王 瑋,王 輝,陳瀟岳,譚 帥,胡傳旺
?農(nóng)業(yè)水土工程?
再生水灌溉對亞熱帶典型土壤干縮裂縫演變特征的影響
王 瑋,王 輝※,陳瀟岳,譚 帥,胡傳旺
(湖南農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,長沙 410128)
為揭示再生水灌溉對亞熱帶土壤干縮裂縫及其發(fā)育過程的影響,該研究選取紅壤、潮土、紫色土、水稻土作為供試土壤,采用再生水原液(RW)及稀釋2倍(RW-2)、4倍(RW-4)、6倍(RW-6)4種不同濃度再生水進(jìn)行持續(xù)模擬灌溉,并進(jìn)行脫濕開裂試驗,提取干縮裂縫參數(shù)。結(jié)果表明:1)再生水灌溉抑制紅壤及促進(jìn)其余3種土壤干縮裂縫形成與發(fā)育,除RW-4處理促進(jìn)作用存在異常外,其余處理呈再生水濃度增高,抑制或促進(jìn)作用增大;2)再生水灌溉下,紅壤干縮開裂過程更為平緩,其余3種土壤干縮裂縫面積發(fā)育更集中于前期,低濃度再生水集中作用更大;3)土壤類型與再生水濃度對干縮裂縫具有交互作用,土壤類型對面積密度及其發(fā)育過程減緩段變化速率影響較大,再生水濃度對面積發(fā)育過程初始段變化速率、減緩段長度、加速段變化速率、長度發(fā)育過程變化速率峰值影響較大;4)土壤裂縫面積密度發(fā)育程度與含水率的關(guān)系可用三直線模型擬合,長度密度及連通性系數(shù)發(fā)育程度與含水率的關(guān)系可用log-logistic模型擬合。研究結(jié)果可為亞熱帶地區(qū)再生水水質(zhì)標(biāo)準(zhǔn)制定及其灌溉制度設(shè)計提供參考。
土壤;含水率;演變特征;圖像處理;再生水;干縮裂縫;裂縫參數(shù);亞熱帶
降雨時空分布不均、極端天氣頻發(fā)、水污染日趨嚴(yán)重等狀況正在加劇亞熱帶地區(qū)水質(zhì)性缺水、季節(jié)性缺水等問題[1],可循環(huán)利用的再生水具備量大、水源穩(wěn)定、制水成本低等特點,使用其替代常規(guī)灌溉用水是解決該區(qū)域農(nóng)業(yè)用水短缺問題的重要手段之一[2-3]。再生水作為污水或雨水經(jīng)適當(dāng)處理并達(dá)到特定水質(zhì)標(biāo)準(zhǔn)再次利用的水,將其用于農(nóng)業(yè)灌溉,除緩解水資源短缺外,還可優(yōu)化供水結(jié)構(gòu)、推進(jìn)水污染防治、保障水生態(tài)安全。因此,再生水灌溉在亞熱帶地區(qū)已受到越來越多的關(guān)注。
由于亞熱帶地區(qū)高溫氣候、土壤干濕交替頻繁,土壤干縮開裂是該區(qū)域常見且影響廣泛的一種自然現(xiàn)象[4]。該現(xiàn)象會顯著改變物質(zhì)在土壤中的遷移過程,從而在農(nóng)業(yè)生產(chǎn)方面導(dǎo)致諸多不良后果[5],如加速水分入滲、蒸發(fā),加劇干旱及土地鹽漬化風(fēng)險[6-7],并撕裂作物根系,降低水肥利用效率[8]。此外,土壤干縮開裂為雨水、灌溉水提供優(yōu)先流通道,進(jìn)一步破壞土壤內(nèi)部結(jié)構(gòu)[9],也為磷素、氮素等養(yǎng)分提供快速及遠(yuǎn)距離運移通道,加劇養(yǎng)分淋溶損失并增加地下水污染風(fēng)險[10]。土壤干縮裂縫受到眾多學(xué)者的關(guān)注,已有研究指出干縮裂縫作為土壤理化性質(zhì)及外界環(huán)境條件綜合作用的結(jié)果[11],其形態(tài)特征及發(fā)育過程受到黏粒成分及含量、有機(jī)質(zhì)數(shù)量、鹽離子類型及含量等土壤理化性質(zhì)的影響[12-14]。另一方面,使用再生水作為灌溉水源,雖經(jīng)二級處理,但水中鹽分、懸浮顆粒、有機(jī)物、油脂等物質(zhì)仍高于常規(guī)灌溉用水,這些物質(zhì)隨灌溉進(jìn)入土壤后將引起容重、孔隙率、土壤結(jié)構(gòu)、鹽分含量、pH值、有機(jī)質(zhì)等土壤理化性質(zhì)的變化[3,15],可能進(jìn)一步加劇土壤干縮裂縫的形成與發(fā)展。
目前,已有鹽分、有機(jī)質(zhì)等因素對裂縫影響的研究借鑒,但再生水成分復(fù)雜,對土壤干縮裂縫的作用尚不清晰且鮮有報道。鑒于此,本文以亞熱帶氣候及土壤條件為背景,選取該區(qū)域4種典型土壤為研究對象,通過模擬灌溉及脫濕開裂試驗,定量分析再生水灌溉4種典型土壤的干縮裂縫面積密度、長度密度、連通性系數(shù)等幾何形態(tài)及其發(fā)育過程,以此明晰再生水對亞熱帶地區(qū)土壤干縮開裂的影響,旨在為亞熱帶地區(qū)再生水水質(zhì)標(biāo)準(zhǔn)制定及其灌溉制度設(shè)計提供參考。
利用隨機(jī)、多點法分別于湖南長沙(113°07′33″E,28°11′45″N)、湖南岳陽(113°00′46″E,29°03′22″N)、湖南長沙(113°19′37″E,28°16′48″N)、湖南長沙(113°16′11″E,28°18′44″N)采集紅壤、潮土、紫色土、水稻土,并經(jīng)風(fēng)干、去除雜物、過2 mm篩后備用[16]。以上4類土壤均為亞熱帶地區(qū)常見土壤,供試土樣基本理化性質(zhì)如表1所示。
表1 供試土壤理化性質(zhì)
注:EC為土壤電導(dǎo)率;CEC為陽離子交換量。下同。
Note: EC represents soil electric conductivity; CEC represents cation exchange capacity. Same as below.
供試水樣取自長沙市花橋污水處理廠二級出水口,利用蒸餾水將每次采集的再生水原液(RW)分別稀釋2倍(RW-2)、4倍(RW-4)、6倍(RW-6)。試驗持續(xù)近1 a,由于再生水原液成分及其濃度波動較大,因此每次取水后抽取部分水樣測試其主要化學(xué)指標(biāo),供試水樣基本化學(xué)指標(biāo)平均值見表2。
表2 供試水樣基本化學(xué)指標(biāo)平均值
注:CK為蒸餾水處理;RW、RW-2、RW-4、RW-6分別為再生水原液、再生水稀釋2倍、再生水稀釋4倍及再生水稀釋6倍處理。下同。
Note: CK represents distilled water treatment; RW, RW-2, RW-4, and RW-6 respectively represents the treatments which include the reclaimed water and its diluted concentration of 2, 4, 6 times. Same as below.
1.2.1 試驗設(shè)計
為明晰再生水灌溉下土壤理化性質(zhì)變化對干縮裂縫及其發(fā)育過程的影響,本試驗先模擬灌溉供試土壤1 a,再使用該土壤開展脫濕開裂試驗。其中試驗設(shè)置4種土壤以及4種再生水濃度(RW、RW-2、RW-4、RW-6),蒸餾水(CK)作為對照組,每組處理3個重復(fù)。
將風(fēng)干備用供試土壤按照1.2 g/cm3的容重分層裝入底部已打孔的圓形PVC桶,土柱裝填高度為17 cm。待埋設(shè)于10 cm的張力計讀數(shù)達(dá)到80 kPa時進(jìn)行模擬灌溉,灌溉入滲后置于露天風(fēng)干,干濕循環(huán)近1 a后完成再生水模擬灌溉預(yù)處理[17]。
為減少土壤容重及容器邊界效應(yīng)對裂縫影響,將預(yù)處理后土壤按照1.28 g/cm3(經(jīng)預(yù)處理后不同深度的4種土壤的容重平均值)及10 mm土層厚度填裝入高度為10 cm、直徑為25 cm的圓形PVC管。采用間斷噴濕法對土壤進(jìn)行飽和,待土壤飽和后將其放入恒溫烘箱,利用空調(diào)控制室內(nèi)環(huán)境,使之相對維持穩(wěn)定狀態(tài)(溫度(27±2)℃),設(shè)置恒溫烘箱溫度為40 ℃(參考當(dāng)?shù)叵募菊舭l(fā)條件),并保證每次土樣放入烘箱同一位置。每隔1 h取出土樣,用NIKON D5200數(shù)碼相機(jī)(分辨率6 000×4 000,像素)進(jìn)行拍照,拍攝過程僅提供單一固定光源并遮擋外部環(huán)境光線,并用特定支架固定拍攝相機(jī)和土樣,確保每次拍攝位置、高度及垂直角度一致。每次拍照完后用電子秤(量程0~10 kg,精度0.1 g)稱取土樣質(zhì)量。多次重復(fù)該操作步驟,直到土樣的質(zhì)量不再發(fā)生變化為止。
1.2.2 圖片處理及土壤干縮裂縫參數(shù)定量提取方法
1)圖像處理:利用Photoshop取中心直徑為21.25 cm的圓作為研究部分,運用Matlab R2017a編程實現(xiàn)圖片灰度化、開運算、中值濾波、圖像減法及對比度增強(qiáng)等,消除由于土體表層含水率差異、微小孔隙等因素形成的噪點,當(dāng)含水率較高、裂縫不明顯時,輔以手動去除噪點。通過最大類間方差法求出合理閾值,轉(zhuǎn)化為二值化圖像并消除孤立塊噪點,參考文獻(xiàn)[18-19]處理方法提取骨架、消除骨架毛刺以及獲得土壤干縮裂縫幾何形態(tài)參數(shù),流程如圖1所示。
2)含水率:質(zhì)量含水率,%;初始裂縫含水率0:土樣開始隨機(jī)產(chǎn)生裂縫時質(zhì)量含水率,%。
3)土壤干縮裂縫參數(shù):引入裂縫面積密度Rc、裂縫長度密度Lc、裂縫連通性系數(shù)作為再生水對土壤干縮裂縫影響的評定指標(biāo)。為定量分析再生水濃度灌溉土壤干縮裂縫發(fā)育的程度,引入裂縫面積密度發(fā)育程度DLRc裂縫長度密度發(fā)育程度DLLc裂縫連通性系數(shù)發(fā)育程度DLK指標(biāo),公式[18]如下:
式中Rc表示裂縫面積密度,%;DLRc表示裂縫面積密度發(fā)育程度,%;A表示第條裂縫的面積,cm2;0表示研究區(qū)域面積,cm2;Rc(0)表示各處理下穩(wěn)定狀態(tài)下(=0)的裂縫面積密度,%;DLRc表示裂縫面積密度發(fā)育程度。
式中Lc表示裂縫長度密度,cm/cm2;DLLc表示裂縫長度密度發(fā)育程度;L表示第條裂縫的骨架長度,cm;Lc(0)表示各處理下穩(wěn)定狀態(tài)下(=0)的裂縫面積密度,cm/cm2。
式中bp為裂縫的交叉點數(shù);ep為裂縫的端點數(shù);表示裂縫連通性系數(shù),%(0)表示各處理下穩(wěn)定狀態(tài)下(=0)裂縫連通性系數(shù),DLK表示連通性系數(shù)發(fā)育程度。
1.2.3 土壤裂縫發(fā)育過程模型
Tang等[20]指出土壤干縮裂縫與土壤脹縮特性相關(guān)程度很高,因此本文借鑒描述土壤收縮特征曲線的三直線模型擬合各處理下裂縫面積密度、裂縫面積密度發(fā)育程度與含水率的動態(tài)規(guī)律,三直線模型[21]如下:
式中為經(jīng)驗常數(shù);ABS分別為滯留拐點、結(jié)構(gòu)拐點及飽和點處的質(zhì)量含水率,%。為探討再生水灌溉裂縫面積發(fā)育過程,設(shè)定質(zhì)量含水率>B~0為初始段、>A~B為加速段、0~A為減緩段,AB分別表示加速段與減緩段臨界點、初始段與加速段臨界點的質(zhì)量含水率,%;分別為各階段面積密度變化速率。
借鑒土壤收縮特征曲線常用的四參數(shù)log-logistic模型擬合長度密度、長度密度發(fā)育程度、連通性系數(shù)、連通性系數(shù)發(fā)育程度與含水率的動態(tài)規(guī)律,模型[22]如下:
式中在不同擬合中分別描述長度密度(Lc)、長度密度發(fā)育程度(DLLc)、連通性系數(shù)發(fā)育程度(DLK)等擬合指標(biāo);1表示為0時的臨界值;2表示為飽和含水率時的臨界值;為特征參數(shù)擬合曲線的拐點,%;為拐點處曲線斜率。為探討擬合指標(biāo)與含水率動態(tài)規(guī)律及再生水灌溉對動態(tài)過程的影響,本文借鑒文獻(xiàn)[23]中四參數(shù)log-logistic模型生物學(xué)意義,并結(jié)合干縮裂縫指標(biāo)發(fā)育過程:當(dāng)>時,干縮裂縫指標(biāo)在裂縫發(fā)育過程初期發(fā)育速率較慢,隨后發(fā)育速率增加,當(dāng)=時發(fā)育速率達(dá)到最大值,隨后減慢并最終趨于0,設(shè)定>~0及0~分別為干縮裂縫擬合指標(biāo)發(fā)育過程中加速段及減速段含水率范圍,PD(0與的差值)、PA(與0的差值)分別代表加速段長度及減速段長度,拐點處曲線斜率的相反數(shù)(?)為發(fā)育速率峰值。
1.2.4 數(shù)據(jù)處理
為獲取3個重復(fù)處理的各土壤裂縫參數(shù)平均值,通過線性內(nèi)插的方法將各實測點歸一至相同含水率,每相隔2.5%的質(zhì)量含水率取1個內(nèi)插點,求取對應(yīng)含水率下裂縫參數(shù)的平均值并計算標(biāo)準(zhǔn)差。采用Excel2010對原始數(shù)據(jù)進(jìn)行計算;在SPSS24.0運用LSD方法對各處理下土壤干縮裂縫指標(biāo)及擬合參數(shù)進(jìn)行多因素方差分析;使用1stOpt軟件進(jìn)行裂縫與含水率之間關(guān)系的三直線模型擬合;運用Origin 2017擬合四參數(shù)log-logistic方程及繪制圖形。
從試驗處理500余張圖中,選取4種土壤再生水原液處理(RW)部分二值化圖片描述干縮裂縫發(fā)育過程。由圖2可知,土壤干縮裂縫發(fā)育具有一定的隨機(jī)性,4種土壤干縮裂縫發(fā)育過程存在差異,潮土、水稻土、紫色土干縮裂縫形成及發(fā)育較快及裂縫長度較長、面積較大。但總體發(fā)展趨勢呈現(xiàn):當(dāng)>25%~40%時,干縮裂縫發(fā)育主要以裂縫骨架結(jié)構(gòu)為主,總體發(fā)育速率較為緩慢;>12%~25%時,隨著裂縫骨架進(jìn)一步延伸以及拓寬,裂縫發(fā)育速率總體增加;=0%~12%時,裂縫面積發(fā)育速率減緩并趨于穩(wěn)定,裂縫骨架結(jié)構(gòu)基本保持穩(wěn)定,僅寬度增加,發(fā)育過程與李文杰等[22]研究結(jié)果相似。
由圖3可知,不同濃度再生水處理下干縮裂縫面積密度曲線呈現(xiàn)差異,表明再生水灌溉影響土壤干縮裂縫面積發(fā)育過程。相較于對照組(CK),RW-6、RW-4、RW-2、RW處理下紅壤初始裂縫含水率(0)分別減少27.5%、57.9%、57.9%、20.3%,潮土0分別增加1.7%、1.6%、35.5%、10.1%,水稻土0分別增加36.4%、18.1%、27.3%、18.2%,紫色土0分別增加1.5%、3.5%、4.6%、7.7%。在同樣蒸發(fā)條件下,與CK組比較,各處理紅壤0降低,說明產(chǎn)生裂縫的持續(xù)蒸發(fā)時間延長,而其余3種土壤與紅壤相反,這表明再生水灌溉抑制紅壤及促進(jìn)其余3種土壤干縮裂縫的形成。從圖3中裂縫面積密度曲線與軸交點獲得干縮裂縫穩(wěn)定狀態(tài)面積密度(Rc(0)),相較于CK組,各處理下紅壤Rc(0)平均減小33.6%,最高減小54.3%,潮土、水稻土、紫色土分別平均增加50.9%、22.2%、36.6%,此外,RW-4處理下潮土、水稻土及紫色土0及Rc(0)均為較小值,其余3種處理下3種土壤Rc(0)隨再生水濃度增加而增加。表明再生水灌溉抑制紅壤、促進(jìn)其余3種土壤干縮裂縫面積發(fā)育,對3種土壤Rc(0)促進(jìn)作用從大到小依次為潮土、紫色土、水稻土;就不同濃度再生水對土壤Rc(0)促進(jìn)效果而言,除RW-4對Rc(0)促進(jìn)作用最小以外其余處理對Rc(0)促進(jìn)作用呈隨再生水濃度增加而增大的趨勢。因此,再生水灌溉土壤需根據(jù)土壤類型合理控制再生水濃度。
采用三直線模型擬合干縮裂縫面積密度及含水率的關(guān)系,具體擬合參數(shù)見表3,由表可知,調(diào)整后2均為0.99以上,表明三直線模型能夠很好地描述土壤裂縫面積密度隨含水率變化的關(guān)系。
為進(jìn)一步研究再生水對土壤干縮裂縫開裂過程的影響,引入相對參數(shù)值(不同濃度再生水灌溉下4種土壤干縮裂縫曲線擬合參數(shù)與CK組擬合參數(shù)的比值)。由表4可知,各處理下紅壤裂縫面積密度擬合參數(shù)相對值均小于1,相對值均大于1,此外,RW-6處理下為最大值、為最小值以及為較小值,表明相較于CK組,再生水灌溉會使紅壤面積密度發(fā)育過程減緩段發(fā)育速率增加,初始段與加速段發(fā)育速率降低,減少各階段間發(fā)育速率的差異,使紅壤干縮裂縫面積發(fā)育過程更為平緩,其中RW-6處理下紅壤干縮裂縫面積發(fā)育過程最為平緩。各處理下潮土裂縫面積密度擬合參數(shù)A相對值均大于1,B相對值接近1,且隨再生水濃度增加,相對值分別呈增大、減小的趨勢,表明再生水灌溉提升潮土干縮裂縫面積在初始段、加速段的發(fā)育程度,提升作用隨再生水濃度降低而增加。各處理下水稻土裂縫面積密度擬合參數(shù)A、B相對值均大于1且A、B的平均相對值為1.98和1.13,除RW處理以外,其余3種處理的相對值小于1、及相對值接近或大于1,此外,相較于RW及RW-6處理,RW-2及RW-4處理的較小及AB較大,表明再生水灌溉整體提升水稻土干縮裂縫面積在初始段、加速段的發(fā)育程度,其中RW-2、RW-4處理提升作用最大。除RW-4以外其他處理下紫色土A、B相對值均接近1,RW-6、RW處理下相對值大于1及相對值小于1,RW-2處理下相對值小于1及相對值大于1,說明RW-6、RW處理提升水稻土裂縫面積在加速段、減緩段的發(fā)育程度,RW-2處理提升水稻土裂縫面積在初始段的發(fā)育程度。以上結(jié)果表明:再生水灌溉影響4種土壤干縮裂縫面積發(fā)育過程,紅壤面積發(fā)育過程更為平緩,其余3種土壤干縮裂縫面積發(fā)育更為集中于發(fā)育過程的初始段及加速段,且較低濃度再生水集中作用更大。因此,再生水灌溉除控制再生水濃度以外,還須合理控制灌溉水量。
表3 土壤干縮裂縫面積密度三直線模型擬合參數(shù)
注:AB分別為加速段與減緩段臨界點、初始段與加速段臨界點的質(zhì)量含水率,%;分別為初始段、加速段及減緩段面積密度變化速率;為經(jīng)驗常數(shù)。下同。
Note:AandBare water content of the critical points between the accelerated stage and the decelerated stage, and the critical points between the initial stage and the accelerated stage, %,,, andare the developmental rate of the area density of the initial stage, the accelerated stage, and the decelerated stage;,, andare the empirical constants. Same as below
表4 土壤干縮裂縫面積密度擬合參數(shù)相對值
注:A、B、、和的相對值分別為不同土壤各處理的面積密度擬合參數(shù)A、B、與其CK組擬合值的比值。
Note: The relative value ofA,B,,,andare ratios of area density fitting parametersA,B,,,andof different soil treatments to the fitting values of CK group, respectively.
為定量分析不同濃度再生水灌溉亞熱帶土壤干縮裂縫面積發(fā)育過程,采用三直線模型擬合面積密度發(fā)育程度(DLRc)與含水率的關(guān)系。擬合結(jié)果見式(9),調(diào)整后2為0.886(<0.05),說明三直線函數(shù)能較好地反映兩者關(guān)系。其中,面積密度發(fā)育程度發(fā)育過程的初始段、加速段及減緩段的含水率范圍分別為>22.67%~0、>17.20%~22.67%、0~17.20%,面積密度發(fā)育程度變化速率分別為0.017、0.037及0.020。
由圖4可知不同濃度再生水處理下干縮裂縫長度密度曲線呈現(xiàn)差異,表明再生水灌溉影響土壤干縮裂縫長度發(fā)育過程。相較于對照組(CK),RW-6、RW-4、RW-2、RW處理下紅壤穩(wěn)定狀態(tài)長度密度(Lc(0))分別減少9.5%、14.3%、34.9%、35.4%。RW-4處理下潮土、紫色土Lc(0)分別減少4.1%及24.5%以及水稻土Lc(0)增加30.0%,其余3種處理下潮土、紫色土、水稻土Lc(0)分別平均增加22.7%、25.0%、12.1%,此外,除RW-4以外,其余3種處理下3種土壤Lc(0)隨再生水濃度增加而增加。結(jié)果表明再生水灌溉抑制紅壤及促進(jìn)其余3種土壤干縮裂縫長度的發(fā)育,對紅壤Lc(0)的抑制作用呈隨再生水濃度增高而增大的趨勢。對其余3種土壤Lc(0)促進(jìn)作用從大到小依次為紫色土、潮土、水稻土,就不同濃度再生水對土壤Lc(0)促進(jìn)效果而言,除RW-4對Lc(0)促進(jìn)作用異常以外其余處理對Lc(0)促進(jìn)作用整體呈現(xiàn)隨再生水濃度增加而增大的趨勢。
采用四參數(shù)log-logistic模型擬合裂縫長度密度及含水率的關(guān)系,具體擬合參數(shù)見表5,由表可知,調(diào)整后2均達(dá)到0.95以上,表明四參數(shù)log-logistic模型能夠很好地描述土壤裂縫長度密度隨含水率變化的關(guān)系。
表5 土壤干縮裂縫長度密度擬合參數(shù)值
注:1、2分別為含水率為0以及飽和含水率時干縮裂縫長度密度的臨界值;為特征參數(shù)擬合曲線的拐點;為發(fā)育速率峰值。
Note:1and2are the critical values of length density of desiccation crack when water contentis 0 and saturated water content, respectively;is the inflection point of the characteristic parameter fitting curve; ?is the maximum developmental rate.
表6為各處理下4種土壤裂縫長度密度四參數(shù)log-logistic模型擬合參數(shù)加速段長度(PD)、減速段長度(PA)、發(fā)育速率峰值(?)與CK組擬合參數(shù)的比值(參數(shù)相對值)。紅壤及紫色土PD相對值大于或接近1且相對值均小于1,表明相較于CK組,再生水灌溉使紅壤、紫色土長度發(fā)育過程加速段延長或保持不變以及峰值速率減緩,整體使紅壤及紫色土長度發(fā)育過程更為平緩。潮土PD及相對值均大于1,表明再生水灌溉使潮土加速段延長以及其速率增加,整體提升潮土在加速段發(fā)育程度。
為定量明晰不同濃度再生水灌溉亞熱帶土壤干縮裂縫長度發(fā)育過程,采用四參數(shù)log-logistic模型擬合土壤干縮裂縫長度密度發(fā)育程度(DLLc)與含水率的關(guān)系,其調(diào)整后2為0.87(<0.05),表達(dá)式見式(10)。擬合結(jié)果表明,在裂縫長度密度發(fā)育程度的加速段及減緩段含水率范圍分別為>28.06%~0及0~28.06%,長度密度發(fā)育程度變化速率峰值為4.56。
由圖5可知,不同濃度再生水處理下干縮裂縫連通性系數(shù)曲線呈現(xiàn)差異,表明再生水灌溉影響土壤干縮裂縫連通性系數(shù)發(fā)育過程。相較于CK組,各處理下紅壤(0)變化為?10.81%~0.77%,平均為-3.86%,潮土(0)變化為?0.48%~23.15%,平均為9.31%,水稻土(0)變化為?17.80%~4.62%,平均為-5.00%,紫色土(0)為4.41%~31.74%,平均為19.52%,表明再生水抑制紅壤、水稻土及促進(jìn)潮土、紫色土干縮裂縫連通性的發(fā)育。就再生水對4種土壤干縮裂縫連通性的抑制或促進(jìn)作用而言,其作用從大到小依次為紫色土、潮土、水稻土、紅壤。就不同濃度再生對土壤(0)促進(jìn)效果而言,整體呈現(xiàn)隨再生水濃度增加而增大的趨勢,這與各處理對Rc(0)及Lc(0)促進(jìn)作用趨勢相似。
表6 土壤干縮裂縫長度密度擬合參數(shù)相對值
注:PD、PA、分別為長度密度發(fā)育過程加速段長度、減速段長度、發(fā)育速率峰值。PD、PA、相對值分別為各處理長度密度發(fā)育過程參數(shù)PD、PA、與CK組擬合值的比值。
Note: PD, PA are the length of accelerated stage and decelerated stage in the developmental process of length density, respectively andis the maximum developmental rate. The relative value of PD, PA,are the ratios of the parameters of length density under each treatment to the values of CK control group.
為定量明晰不同濃度再生水灌溉亞熱帶土壤干縮裂縫連通性系數(shù)發(fā)育過程,采用四參數(shù)log-logistic模型擬合相對裂縫連通性發(fā)育程度與含水率的關(guān)系,其擬合結(jié)果調(diào)整后2為0.87(<0.05),表達(dá)式見式(11),擬合結(jié)果表明,裂縫連通性發(fā)育程度的加速段及減緩段含水率范圍分別為>26.27%~0及0~26.27%,連通性系數(shù)發(fā)育程度變化速率峰值為4.50。
表7為裂縫指標(biāo)、擬合參數(shù)與土壤類型、再生水濃度的多因素方差分析值。其中長度密度、連通性系數(shù)、面積密度擬合參數(shù)B長度密度擬合參數(shù)的2均小于0.70,說明飽和模型對上述指標(biāo)的擬合效果較差,其不僅受到土壤及再生水因素影響,還受到其他因素影響[24]。除上述指標(biāo)以外,土壤類型×再生水因素下其余指標(biāo)的值小于0.05,說明土壤類型和再生水對面積密度及其余5個擬合參數(shù)產(chǎn)生了顯著的交互作用。其中,土壤類型因素下面積密度、擬合參數(shù)以及再生水因素下擬合參數(shù)A?的值分別最大,表明主要受土壤類型影響的指標(biāo)包括面積密度、面積密度擬合參數(shù);主要受再生水濃度影響的指標(biāo)為面積密度擬合參數(shù)A及長度密度擬合參數(shù)?。
表7 干縮裂縫參數(shù)與再生水濃度、土壤類型交互性分析
注:** 表示在0.01水平(雙側(cè))上顯著相關(guān);* 在0.05水平(雙側(cè))上顯著相關(guān)。
Note: ** indicates significantly correlated at 0.01 level (bilateral); * indicates significantly correlated at 0.05 level (bilateral).
研究[20,25-27]指出,土壤干縮開裂的機(jī)理為:土體含水率降低導(dǎo)致液橋體積減少,并在土顆粒間形成彎液面,從而液橋表面張力引起的基質(zhì)吸力增大并將土壤顆粒逐漸拉近,當(dāng)基質(zhì)吸力增大、土體收縮不均勻等因素引起的張拉應(yīng)力大于土體抗拉強(qiáng)度時,土壤顆粒發(fā)生相對位移,部分顆粒間距相對增加而部分相對減少,在宏觀表現(xiàn)上為土壤收縮與開裂。本文研究表明再生水可一定程度抑制紅壤開裂,一方面,再生水灌溉使紅壤細(xì)小顆粒分散并流失,小孔隙連通形成大孔隙[17],進(jìn)而造成紅壤局部基質(zhì)吸力及其引起的張拉應(yīng)力下降。另一方面,紅壤肥力較差及EC較低,再生水灌溉存在有機(jī)質(zhì)及鹽份累積的現(xiàn)象[28],有機(jī)質(zhì)數(shù)量及一定程度高階鹽離子濃度的增加可促進(jìn)微團(tuán)聚體間膠結(jié)及粘粒絮凝,進(jìn)而增加土體抗拉強(qiáng)度。同時,有機(jī)質(zhì)會使土壤結(jié)構(gòu)松散并促進(jìn)其收縮均勻性[29]。
本研究發(fā)現(xiàn)再生水促進(jìn)潮土、水稻土、紫色土開裂。一方面,再生水中較高濃度鹽離子進(jìn)入土體后,使土壤懸液中鹽離子濃度增加并使土壤團(tuán)聚體中膠結(jié)物質(zhì)糊化變?yōu)槿苣z[30],并在較高濃度Na+離子的分散及膨脹作用下,形成增厚膠粒雙電層,導(dǎo)致土壤顆粒間距增加及土壤顆粒間粘聚力減弱[31],張展羽等[18]通過黃褐土干縮裂縫試驗得到土壤鹽分含量越大,穩(wěn)定時土壤裂縫面積密度越大的研究結(jié)果與本研究相似。另一方面,再生水灌溉可能使表面活性劑累積從而產(chǎn)生表面活性劑膠束顆粒,進(jìn)一步導(dǎo)致團(tuán)聚體的分散[32],土壤收縮均勻性及抗拉強(qiáng)度的降低促進(jìn)其干縮裂縫的形成及發(fā)育。
脹縮曲線中的三段線模型、四參數(shù)log-logistic模型都能較好地擬合其裂縫發(fā)育過程,驗證了Tang等[20]關(guān)于Romainvile膨脹土干縮裂縫與土壤脹縮特性相關(guān)程度很高的觀點。但是三段線模型中的有關(guān)物理條件(如進(jìn)氣點、膨脹極限等)及數(shù)學(xué)特點是否具有一致性,還有待進(jìn)一步的研究。
土壤干縮開裂過程的張拉應(yīng)力、抗拉強(qiáng)度常與土壤黏粒含量及類型、有機(jī)質(zhì)數(shù)量及EC有關(guān)[33],三者差異造成再生水灌溉紅壤和其余3種土壤干縮裂縫演變及發(fā)育的差異性。紅壤有機(jī)質(zhì)含量最少,累積現(xiàn)象可能最為顯著,因此相較于鹽分、表面活性劑對裂縫的促進(jìn)作用,有機(jī)質(zhì)累積對于紅壤干縮裂縫的抑制作用可能更大。其次,紅壤的黏粒礦物主要為垛狀結(jié)構(gòu)的高嶺石,黏粒晶胞粘結(jié)力較強(qiáng),再生水中物質(zhì)較難進(jìn)入黏粒間,因此紅壤黏粒間間距及相互作用力的被影響程度小于其余3種土壤,并且紅壤膨脹特性弱于主要黏粒礦物為伊利石、云母類的其余3種土壤,在遇水膨脹過程中土壤顆粒間的相對位移及排列方式受到影響較少,土壤結(jié)構(gòu)受到破壞程度較小。此外,紅壤EC值小于其余3種土壤,土壤高價位鹽離子濃度的提高會縮短雙電層厚度,增強(qiáng)土壤膠體的絮凝能力,有助于提高團(tuán)粒結(jié)構(gòu)的形成。但是,其余3種土壤EC較高,隨著鹽離子濃度的增加,當(dāng)土壤絮凝能力達(dá)到限值后,Na+離子的分散作用可能表現(xiàn)更加明顯,從而導(dǎo)致土壤團(tuán)聚體的破壞及其結(jié)構(gòu)的變化[16]。
懸液的理化條件決定黏粒間相互作用。在一定閾值內(nèi),高階鹽離子濃度的提高對黏粒絮凝的促進(jìn)作用可能大于Na+離子的分散作用。同時,表面活性劑也存在相似現(xiàn)象,低濃度表面活性劑進(jìn)入土體后,會以離子或分子的形式存在,表面活性劑上長鏈烷基之間的范德華力作用有利于土微小團(tuán)聚體的形成,當(dāng)其濃度增加超過臨界膠束濃度時,表面活性劑會導(dǎo)致團(tuán)聚體分散[32]。此外,文獻(xiàn)[28]發(fā)現(xiàn)相較于其余濃度再生水,稀釋4倍再生水灌溉下土壤有機(jī)質(zhì)含量相對較少。上述因素可能是RW-4處理下存在異常的原因,但是主要影響因素以及各因素閾值還有待進(jìn)一步研究。
本研究表明土壤干縮開裂不僅與土壤理化性質(zhì)相關(guān),其開裂程度及過程同樣受灌溉水質(zhì)影響。但是再生水中成分含量復(fù)雜,造成的影響及程度也有所差異。本文僅從再生水的角度闡述其影響,未考慮再生水不同物質(zhì)的影響,且有研究指出土壤懸液表面張力系數(shù)會影響土壤開裂,以及土壤開裂、閉合是兩個不可逆過程[22,26],因此再生水灌溉對土壤開裂的影響機(jī)理、開閉過程還有待進(jìn)一步研究。
1)再生水灌溉抑制紅壤及促進(jìn)潮土、水稻土、紫色土干縮裂縫的形成與發(fā)育,就再生水濃度而言,除RW-4處理下促進(jìn)作用異常外,其余處理隨再生水濃度增高而抑制作用或促進(jìn)作用增大。
2)各處理下土壤干縮裂縫面積發(fā)育過程呈三段式,長度、連通性系數(shù)發(fā)育過程呈S形。再生水灌溉使紅壤干縮裂縫發(fā)育過程更為平緩,使潮土、水稻土、紫色土的干縮裂縫面積發(fā)育更集中于發(fā)育前期,且低濃度再生水集中作用更大。
3)土壤類型與再生水濃度對土壤干縮裂縫及其發(fā)育過程具有交互作用,其中土壤類型對面積密度及其發(fā)育過程減緩段的面積變化速率影響較大;再生水濃度對土壤干縮裂縫面積密度發(fā)育過程減緩段長度、加速段與初始段變化速率、長度發(fā)育過程變化速率峰值影響較大。
4)再生水灌溉亞熱帶土壤裂縫面積密度發(fā)育程度與含水率的關(guān)系可用三直線模型擬合,其中發(fā)育過程初始段、加速段、減緩段含水率范圍分別為>22.67%~0(初始裂縫含水率)、>17.20%~22.67%、0~17.20%,各段發(fā)育速率分別為0.017、0.037、0.020;長度密度發(fā)育程度、連通性系數(shù)與含水率的關(guān)系可用log-logistic模型擬合,長度密度及連通性系數(shù)發(fā)育過程中加速段及減緩段含水率范圍分別為>28.06%~0及0~28.06%、>26.27%~0及0~26.27%,變化速率峰值分別為4.56及4.50。
[1] 許迪,龔時宏,李益農(nóng),等. 農(nóng)業(yè)水管理面臨的問題及發(fā)展策略[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(11):1-7.
Xu Di, Gong Shihong, Li Yinong, et al. Problem and strategies on development of agricultural water management[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 1-7. (in Chinese with English abstract)
[2] 趙全勇,李冬杰,孫紅星,等. 再生水灌溉對土壤質(zhì)量影響研究綜述[J]. 節(jié)水灌溉,2017(1):53-58.
Zhao Quanyong, Li Dongjie, Sun Hongxing, et al. Review of study on effect of reclaimed water irrigation on soil quality[J]. Water Saving Irrigation, 2017(1): 53-58. (in Chinese with English abstract)
[3] 盛豐,吳丹,張利勇. 再生水灌溉對農(nóng)田土壤水流運動影響的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(增刊2):46-51.
Sheng Feng, Wu Dan, Zhang Liyong. Review on effect of reclaimed water irrigation onsoil water movement in cropland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 46-51. (in Chinese with English abstract)
[4] 張展羽,李文杰,王策,等. 多級干濕循環(huán)對農(nóng)田土壤干縮裂縫演變特征的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(12):172-177,252.
Zhang Zhanyu, Li Wenjie, Wang Ce, et al. Effects of dry-wet cycles on evolution characteristics of farmland soil desiccation cracks[J]. Transactions of the Chinese Society for Agricultural Engineering, 2016, 47(12): 172-177, 252. (in Chinese with English abstract)
[5] Li J H, Lu Z, Guo L B, et al. Experimental study on soil-water characteristic curve for silty clay with desiccation cracks[J]. Engineering Geology, 2017, 218: 70-76.
[6] Neely H L, Morgan C L S, McInnes K J, et al. Modeling soil crack volume at the pedon scale using available soil data[J]. Soil Science Society of America Journal, 2018, 82(4): 734-743.
[7] Ralaizafisoloarivony N, Degré A, Mercatoris B, et al. Assessing soil crack dynamics and water evaporation during dryings of agricultural soil from reduced tillage and conventional tillage fields[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2020, 30(1): 59.
[8] 田洪艷,周道瑋,李質(zhì)馨,等.土壤脹縮運動對草原土壤的干擾作用[J]. 草地學(xué)報,2003,11(3):261-268.
Tian Hongyan, Zhou Daowei, Li Zhixin, et al. Effect of expansion and contraction of grassland soil in Northeastern China[J]. Acta Agrestia Sinica, 2003, 11(3): 261-268. (in Chinese with English abstract)
[9] 周明濤,楊森,秦健坤,等.土壤裂隙研究的回顧與展望[J]. 土壤通報,2017,48(4):988-995.
Zhou Mingtao, Yang Sen, Qin Jiankun. Review on the research of soil cracks[J]. Chinese Journal of Soil Science, 2017, 48(4): 988-995. (in Chinese with English abstract)
[10] Greve A, Andersen M S, Acworth R I. Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil[J]. Journal of Hydrology, 2010, 393(1/2): 105-113.
[11] 張中彬,彭新華. 土壤裂隙及其優(yōu)先流研究進(jìn)展[J]. 土壤學(xué)報,2015,52(3):477-488.
Zhang Zhongbin, Peng Xinhua. A review of researches on soil cracks and their impacts on preferential flow[J]. Acta Pedologica Sinica, 2015, 52(3): 477-488. (in Chinese with English abstract)
[12] Zhang Z B, Zhou H, Lin H, et al. Puddling intensity, sesquioxides, and soil organic carbon impacts on crack patterns of two paddy soils[J]. Geoderma, 2016, 262: 155-164.
[13] 熊東紅,楊丹,李佳佳,等. 元謀干熱河谷區(qū)退化坡地土壤裂縫形態(tài)發(fā)育的影響因子[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(1):102-108.
Xiong Donghong, Yang Dan, Li Jiajia, et al. Influence factors of morphological development of soil cracks in degraded slopes in Yuanmou dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 102-108. (in Chinese with English abstract)
[14] 邢旭光,馬孝義,康端剛. 鹽陽離子類型及濃度對土壤持水及干縮開裂的作用效果[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):115-122.
Xing Xuguang, Ma Xiaoyi, Kang Duangang. Impacts of type and concentration of salt cations on soil water retention and desiccation cracking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 115-122. (in Chinese with English abstract)
[15] Tunc T, Sahin U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters[J]. Agricultural Water Management, 2015, 158: 213-224.
[16] 胡傳旺,王輝,武蕓,等. 再生水鹽分在亞熱帶不同土壤中的遷移特性及其差異[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(20):99-107.
Hu Chuanwang, Wang Hui, Wu Yun, et al. Migration characteristics and its differences of reclaimed water salinity in different subtropical soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 99-107. (in Chinese with English abstract)
[17] 王輝,黃正忠,譚帥,等. 再生水灌溉對紅壤水力特性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(17):120-127.
Wang Hui, Huang Zhengzhong, Tan Shuai, et al. Effects of irrigation with reclaimed water on hydraulic characteristics of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 120-127. (in Chinese with English abstract)
[18] 張展羽,朱文淵,朱磊,等. 根系及鹽分含量對農(nóng)田土壤干縮裂縫發(fā)育規(guī)律的影響[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(20):83-89.
Zhang Zhanyu, Zhu Wenyuan, Zhu Lei, et al. Effects of roots and salinity on law of development for farmland soil desiccation crack[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 83-89. (in Chinese with English abstract)
[19] 方志,夏軍,劉傳樂. 基于圖像分析技術(shù)的結(jié)構(gòu)表面裂縫形態(tài)檢測[J]. 鐵道科學(xué)與工程學(xué)報,2016,13(12):2447-2454.
Fang Zhi, Xia Jun, Liu Chuanle. Crack shape detection on the structural surface based on image analysis technology[J]. Journal of Railway Science and Engineering, 2016, 13(12): 2447-2454. (in Chinese with English abstract)
[20] Tang C S, Shi B, Liu C, et al. Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1/2): 69-77.
[21] McGarry D, Malafant K W J. The analysis of volume change in unconfined units of soil[J]. Soil Science Society of America Journal, 1987, 51(2): 290-297.
[22] 李文杰,張展羽,王策,等. 干濕循環(huán)過程中壤質(zhì)黏土干縮裂縫的開閉規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(8):126-132.
Li Wenjie, Zhang Zhanyu, Wang Ce, et al. Propagation and closure law of desiccation cracks of loamy clay during cyclic drying-wetting process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 126-132. (in Chinese with English abstract)
[23] 馮國雙,譚德講,劉韞寧,等. 四參數(shù)log-logistic模型在生物活性測定研究中的應(yīng)用[J]. 藥物分析雜志,2013,33(11):1849-1851.
Feng Guoshuang, Tan Dejiang, Liu Yunning, et al. Application of 4-parameter log-logistic model in bioassay[J]. Chinese Journal of Pharmaceutical Analysis, 2013, 33(11): 1849-1851. (in Chinese with English abstract)
[24] 薛薇. SPSS統(tǒng)計分析方法及應(yīng)用[M]. 北京:電子工業(yè)出版社,2017:124-125.
[25] Yesiller N, Miller C J, Inci G, et al. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1/2): 105-121.
[26] 羅茂泉,楊松,馬澤慧,等. 干濕循環(huán)下氣—液界面張力對黏土收縮開裂的影響[J]. 土壤學(xué)報,2018,55(2):369-379.
Luo Maoquan, Yang Song, Ma Zehui, et al. Effect of gas-liquid interfacial tension on shrinkage cracking of clay as affected by wetting-drying alternation[J]. Acta Pedologica Sinica, 2018, 55(2): 369-379. (in Chinese with English abstract)
[27] 徐其良,唐朝生,劉昌黎,等. 土體干縮裂隙發(fā)育過程及斷裂力學(xué)機(jī)制研究進(jìn)展[J]. 地球科學(xué)與環(huán)境學(xué)報,2018,40(2):223-236.
Xu Qiliang, Tang Chaosheng, Liu Changli, et al. Review on soil desiccation cracking behavior and the mechanism related to fracture mechanics[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 223-236. (in Chinese with English abstract)
[28] 胡廷飛,王輝,胡傳旺,等. 灌溉水質(zhì)和灌水方式對紅壤斥水性及其理化性質(zhì)的影響[J]. 排灌機(jī)械工程學(xué)報,2018,36(8):651-655,661.
Hu Tingfei, Wang Hui, Hu Chuanwang, et al. Effects of different water quality and irrigation methods on red soil water repellency and physical-chemical properties[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(8): 651-655, 661. (in Chinese with English abstract)
[29] Peng X, Horn R, Smucker A. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles[J]. Soil Science Society of America Journal, 2007, 71(4): 1095-1104.
[30] 胡廷飛,王輝,譚帥.再生水灌溉模式對潮土結(jié)構(gòu)性質(zhì)及導(dǎo)水性能的影響[J]. 水土保持學(xué)報,2020,34(2):146-152.
Hu Tingfei, Wang Hui, Tan Shuai. Effect of reclaimed water irrigation modes on the structural properties and hydraulic conductivity of tidal soil[J]. Journal of Soil and Water Conservation, 2020, 34(2): 146-152. (in Chinese with English abstract)
[31] 張國輝,李建朋,于青春,等. 含鹽量對松嫩平原碳酸鹽漬土抗剪強(qiáng)度的影響[J]. 中國地質(zhì)災(zāi)害與防治學(xué)報,2008(1):128-131.
Zhang Guohui, Li Jianpeng, Yu Qingchun, et al. Influence of salt content on shearing strength of the carbonate saline soil in Songnen(Songhuajiang River-Nenjiang River) Plain[J]. The Chinese Journal of Geological Hazard and Control, 2008(1): 128-131. (in Chinese with English abstract)
[32] 盛豐,李忠潤,方嫻靜,等. 再生水中陰離子表面活性劑對土壤結(jié)構(gòu)與水流運動的影響[J]. 中國環(huán)境科學(xué),2020,40(10):4531-4539.
Sheng Feng, Li Zhongrun, Fang Xianjing, et al. Effects of anionic surfactant in reclaimed water on soil structural properties and water flow characteristics[J]. China Environmental Science, 2020, 40(10): 4531-4539. (in Chinese with English abstract)
[33] Trabelsi H, Jamei M, Zenzri H, et al. Crack patterns in clayey soils: Experiments and modeling[J]. International Journal for Numerical and Analytical methods in geomechanics, 2012, 36(11): 1410-1433.
Effects of reclaimed water irrigation on the evolution characteristics of desiccation crack of typical subtropical zone soils
Wang Wei, Wang Hui※, Chen Xiaoyue, Tan Shuai, Hu Chuanwang
(College of Water Resource & Civil Engineering, Hunan Agricultural University, Changsha 410128, China)
The requirement for water resources is ever-increasing with the rapid development of the economy in China. Reclaimed water can be used to greatly alleviate the contradiction between supply and demand for fresh water. The unconventional water sources can also contribute to the structure of water supply, water pollution and ecological security in sustainable agriculture. But, long-term irrigation with reclaimed water may cause the change of soil physical and chemical properties, and then result in the development of desiccation cracks. This study aims to reveal the effects of reclaimed water irrigation on soil desiccation crack and the developmental process in the subtropical region. Four types of subtropical soils were selected as the test materials, including the red, Fluvo-aquic, purple, and paddy soil. Four concentrations of reclaimed water were also used for continuous irrigation, including original reclaimed water (RW) and diluted concentrations of 2(RW-2), 4(RW-4), 6(RW-6) times. An evaporation test was then carried out, where the digital image processing was combined to extract the parameters of soil desiccation cracks. The result showed that the reclaimed water inhibited the formation and development of desiccation cracks in the red soil. The inhibitory effect became more obvious, as the concentration of reclaimed water increased. Specifically, the water content of the initial crack, the area density, and the length density of the desiccation crack dramatically decreased by 57.9%, 54.3%, and 35.4%, respectively. By contrast, the reclaimed water promoted the formation and development of desiccation crack in the Fluvo-aquic, purple, and paddy soil. There were most promoting effects on desiccation crack areas of Fluvo-aquic soil, and desiccation crack length and connectivity of the purple soil, whereas, the least promoting effect was found in the paddy soil. Furthermore, the promoting effect became much stronger, as the concentration of reclaimed water increased,except in the reclaimed water-diluted concentration of 4 times. In addition, there was a balanced process of desiccation crack in the red soil, whereas, that concentrated in the early stage of Fluvo-aquic, purple, and paddy soil, indicating obvious concentration effect of reclaimed water with low concentration. It was also found that there were great influences of soil type on the developmental rate of crack area density in the initial stage, particularly on the developmental rate of connectivity index. Similarly, the concentration of reclaimed water presented a great influence on the length in the deceleration stage, the developmental rate in the accelerated and initial stage, and the maximum developmental rate of crack length density. A three-linear model was utilized to fit the relationship between the developmental degree of soil crack area density, and water content under reclaimed water irrigation. The water content of the initial, accelerated, and decelerated stages were 22.67% to the water content of initial crack, 17.20%-22.67%, and 0-17.20%, respectively, while the developmental rates of each stage were 0.017, 0.037, and 0.020, respectively. A four-parameter log-logistic equation was selected to fit the relationship between the developmental degree of length density and connectivity, as well as the water content. The water content of the accelerated and decelerated stages during the crack length development were 28.06% to the water content of initial crack and 0-28.06%, respectively, where the maximum developmental rate was 4.56, while the water content of the accelerated and decelerated stages during the development of crack connectivity were 26.27% to the water content of initial crack and 0-26.27%, respectively, where the maximum developmental rate was 4.50. The finding can provide a sound reference to develop the quality standards of reclaimed water for irrigation systems in the subtropical zone.
soils; water content; evolution characteristics; image processing; reclaimed water; desiccation crack; crack parameters; subtropical zone
王瑋,王輝,陳瀟岳,等. 再生水灌溉對亞熱帶典型土壤干縮裂縫演變特征的影響[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(13):55-65. doi:10.11975/j.issn.1002-6819.2021.13.007 http://www.tcsae.org
Wang Wei, Wang Hui, Chen Xiaoyue, et al. Effects of reclaimed water irrigation on the evolution characteristics of desiccation crack of typical subtropical zone soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 55-65. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.007 http://www.tcsae.org
2021-04-20
2021-06-09
國家自然科學(xué)基金項目(4147118,52009039);湖南省戰(zhàn)略性新興產(chǎn)業(yè)科技攻關(guān)與重大科技成果轉(zhuǎn)化項目(2020NK2003);湖南省教育廳科學(xué)研究項目(18C0156,19C0907);湖南省研究生教育創(chuàng)新工程和專業(yè)能力提升工程項目(CX20200658)
王瑋,博士生,講師,研究方向為土壤物理與農(nóng)業(yè)水土環(huán)境。Email:4980097@163.com
王輝,教授,博士,博士生導(dǎo)師,研究方向為土壤物理與農(nóng)業(yè)水土環(huán)境。Email:wanghuisb@126.com
10.11975/j.issn.1002-6819.2021.13.007
S152.2; S278
A
1002-6819(2021)-13-0055-11