of oxygen octahedra at the interface under the case of +Pand-P, which were 1.988 ?A and 1.985 ?A, respectively. The bond length under these two cases is slightly smaller than that of the bulk LTO value(2.002 ?A),indicating that the polarization did not significantly influence the Ti-O bond length and the Ti-O bond length is not the main reason of the magnetic order change.

    Table 2. Magnetic moments(Mag)and net magnetization(M)of Fe and Ti atoms in the FL-type HSs,as well as rotation angles(φ)and tilting angles(θ)for Jahn-Teller distortion of the LTO part in the case of+P and-P.

    In order to qualitatively explain the physical mechanism of magnetic regulation, we analysed the density of states(DOS) of the FL-type HSs (Fig. 3). No matter in the case of +Por-P, the total density of state (TDOS) at the Fermi level is not zero, indicating that HSs exhibit the characteristics of metal. As can be seen from the layered density of state(LDOS), the DOS at Fermi level is attributed dominantly by the Ti-3d states. The BFO part is insulated, while the LTO part is conductive, indicating that the electron can only move in thexy-plane to form a 2DEG.The concentration of 2DEG in the case of+Pis higher than that of in the-Pcase,which further reflects that the conductivity of the HSs in the case+Pis stronger than that of in the case-P. Simultaneously, with the reversal of polarization, the Ti-3d state moves to the high energy region and the occupancy of Ti-3d near the Fermi level is getting smaller gradually,the interface I-LTO layer changes from metal to insulating state. In addition,in the case of+P,the 2DEG exhibits ferromagnetism in I-LTO and II-LTO parts respectively owing to the dominance of same spin polarized(spin-up or spin-down)states,while the whole system exhibits A-AFM.

    Fig. 3. For FL-type HS, panels (a) and (b) are expressed as TDOS and LDOS in the case of +P and -P, respectively. The solid grey line indicates TDOS;The solid blue line represents the Fe-3d states. The solid green line represents the Ti-3d states. The solid red line represents the O-2p states. The black dotted line represents the Fermi level. The up and down grey arrows represent+P and-P states,respectively.

    Table 3. The average transferred electron numbers for the Ti-t2g (dxy, dyz,dzx) orbitals in the FL-type HSs relative to that of the bulk LTO under the+P and-P cases.

    For perovskite transition metal oxides, the arrangement of 3d orbitals usually determines its electronic structure and physical properties. Due to the effect of the octahedral symmetry field,the 3d orbitals will split into t2gand eg. To better elucidate the microscopic mechanism of the change of magnetic order and magnetic moment, we perform an elaborate DOS analysis of Ti-3d and O-2p in LTO parts, as shown in Fig.4. It can be clearly seen the states at the Fermi level and the magnetic moments of the LTO parts are substantially ascribed to the partially occupied Ti-t2gorbital. When the polarization is reversed,there is a strong hybrid between the Ti-t2gorbital and the O-px,yorbital, so that the electrons in the t2gorbital move toward O-px,yorbit transfer and the occupation of electrons in the Ti-t2gorbital at the Fermi level decreases.Therefore, the magnetic moment of Ti atoms at the II-LTO layer changes from 0.6μBto 0.166μB,and the magnetic moment of Ti atom at the I-LTO layer changes from 0.487μBto 0.134μB. It can be seen from Figs.4(c)and 4(d)that, in the case of+Pand-P,the shape and trend of the PDOS are significantly different for the I-LTO layer.Therefore, we further draw PDOS of dxy, dyz, and dzxorbits for the I-LTO layer Ti atoms as shown in Figs.4(e)and 4(f). We can see that the energy of the dxyorbit is lower than the dzxand dyzorbits,which is consistent with the tendency of electrons to occupy dxyorbitals due to theQ3distortion induced compression of oxygen octahedron alongzdirection. We also integrate the state density of the dxy,dyz,and dzxorbitals to obtain the corresponding transferred electron numbers for Ti-dxy, Ti-dyz, and Ti-dzxorbits in the FL-type HSs relative to that of in the bulk LTO,as presented in Table 3. When the FE polarization is+P,the Tidxy/yzorbital loses electrons relative to the bulk LTO,and the dzxorbital gains electrons,which is likely to change the magnetic order of the LTO part from G-AFM to A-AFM. When the FE polarization is changed to-P, the main dxy/yzorbital loses electrons, and the overall Ti-t2gorbital loses electrons more. This leads to the emergence of net magnetic moment in the system, which in turn changes the magnetic order of the LTO part from G-AFM to FiM. As simple summary of the above,FL-type HSs exhibits different properties from the bulk LTO. The FE polarization state of the substrate changes the magnetism of the LTO part at the interface. Due to the combined effect of the electron transfer between the Ti-3d and O-2p orbitals and the electron transfer inside the Ti-t2gorbital,the magnetic order of the system changes.

    Fig.4. The projected-DOS(PDOS)are shown for the FL-type HSs in the+P and-P cases. Where panels(a)and(b)are the PDOS of the II-LTO layer;panels(c)and(d)are the PDOS of the I-LTO layer;panels(e)and(f)are the PDOS of Ti-dxy,Ti-dyz,and Ti-dzx orbitals for the I-LTO layer. The up and down grey arrows represent+P and-P states,respectively.

    4. Conclusion

    In summary, we calculated the magnetic and electronic structure of the multiferroic BFO/LTO HSs.This performance can be adjusted by changing the FE polarization direction in the BFO/LTO HSs.We found that for the BT-type heterostructure, the polarization reversal has no effect on the magnetic and electronic structure. For the FL-type heterostructure, in the case of+P,the magnetic order of the LTO part is A-AFM,and the heterojunction as a whole is metallic. The appearance of 2DEG can be clearly observed at the interface, indicating that it has strong conductivity. In the case of-P,the LTO part is FiM ordered and shows metallicity and appears 2DEG as well, but the concentration of 2DEG is lower than that of in the case of+P,which means that the conductivity is reduced.According to the analysis of crystal structure and electronic structure, the change of the magnetic order is mainly caused by the charge transfer inside Ti-t2gorbitals. Our work provides theoretical guidance for the control of physical properties through the re-orientation of FE polarization.This method of using polarization reversal to control conductivity and magnetic properties can be applied in future electronic devices.

    猜你喜歡
    王冰孫偉
    流螢和罌粟花
    文學(xué)港(2023年7期)2023-07-14 07:53:54
    孫偉美術(shù)作品
    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
    Analyze the opportunities and challenges faced by financial accounting in the era of big data
    Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
    法眼看平等教學(xué)設(shè)計(jì)
    藝術(shù)百家
    錯(cuò)在哪 ?
    名落孫山
    氣球
    久久精品久久久久久噜噜老黄| 久久久久久久国产电影| 91精品一卡2卡3卡4卡| 免费观看av网站的网址| 国产一区亚洲一区在线观看| 最后的刺客免费高清国语| 国产精品一二三区在线看| 老女人水多毛片| 国产成人精品福利久久| 99久久精品热视频| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 久久久久久久久久成人| 美女主播在线视频| 美女内射精品一级片tv| 直男gayav资源| 亚洲欧美日韩东京热| 免费看a级黄色片| 欧美另类一区| 男人爽女人下面视频在线观看| 国产色爽女视频免费观看| 波野结衣二区三区在线| 免费电影在线观看免费观看| 大香蕉97超碰在线| 青春草视频在线免费观看| 九九在线视频观看精品| xxx大片免费视频| 91久久精品国产一区二区成人| 国产精品伦人一区二区| www.av在线官网国产| 91aial.com中文字幕在线观看| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩另类电影网站 | 久久久久久久久久久丰满| 日韩,欧美,国产一区二区三区| 日本与韩国留学比较| 狂野欧美激情性xxxx在线观看| 午夜爱爱视频在线播放| 日韩在线高清观看一区二区三区| 91午夜精品亚洲一区二区三区| 有码 亚洲区| 下体分泌物呈黄色| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| 成人漫画全彩无遮挡| 国产乱来视频区| 国产又色又爽无遮挡免| 亚洲欧美精品专区久久| 99九九线精品视频在线观看视频| 国产精品蜜桃在线观看| 岛国毛片在线播放| 国产精品久久久久久精品电影| 美女内射精品一级片tv| 国产高清三级在线| 久久热精品热| 偷拍熟女少妇极品色| 最近的中文字幕免费完整| 欧美变态另类bdsm刘玥| 神马国产精品三级电影在线观看| 97在线视频观看| 亚洲人与动物交配视频| 日韩国内少妇激情av| 亚洲精品日韩av片在线观看| 亚洲精品影视一区二区三区av| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 色吧在线观看| 亚洲av免费高清在线观看| 国产一区有黄有色的免费视频| 肉色欧美久久久久久久蜜桃 | 免费看不卡的av| 亚洲一区二区三区欧美精品 | 白带黄色成豆腐渣| xxx大片免费视频| 国产淫片久久久久久久久| 日韩电影二区| 久久久午夜欧美精品| 99九九线精品视频在线观看视频| 内地一区二区视频在线| 麻豆久久精品国产亚洲av| 高清日韩中文字幕在线| 乱系列少妇在线播放| 久热这里只有精品99| 亚洲精品乱码久久久久久按摩| 精品一区在线观看国产| 欧美丝袜亚洲另类| 国产白丝娇喘喷水9色精品| 中文字幕av成人在线电影| 久久久精品94久久精品| 蜜桃亚洲精品一区二区三区| 九九在线视频观看精品| 丰满乱子伦码专区| 国产精品久久久久久久久免| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 亚洲va在线va天堂va国产| 国产 一区 欧美 日韩| 日本-黄色视频高清免费观看| 亚洲av福利一区| 简卡轻食公司| 免费看光身美女| 日韩伦理黄色片| 性插视频无遮挡在线免费观看| 日日啪夜夜爽| 22中文网久久字幕| 视频中文字幕在线观看| 极品少妇高潮喷水抽搐| 国产精品一区二区性色av| 日韩av免费高清视频| 亚洲精品第二区| 人人妻人人爽人人添夜夜欢视频 | 亚洲最大成人中文| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 女人久久www免费人成看片| av国产免费在线观看| 少妇猛男粗大的猛烈进出视频 | 一级毛片电影观看| 国产视频内射| 大陆偷拍与自拍| 亚洲自偷自拍三级| 国产视频内射| 亚洲精华国产精华液的使用体验| 久久久久久国产a免费观看| 国产黄片视频在线免费观看| 亚洲天堂国产精品一区在线| 国产爱豆传媒在线观看| 国产av国产精品国产| 直男gayav资源| 亚洲欧美一区二区三区黑人 | 亚洲av福利一区| 亚洲精品第二区| 日韩国内少妇激情av| 亚洲伊人久久精品综合| 99热全是精品| 三级男女做爰猛烈吃奶摸视频| 精品午夜福利在线看| 狂野欧美激情性bbbbbb| 亚洲av二区三区四区| 中文精品一卡2卡3卡4更新| 免费黄色在线免费观看| 国产黄片美女视频| 夫妻午夜视频| 亚洲人成网站在线播| 美女脱内裤让男人舔精品视频| 丰满人妻一区二区三区视频av| 五月天丁香电影| 少妇的逼水好多| 精华霜和精华液先用哪个| 一级毛片我不卡| 午夜免费观看性视频| 亚洲欧美日韩无卡精品| 国内精品宾馆在线| 国产成人freesex在线| 国产精品久久久久久精品电影| 亚洲精品日本国产第一区| 久久亚洲国产成人精品v| 又大又黄又爽视频免费| 午夜爱爱视频在线播放| 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 欧美激情久久久久久爽电影| 久久久国产一区二区| 久久99热6这里只有精品| 女人久久www免费人成看片| 国产一区亚洲一区在线观看| 亚洲av不卡在线观看| 亚洲成色77777| 少妇的逼好多水| 免费看av在线观看网站| 1000部很黄的大片| 午夜亚洲福利在线播放| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 亚洲四区av| 久久亚洲国产成人精品v| 成人国产麻豆网| 日韩亚洲欧美综合| 日韩国内少妇激情av| 18禁裸乳无遮挡动漫免费视频 | 九九久久精品国产亚洲av麻豆| 在线 av 中文字幕| 九草在线视频观看| 夫妻午夜视频| 国产一级毛片在线| 亚洲av欧美aⅴ国产| 精品少妇久久久久久888优播| 精品亚洲乱码少妇综合久久| av在线观看视频网站免费| 亚洲精品影视一区二区三区av| 日韩一区二区视频免费看| av免费观看日本| 毛片女人毛片| 色综合色国产| 久久ye,这里只有精品| 亚洲美女搞黄在线观看| 在线观看av片永久免费下载| 最近手机中文字幕大全| 大香蕉久久网| av在线天堂中文字幕| 高清在线视频一区二区三区| 日产精品乱码卡一卡2卡三| 97热精品久久久久久| 国产午夜精品一二区理论片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲成人av在线免费| 欧美少妇被猛烈插入视频| 亚洲人成网站在线播| av网站免费在线观看视频| 亚洲,一卡二卡三卡| 中文天堂在线官网| 久久ye,这里只有精品| 亚洲精品一区蜜桃| 亚洲激情五月婷婷啪啪| 欧美性猛交╳xxx乱大交人| 高清在线视频一区二区三区| av免费观看日本| 一边亲一边摸免费视频| 久久精品国产亚洲网站| 寂寞人妻少妇视频99o| 国产综合精华液| 国产大屁股一区二区在线视频| 免费高清在线观看视频在线观看| 久久久久精品性色| 九草在线视频观看| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 国产精品av视频在线免费观看| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 国产高清国产精品国产三级 | 老女人水多毛片| 三级国产精品欧美在线观看| 欧美成人a在线观看| 波多野结衣巨乳人妻| 99热国产这里只有精品6| videossex国产| 午夜免费男女啪啪视频观看| 亚洲自偷自拍三级| 亚洲国产精品国产精品| 亚洲天堂av无毛| 久久久久精品性色| 日本-黄色视频高清免费观看| 亚洲色图综合在线观看| 国产成人一区二区在线| 激情五月婷婷亚洲| 成年女人在线观看亚洲视频 | 国产高清三级在线| 日韩中字成人| 国产精品一二三区在线看| 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频 | 美女内射精品一级片tv| 九草在线视频观看| 综合色丁香网| 在线播放无遮挡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品日韩在线中文字幕| 亚洲国产精品成人久久小说| 永久网站在线| 性色avwww在线观看| 伦精品一区二区三区| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 国产乱人视频| 色婷婷久久久亚洲欧美| 日本免费在线观看一区| 一区二区三区免费毛片| h日本视频在线播放| 国产高清国产精品国产三级 | 欧美精品一区二区大全| 热99国产精品久久久久久7| 日本熟妇午夜| 少妇裸体淫交视频免费看高清| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 熟妇人妻不卡中文字幕| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 国产精品一区二区在线观看99| 一级毛片久久久久久久久女| 人人妻人人看人人澡| 成人国产av品久久久| 久久久久精品久久久久真实原创| 国产一级毛片在线| 日韩欧美精品v在线| 下体分泌物呈黄色| 我的老师免费观看完整版| 一区二区三区免费毛片| 一个人看的www免费观看视频| 欧美日韩视频高清一区二区三区二| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 中文字幕制服av| av在线观看视频网站免费| 国产精品久久久久久精品电影小说 | 免费av观看视频| xxx大片免费视频| 亚洲精品一区蜜桃| 成人国产麻豆网| 一级av片app| 日韩av在线免费看完整版不卡| 毛片女人毛片| 欧美xxⅹ黑人| 一级毛片我不卡| 久久久久久久久久久免费av| 久久韩国三级中文字幕| 成年版毛片免费区| 久久99热这里只频精品6学生| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 美女主播在线视频| 日本黄色片子视频| 国产亚洲5aaaaa淫片| 国产淫片久久久久久久久| 你懂的网址亚洲精品在线观看| 69av精品久久久久久| 高清视频免费观看一区二区| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 美女xxoo啪啪120秒动态图| 看黄色毛片网站| 国产黄a三级三级三级人| 一级爰片在线观看| 高清日韩中文字幕在线| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件| 极品教师在线视频| 亚洲成人中文字幕在线播放| 极品教师在线视频| 国产一区二区在线观看日韩| 中文字幕免费在线视频6| 97人妻精品一区二区三区麻豆| 韩国高清视频一区二区三区| 国产精品无大码| 三级国产精品片| 国产爱豆传媒在线观看| 51国产日韩欧美| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 制服丝袜香蕉在线| 男人爽女人下面视频在线观看| 永久网站在线| 亚洲国产色片| 国产成人精品福利久久| 国产国拍精品亚洲av在线观看| 直男gayav资源| 精品国产三级普通话版| 亚洲精品一区蜜桃| 成人国产av品久久久| 亚州av有码| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久| 国产成人免费观看mmmm| 最近最新中文字幕大全电影3| 99热网站在线观看| 欧美成人午夜免费资源| 欧美日韩精品成人综合77777| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 久久久久久伊人网av| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频 | 在线观看国产h片| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 成人无遮挡网站| 久久女婷五月综合色啪小说 | 在线精品无人区一区二区三 | 国产精品蜜桃在线观看| 又大又黄又爽视频免费| av在线app专区| 免费电影在线观看免费观看| 欧美97在线视频| 一级片'在线观看视频| 国产精品麻豆人妻色哟哟久久| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 99精国产麻豆久久婷婷| 国产亚洲精品久久久com| 永久网站在线| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 51国产日韩欧美| 亚洲一区二区三区欧美精品 | av免费观看日本| 大片免费播放器 马上看| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 亚洲av二区三区四区| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 老司机影院成人| 国产午夜福利久久久久久| 日韩亚洲欧美综合| 亚洲精品自拍成人| 国产视频内射| 欧美bdsm另类| 在线观看人妻少妇| 亚洲内射少妇av| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| 99re6热这里在线精品视频| 免费观看性生交大片5| 国产欧美亚洲国产| 精品久久久精品久久久| 日本黄大片高清| 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的 | 插逼视频在线观看| 在线 av 中文字幕| 日本黄色片子视频| 91aial.com中文字幕在线观看| 国产v大片淫在线免费观看| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 夜夜爽夜夜爽视频| 在线观看国产h片| 国产成人freesex在线| 亚洲国产精品成人综合色| 色网站视频免费| 国内精品宾馆在线| 国产黄色免费在线视频| 女的被弄到高潮叫床怎么办| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 午夜福利在线观看免费完整高清在| 一本久久精品| 欧美精品一区二区大全| 国产亚洲一区二区精品| 亚洲美女视频黄频| 免费少妇av软件| 丰满乱子伦码专区| 国产成人freesex在线| 嫩草影院入口| 免费观看在线日韩| 日韩 亚洲 欧美在线| 国产精品福利在线免费观看| 内地一区二区视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲在线观看片| 欧美少妇被猛烈插入视频| 久久久久久久久久成人| 97热精品久久久久久| 成人毛片60女人毛片免费| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 男女啪啪激烈高潮av片| 国产v大片淫在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品50| 精品久久国产蜜桃| 亚洲,欧美,日韩| 欧美成人a在线观看| 制服丝袜香蕉在线| 久久99热6这里只有精品| 你懂的网址亚洲精品在线观看| 色婷婷久久久亚洲欧美| 国产精品福利在线免费观看| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 亚洲欧美成人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 全区人妻精品视频| 欧美xxxx性猛交bbbb| 精华霜和精华液先用哪个| 乱码一卡2卡4卡精品| 欧美国产精品一级二级三级 | 亚洲人成网站在线观看播放| 女人十人毛片免费观看3o分钟| 夜夜看夜夜爽夜夜摸| 久久精品夜色国产| 26uuu在线亚洲综合色| 久久久久久久亚洲中文字幕| 国产成人freesex在线| 天天躁日日操中文字幕| 纵有疾风起免费观看全集完整版| 成人鲁丝片一二三区免费| 国产精品久久久久久精品电影| 可以在线观看毛片的网站| 综合色丁香网| 亚洲电影在线观看av| 狂野欧美激情性bbbbbb| 男女下面进入的视频免费午夜| 亚洲在线观看片| 99九九线精品视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 国产人妻一区二区三区在| 亚洲天堂av无毛| 最近最新中文字幕大全电影3| 久久久精品94久久精品| h日本视频在线播放| 国产淫片久久久久久久久| 精品人妻视频免费看| 中文字幕人妻熟人妻熟丝袜美| 久久久久久国产a免费观看| 国产欧美亚洲国产| 国产老妇伦熟女老妇高清| 日韩欧美精品v在线| 在线观看人妻少妇| 国产精品精品国产色婷婷| 成人亚洲精品一区在线观看 | 亚洲精品456在线播放app| 又大又黄又爽视频免费| av专区在线播放| 亚洲欧美日韩卡通动漫| 永久免费av网站大全| 男人狂女人下面高潮的视频| 日韩三级伦理在线观看| 久久久久久久久久成人| 国产亚洲精品久久久com| 国产黄频视频在线观看| 国产大屁股一区二区在线视频| 噜噜噜噜噜久久久久久91| 夫妻性生交免费视频一级片| 国产中年淑女户外野战色| 国产精品秋霞免费鲁丝片| 人妻 亚洲 视频| 91精品伊人久久大香线蕉| 两个人的视频大全免费| 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| 久久久久国产网址| 午夜爱爱视频在线播放| 视频区图区小说| 国产伦精品一区二区三区四那| 国产成人免费无遮挡视频| 91久久精品电影网| 欧美极品一区二区三区四区| 国产黄a三级三级三级人| 精品酒店卫生间| 人妻少妇偷人精品九色| 日韩伦理黄色片| av专区在线播放| 一个人观看的视频www高清免费观看| 国内少妇人妻偷人精品xxx网站| 久久久久久久国产电影| 国国产精品蜜臀av免费| 亚洲欧美日韩东京热| 中文乱码字字幕精品一区二区三区| 欧美日韩精品成人综合77777| 联通29元200g的流量卡| 午夜福利视频精品| 超碰97精品在线观看| 少妇人妻久久综合中文| 日韩在线高清观看一区二区三区| 一本久久精品| 精品人妻视频免费看| 欧美97在线视频| 欧美zozozo另类| 国产永久视频网站| 国产久久久一区二区三区| 国产亚洲午夜精品一区二区久久 | 中文乱码字字幕精品一区二区三区| 亚洲精品成人久久久久久| 成人一区二区视频在线观看| 免费观看无遮挡的男女| 男女啪啪激烈高潮av片| 极品少妇高潮喷水抽搐| 亚洲av一区综合| 国产午夜福利久久久久久| 欧美成人精品欧美一级黄| 高清av免费在线| 国产黄片美女视频| 日韩一区二区三区影片| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 亚洲伊人久久精品综合| av在线亚洲专区| 久久国内精品自在自线图片| 亚洲真实伦在线观看| 真实男女啪啪啪动态图| 69人妻影院| 91久久精品电影网| 女的被弄到高潮叫床怎么办| 久久精品综合一区二区三区| 美女脱内裤让男人舔精品视频| 国产美女午夜福利| 深夜a级毛片| 欧美极品一区二区三区四区| 中国三级夫妇交换| 波多野结衣巨乳人妻| 国产av国产精品国产| 亚洲av电影在线观看一区二区三区 | 欧美97在线视频| 美女xxoo啪啪120秒动态图| 久久久久国产网址| 国产亚洲av嫩草精品影院| 精品熟女少妇av免费看| 人妻少妇偷人精品九色| 精品久久久久久久久亚洲| 精品一区二区三卡| 噜噜噜噜噜久久久久久91| 亚洲av二区三区四区| 亚洲av免费高清在线观看| 久久热精品热| 欧美高清性xxxxhd video| 一级片'在线观看视频| 国产毛片在线视频| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 97精品久久久久久久久久精品| 精品国产乱码久久久久久小说| 在线观看人妻少妇| 丰满乱子伦码专区| 岛国毛片在线播放| 热99国产精品久久久久久7| 国产午夜精品久久久久久一区二区三区|