• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      解析幾何最值問(wèn)題求解的基本思路探究

      2021-08-05 09:49:08李莉莉
      數(shù)理化解題研究 2021年10期
      關(guān)鍵詞:拋物線(xiàn)最值橢圓

      李莉莉

      (四川師范大學(xué)附屬中學(xué) 610000)

      一、聯(lián)系平面幾何知識(shí)求解解析幾何的最值問(wèn)題

      有一類(lèi)解析幾何問(wèn)題會(huì)與平面幾何的知識(shí)建立密切的聯(lián)系,同學(xué)們需要借助題目中的已知條件建立坐標(biāo)系,并尋找目標(biāo)函數(shù),然后將平面圖形的解析式與解析幾何的解析式放在坐標(biāo)系中,尋找兩個(gè)圖象之間的關(guān)系,再利用求解函數(shù)最值問(wèn)題的方式尋找問(wèn)題的答案.

      分析題目中給出了橢圓曲線(xiàn)的方程,同學(xué)們需要先找到橢圓的焦點(diǎn),然后判斷橢圓與直線(xiàn)方程的位置關(guān)系,之后可將問(wèn)題進(jìn)行轉(zhuǎn)化,可將題目中的“橢圓D的長(zhǎng)軸最短”這個(gè)已知條件通過(guò)分析轉(zhuǎn)化為求解在直線(xiàn)l上求點(diǎn)P并使得|PF1|+|PF2|最小,從而求解題目要求.

      解由題目已知條件可知橢圓D的焦點(diǎn)為F1(-3,0)、F2(3,0).設(shè)存在點(diǎn)F1(x,y)是點(diǎn)F1(-3,0)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn),可以解得F1坐標(biāo)為(-9,6).

      在坐標(biāo)系上連接F1F2,則直線(xiàn)F1F2與直線(xiàn)l的交點(diǎn)為P,如圖所示.

      又因?yàn)辄c(diǎn)P在橢圓D上,將P點(diǎn)坐標(biāo)帶入可得λ=33

      二、結(jié)合圓錐曲線(xiàn)定義及相關(guān)性質(zhì)求解解析幾何的最值問(wèn)題

      在高中數(shù)學(xué)中常見(jiàn)的解析幾何問(wèn)題有橢圓、雙曲線(xiàn)、拋物線(xiàn)等等,相關(guān)的性質(zhì)、定義在課堂上都有幫助同學(xué)們進(jìn)行總結(jié),在日常練習(xí)的時(shí)候需要同學(xué)們準(zhǔn)確地把握相關(guān)的知識(shí),靈活的運(yùn)用解決解析幾何的最值問(wèn)題.而在運(yùn)用定義和性質(zhì)解決相關(guān)圓錐曲線(xiàn)問(wèn)題時(shí),可能會(huì)在圖線(xiàn)中出現(xiàn)三角形,同學(xué)們要切記可以使用三角形的相關(guān)性質(zhì)解答,該性質(zhì)為:“三角形的兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.”例如下面這道題.

      例2假設(shè)線(xiàn)段AB的長(zhǎng)固定不變?yōu)?,假設(shè)線(xiàn)段AB的兩端都在拋物線(xiàn)y2=x上移動(dòng),如果線(xiàn)段AB的中點(diǎn)為M,試著求解點(diǎn)M到y(tǒng)軸的最短距離,并且求出此時(shí)點(diǎn)M的坐標(biāo)具體為多少.

      分析:題目中給出的拋物線(xiàn)方程式的圖象為開(kāi)口向右的在第一象限和第四象限的圖象,而且題目中的已知條件可得AB在拋物線(xiàn)上移動(dòng)但AB連接的線(xiàn)段的長(zhǎng)是固定不變的.同學(xué)們首先需要求出拋物線(xiàn)的焦點(diǎn)F,然后將圖象上的A、B、F三點(diǎn)連接成一個(gè)三角形,試著將問(wèn)題進(jìn)行轉(zhuǎn)化,從而確定線(xiàn)段AB的位置.

      解根據(jù)題目條件可設(shè)拋物線(xiàn)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,分別作AC、BD、MK垂直于準(zhǔn)線(xiàn)交準(zhǔn)線(xiàn)l在點(diǎn)C、D、K上,如圖所示:

      則根據(jù)題目條件可知

      即當(dāng)線(xiàn)段AB是過(guò)F點(diǎn)的弦時(shí),

      |AF|+|BF|=|AB|

      則此時(shí)點(diǎn)M到y(tǒng)軸的距離最短.

      三、建立目標(biāo)函數(shù)求解函數(shù)的最值

      求解圓錐曲線(xiàn)的最值問(wèn)題可以將題目轉(zhuǎn)化為求解函數(shù)的最值問(wèn)題,因?yàn)閳A錐曲線(xiàn)方程本質(zhì)上來(lái)講也是一種函數(shù)的存在形式,所以同學(xué)們可以建立相關(guān)的目標(biāo)函數(shù),根據(jù)題目的要求對(duì)題目問(wèn)題進(jìn)行轉(zhuǎn)化,從而簡(jiǎn)化解題的過(guò)程,提高解題的準(zhǔn)確性.

      分析這道題目中,同學(xué)們首先應(yīng)該根據(jù)題目中給出的相關(guān)條件設(shè)出題目中方程的形式,分別將拋物線(xiàn)的方程和頂點(diǎn)用未知數(shù)的方式設(shè)出來(lái),然后根據(jù)相關(guān)的點(diǎn)求解點(diǎn)到直線(xiàn)的距離,將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題,從而得出拋物線(xiàn)的方程和直線(xiàn)方程.

      解根據(jù)題目可知拋物線(xiàn)C的頂點(diǎn)坐標(biāo)為(a,0),且a<0,

      因此拋物線(xiàn)的方程為y2=2(-2a)(x-a),即y2=-4a(x-a).

      將直線(xiàn)l與拋物線(xiàn)C的方程聯(lián)立可得

      x2+(2m+4a)x+m2-4a2=0

      該方程判別式Δ=(2m+4a)2-4(m2-4a2)>0,解得:

      由弦長(zhǎng)公式可得

      故△AOB的面積為

      當(dāng)且僅當(dāng)-4a-2m=m,即m=2時(shí)(適合m<-2a的要求)S△AOB的面積最大.

      解析幾何中的最值問(wèn)題的常用方法還有很多,希望各位同學(xué)能在遇到相關(guān)題目時(shí)注意總結(jié),注意建立目標(biāo)函數(shù),準(zhǔn)確地把握解析幾何的相關(guān)定義和性質(zhì),從而利用函數(shù)的相關(guān)知識(shí)求解最值,提高學(xué)生的解題能力,讓同學(xué)們學(xué)過(guò)的知識(shí)都能達(dá)到融會(huì)貫通的程度.

      猜你喜歡
      拋物線(xiàn)最值橢圓
      選用合適的方法,求拋物線(xiàn)的方程
      Heisenberg群上由加權(quán)次橢圓p-Laplace不等方程導(dǎo)出的Hardy型不等式及應(yīng)用
      單調(diào)任意恒成立,論參離參定最值
      巧求拋物線(xiàn)解析式
      例談橢圓的定義及其應(yīng)用
      聚焦圓錐曲線(xiàn)中的最值問(wèn)題
      巧用不等式求最值
      數(shù)列中的最值題型例講
      一道橢圓試題的別樣求法
      拋物線(xiàn)變換出來(lái)的精彩
      英吉沙县| 门源| 长宁区| 容城县| 兴隆县| 崇仁县| 纳雍县| 犍为县| 南木林县| 囊谦县| 崇文区| 调兵山市| 金湖县| 庆云县| 青川县| 铜梁县| 海口市| SHOW| 河东区| 昭觉县| 德钦县| 高台县| 吴堡县| 思茅市| 荣成市| 韶关市| 博罗县| 通江县| 光山县| 武宁县| 西乌珠穆沁旗| 方正县| 磴口县| 舟曲县| 汉川市| 莱芜市| 麻江县| 遂昌县| 调兵山市| 宁远县| 密山市|