李睿姝 韓榕
摘要 DNA的完整穩(wěn)定是真核生物正常生命活動(dòng)的基礎(chǔ),為了保證自身基因結(jié)構(gòu)的穩(wěn)定,生物體進(jìn)化出了完整的DNA損傷反應(yīng)(DDR)系統(tǒng)及應(yīng)對(duì)各種損傷的修復(fù)系統(tǒng)。染色質(zhì)作為生物遺傳信息的承載,它的動(dòng)態(tài)調(diào)節(jié)對(duì)包含DAN復(fù)制、轉(zhuǎn)錄、重組和修復(fù)等生物學(xué)過(guò)程在內(nèi)的生命活動(dòng)至關(guān)重要。組蛋白分子伴侶以不依賴(lài)ATP的方式在染色質(zhì)組織中發(fā)揮著關(guān)鍵作用,影響著染色質(zhì)的動(dòng)力學(xué)變化。有研究表明,H3-H4組蛋白分子伴侶CAF-1在染色質(zhì)相關(guān)的DNA損傷修復(fù)中發(fā)揮著一定作用。就近年來(lái)對(duì)CAF-1、DNA損傷修復(fù)及兩者相關(guān)性的研究進(jìn)行探討,并對(duì)DNA損傷修復(fù)的深入研究進(jìn)行展望。
關(guān)鍵詞 染色質(zhì);組蛋白分子伴侶;CAF-1;DNA損傷修復(fù)
中圖分類(lèi)號(hào) Q 945? 文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 0517-6611(2021)18-0012-06
doi:10.3969/j.issn.0517-6611.2021.18.004
開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research Progress of Histone Chaperone CAF-1 and DNA Damage Repair
LI Rui-shu1,HAN Rong2 (1.College of Life Science,Shanxi Normal University,Linfen,Shanxi 041004;2.Higher Education Key Laboratory of Shanxi Province in Response to Plant Molecular and Environmental Stress,Linfen,Shanxi 041004)
Abstract The integrity and stability of DNA is the basis of normal life activities of eukaryotes.In order to ensure the stability of their own gene structure,organisms have evolved a complete DNA damage response (DDR) system and repair system to deal with various kinds of damage.Chromatin serves as the carrier of biological genetic information,and its dynamic regulation is essential for life activities including biological processes such as DAN replication,transcription,recombination and repair.Histone chaperones play a key role in chromatin tissue in an ATP-independent manner,affecting chromatin dynamics.The studies have shown that the H3-H4 histone chaperone CAF-1 plays a role in chromatin related DNA damage repair.In this paper,the research on CAF-1,DNA damage repair and the correlation between the two in recent years was discussed,and the further research on DNA damage repair was prospected.
Key words Chromatin;Histone chaperones;CAF-1;DNA damage repair
基金項(xiàng)目 國(guó)家自然科學(xué)基金項(xiàng)目(30671061);山西師范大學(xué)科技創(chuàng)新項(xiàng)目(2019XSY018)。
作者簡(jiǎn)介 李睿姝(1992—),女,山西襄汾人,碩士研究生,研究方向:細(xì)胞生物學(xué)。*通信作者,教授,博士,博士生導(dǎo)師,從事植物響應(yīng)環(huán)境脅迫研究。
收稿日期 2021-02-23
在真核生物的細(xì)胞中,由堿性組蛋白及酸性DNA經(jīng)過(guò)復(fù)雜過(guò)程形成染色質(zhì)(chromatin)是其遺傳物質(zhì)[1]。染色質(zhì)作為遺傳物質(zhì)在直徑僅為5~20 μm的植物細(xì)胞核內(nèi)的存在形式,既要保證遺傳物質(zhì)穩(wěn)定地存在于細(xì)胞核中,又要保證在進(jìn)行如DNA復(fù)制、轉(zhuǎn)錄翻譯、DNA重組和相應(yīng)修復(fù)等生物學(xué)過(guò)程時(shí),DNA能夠快速準(zhǔn)確反應(yīng),保證與相應(yīng)的蛋白質(zhì)或者作用因子發(fā)生作用,在這些過(guò)程中需要相應(yīng)的物質(zhì)和調(diào)節(jié)機(jī)制,染色質(zhì)動(dòng)態(tài)是細(xì)胞周期進(jìn)程所必需的,對(duì)基因組復(fù)制、轉(zhuǎn)錄沉默、DNA修復(fù)和重組至關(guān)重要[2]。核小體由(H3-H4)2四聚體和2個(gè)H2A-H2B二聚體組成,組蛋白八聚體表面覆蓋147 bp DNA[3],是組成染色質(zhì)的基本結(jié)構(gòu),在進(jìn)行核小體組裝(nucleosome assembly)這一復(fù)雜過(guò)程時(shí),為了防止帶負(fù)電荷DNA與帶正電荷的組蛋白發(fā)生相互作用形成大分子沉淀需要組蛋白分子伴侶(histone chaperone)和起驅(qū)動(dòng)作用的依賴(lài)三磷酸腺苷(ATP)的染色質(zhì)重塑因子(chromatin remodeling)的參與,保證核小體結(jié)構(gòu)正確組裝,核小體結(jié)構(gòu)的重復(fù)疊加和有效組裝,通過(guò)不斷壓縮、折疊和排列形成更為高級(jí)復(fù)雜的染色質(zhì)結(jié)構(gòu)[4]。因此,研究表明的染色質(zhì)基本結(jié)構(gòu)和主要功能的調(diào)節(jié)機(jī)制包括依賴(lài)ATP的染色質(zhì)重塑因子、組蛋白的共價(jià)修飾、組蛋白變異替換和組蛋白分子伴侶[5]。組蛋白分子伴侶以不依賴(lài)ATP的方式在染色質(zhì)組織中發(fā)揮著關(guān)鍵作用,影響著生物細(xì)胞中染色質(zhì)的動(dòng)力學(xué)變化[6]。深層探究組蛋白分子伴侶作用,其作為高酸性蛋白,保護(hù)組蛋白以防止錯(cuò)誤作用和聚集,引導(dǎo)組蛋白在DNA上有序沉積形成核小體[7]。種類(lèi)多樣且具有不同功能特點(diǎn)的組蛋白分子伴侶通過(guò)發(fā)揮自身作用在復(fù)制獨(dú)立和復(fù)制依賴(lài)過(guò)程中驅(qū)動(dòng)核小體的組裝和拆卸[8],影響著染色質(zhì)生物學(xué)包括組蛋白供給需求調(diào)節(jié)、組蛋白變異沉淀及組蛋白功能域等方面[9]。組蛋白分子伴侶進(jìn)化保守,根據(jù)與不同組蛋白的相關(guān)性,主要分為H2A-H2B組蛋白分子伴侶及H3-H4組蛋白分子伴侶[10],其中H2A-H2B組蛋白分子伴侶主要包括NAP1(nucleosome assembly protein 1)和FACT (facilitates chromatin transcription ),而H3-H4組蛋白分子伴侶主要包括CAF-l(chromatin assembly factor-1)、HIRA(histone regulatory homolog A)和ASF-l(antisilencing function l)等,既往試驗(yàn)在酵母及果蠅、小鼠等動(dòng)物中對(duì)組蛋白分子伴侶的研究初步表明,這些組蛋白分子伴侶在參與細(xì)胞染色質(zhì)組裝與去組裝和包括DNA復(fù)制、DNA修復(fù)和基因轉(zhuǎn)錄等在內(nèi)的重大過(guò)程時(shí)發(fā)揮著無(wú)以倫比的作用,因此對(duì)生物的生命活動(dòng)具有極其重要的意義[11]。
植物的生長(zhǎng)需要固定在一定環(huán)境中汲取生長(zhǎng)所需的物質(zhì),由于這種屬性,植物無(wú)法逃避周?chē)h(huán)境物質(zhì)改變對(duì)其造成的影響,生長(zhǎng)和生產(chǎn)力不得不受到各種生物和非生物脅迫的不良影響,其中對(duì)植物造成不良影響的生物脅迫主要包括真菌、細(xì)菌、病毒及昆蟲(chóng)等,非生物脅迫主要包括溫度差異(寒冷及炎熱)、水量多少(洪澇及干旱)、鹽性高低(低鹽及高鹽)、重金屬離子、紫外線(xiàn)輻射、電離輻射、化學(xué)物品等[12]。這些生物非生物脅迫作用于植物,嚴(yán)重時(shí)將影響植物DNA,對(duì)植物造成基因毒性和細(xì)胞毒性,因此引發(fā)蛋白質(zhì)合成減少、細(xì)胞膜破壞、各種作用蛋白受損等生物效應(yīng),影響整個(gè)生物體[13]。植物為了自身的生存發(fā)展,必須抵消和糾正DNA損傷造成的有害影響,因此植物通過(guò)不斷進(jìn)化,發(fā)展出一種復(fù)雜的、進(jìn)化上保守的損傷檢測(cè)及防御機(jī)制,稱(chēng)為DNA損傷反應(yīng)(DNA damage repair,DDR)[14]。近期許多研究發(fā)現(xiàn)真核細(xì)胞DNA損傷反應(yīng)過(guò)程是在染色質(zhì)情況下啟動(dòng),DNA損傷和修復(fù)依賴(lài)于染色質(zhì)動(dòng)力學(xué)的穩(wěn)定性,因此染色質(zhì)在DDR中起著關(guān)鍵的調(diào)控作用[14]。作為染色質(zhì)組織調(diào)節(jié)的重要因子,研究發(fā)現(xiàn)組蛋白分子伴侶是DNA損傷反應(yīng)中受損染色質(zhì)區(qū)域轉(zhuǎn)錄活性的關(guān)鍵調(diào)節(jié)因子,發(fā)揮著積極推動(dòng)瞬態(tài)染色質(zhì)瓦解和組蛋白重塑響應(yīng)DNA損傷的作用[15]。因此研究組蛋白分子伴侶與DNA損傷反應(yīng)之間的相關(guān)性,有助于深入了解DNA損傷的內(nèi)部調(diào)節(jié)機(jī)制,搞清損傷修復(fù)中的關(guān)鍵環(huán)節(jié),為DNA損傷修復(fù)的深層次精細(xì)研究奠定基礎(chǔ)。
1 組蛋白分子伴侶CAF-1研究進(jìn)展
作為H3-H4組蛋白分子伴侶中重要的成員,存在于幾乎所有真核生物中的CAF-1 (chromatin assembly factor-1 )是進(jìn)化保守的,最早從人類(lèi)HELa細(xì)胞的細(xì)胞核中提取出來(lái)[16]。CAF-1借助相關(guān)的加工因子,這種加工因子由增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)的DNA聚合酶產(chǎn)生[17],定位于正在進(jìn)行的DNA合成位點(diǎn),發(fā)揮促進(jìn)新合成組蛋白H3-H4與新合成的DNA結(jié)合的作用,將核小體組裝到正在復(fù)制的DNA上。同時(shí),有研究顯示,CAF-1通過(guò)調(diào)控異染色質(zhì)形成、信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄,在包括果蠅在內(nèi)的多細(xì)胞生物的發(fā)育過(guò)程中發(fā)揮著關(guān)鍵作用[18]。
研究酵母體內(nèi)的CAF-1相關(guān)亞基發(fā)現(xiàn),由亞基CAC1(chromatin assembly complex 1)、CAC2和CAC3組成酵母體內(nèi)的CAF-1[19]。在酵母中,CAF-1亞基的缺失不會(huì)導(dǎo)致個(gè)體致死,但會(huì)導(dǎo)致轉(zhuǎn)錄沉默發(fā)生異常,增加對(duì)DNA損傷的敏感性[20]。研究通過(guò)用甲磺酸甲酯(methyl methanesulfonate,MMS)處理野生型酵母及CAF-1酵母突變體發(fā)現(xiàn),突變體酵母對(duì)MMS處理敏感性高,CAF-1功能缺失的酵母會(huì)因此導(dǎo)致基因組染色質(zhì)組裝不足,caf-1突變體在應(yīng)對(duì)DNA損傷和修復(fù)后分別完全能夠激活和滅活其DNA損傷檢查點(diǎn),參與同源重組(homologous recombination,HR)途徑,同時(shí)也參與不涉及重要的DNA合成的非同源末端連接(nonhomologousend joining,NHEJ)[21]。對(duì)于UV-B造成的DNA損傷,CAF-1也發(fā)揮著積極的作用[22-23]。著絲粒裝配需要含有組蛋白H3變體CenH3的核小體,CenH3在芽殖酵母中被稱(chēng)為Cse4[24]。CAF-1可以在芽殖酵母中充當(dāng)組蛋白H3變體Cse4伴侶,重組CAF-1可以在體外組裝Cse4核小體,當(dāng)Cse4過(guò)表達(dá)時(shí),yCAF-1的缺失顯著減少了Cse4在染色質(zhì)全基因組內(nèi)的沉積量,yCAF-1促進(jìn)了Cse4在活性基因啟動(dòng)子和子端粒區(qū)域(XY型)的錯(cuò)合,將Cse4合并到非著絲粒核小體中,從而導(dǎo)致錯(cuò)誤合并[25]。在果蠅中,CAF-1由CAF1-p180、CAF1-p105和CAF1-p55這3個(gè)亞基組成[26]。果蠅CAF1-p55和人CAF1-p48不僅存在于CAF-1復(fù)合物中,還存在于許多染色質(zhì)調(diào)節(jié)復(fù)合物中,表明CAF-1具有多種功能,不僅限于充當(dāng)組蛋白伴侶[27]。CAF-1參與果蠅成蟲(chóng)盤(pán)發(fā)育過(guò)程中的Notch信號(hào)激活,果蠅中CAF1- p105或CAF1-p180亞基的缺失會(huì)造成Notch信號(hào)的提前激活和Notch靶蛋白的早期表達(dá),導(dǎo)致果蠅卵泡細(xì)胞有絲分裂的下調(diào),CAF-1在維持細(xì)胞增殖方面發(fā)揮著雙重作用,通過(guò)積極或消極的方式,以組織環(huán)境依賴(lài)的方式調(diào)節(jié)果蠅Notch信號(hào)[26]。在斑馬魚(yú)中CAF-1的中等亞基CAF-1b的活性減低,使斑馬魚(yú)出現(xiàn)細(xì)胞周期進(jìn)程、細(xì)胞分化異常,同時(shí)某些器官的發(fā)育出現(xiàn)異常,如視網(wǎng)膜、頂蓋、頭骨等[28]。
在人類(lèi)細(xì)胞中,通過(guò)試驗(yàn)中的凝膠遷移率確定了CAF-1中3個(gè)大亞基的命名,稱(chēng)為p150、p60和p48[16],CAF-1是正常的s期進(jìn)展和異染色質(zhì)形成所必需的,并參與DNA修復(fù)后的染色質(zhì)修復(fù)[29],CAF-1蛋白水平與細(xì)胞增殖和癌癥預(yù)后相關(guān)[30]。在皮膚黑色素瘤(cutaneous melanoma,CM)這種較高發(fā)的皮膚癌中,研究發(fā)現(xiàn)所有CM均表達(dá)CAF-1 p60,說(shuō)明CAF-1中p60亞基的過(guò)表達(dá)與皮膚及淋巴結(jié)和/或遠(yuǎn)處轉(zhuǎn)移的可能性有顯著的統(tǒng)計(jì)學(xué)意義(P<0.05)[31]。通過(guò)用組織芯片技術(shù)(tissue microarray technique,TMA)檢測(cè)臨床提取的如口腔鱗狀細(xì)胞癌、唾液腺腫瘤、皮膚黑色素瘤和前列腺癌等惡性腫瘤標(biāo)本,發(fā)現(xiàn)CAF-1 p60在組織切片和TMA標(biāo)本中均過(guò)表達(dá),在侵襲性和轉(zhuǎn)移性更強(qiáng)的腫瘤中表達(dá)水平最高,確認(rèn)染色質(zhì)組裝因子1 (CAF-1 p60)可以作為一種新的腫瘤增殖和預(yù)后標(biāo)志物[32]。有相關(guān)研究表明,人體CAF-1亞基CAF-1 p150的異常表達(dá)與某些類(lèi)型的惡性腫瘤的發(fā)生有關(guān)[33]。XU等[34]研究發(fā)現(xiàn),CAF-1 p150在肝細(xì)胞的6種細(xì)胞系和116對(duì)肝細(xì)胞癌(hepatocellular carcinoma,HCC)中表達(dá)以及與之匹配的正常腫瘤相鄰組織中表達(dá),在裸鼠中進(jìn)行皮下腫瘤模型研究以評(píng)估體內(nèi)腫瘤的生長(zhǎng),發(fā)現(xiàn)在裸鼠肝癌組織中CAF-1 p150的表達(dá)明顯高于在鄰近的非腫瘤組織中的表達(dá)(P<0.01);臨床分析表明,CAF-1 p150的表達(dá)與肝癌組織中的淋巴結(jié)轉(zhuǎn)移、腫瘤數(shù)目和分化密切相關(guān)(P<0.05);CAF-1 p150可能作為HCC患者5年總體生存和無(wú)病生存的不良預(yù)后指標(biāo)(P<0.05)。在小鼠中,敲除CAF-1 p150后胚胎發(fā)育在細(xì)胞間期停止,進(jìn)一步研究發(fā)現(xiàn)是小鼠細(xì)胞中被破壞的組成型異染色質(zhì)的結(jié)構(gòu)導(dǎo)致的,說(shuō)明CAF-1對(duì)于細(xì)胞核中染色體建立正確的空間結(jié)構(gòu)很重要[35]。
在擬南芥中,由FAS1(FASCIATA 1,p150的同源物)、FAS2(FASCIATA 2,p60的同源物)和 MSI1(Mu- lticopy Suppressor of Ira 1,p48的同源物)共同組成CAF-1復(fù)合物[36-37]。擬南芥FAS1和FAS2亞基的突變體不會(huì)致死,是可以存活的,擬南芥的CAF-1的亞基可以與若干調(diào)控蛋白相互作用,發(fā)揮協(xié)同或相反的作用,造成莖片狀、葉和花形態(tài)發(fā)育異常、頂端分生組織紊亂[36-37]以及SCN(stem cell niche)缺失[36]、側(cè)根發(fā)育受損等表現(xiàn)[38]。通過(guò)sdg2-3和fas2-4單突變體之間的遺傳雜交建立sdg2/fas2-4雙突變體,雙突變體表現(xiàn)出明顯的生長(zhǎng)停滯表型,SDG2 -3和FAS2-4的協(xié)同作用表明,SDG2和CAF-1在基因上是平行的,它們是維持根SCN組織和干細(xì)胞活性所獨(dú)立需要的[39]。FAS1和FAS2亞基突變體顯示45S rDNA拷貝和端粒的逐步丟失[40]。進(jìn)一步研究與HR相關(guān)的RAD51及其同源蛋白與CAF-1的相關(guān)性,通過(guò)建立fas1/rad 51b雙突變體,發(fā)現(xiàn)RAD51B的缺失降低了rDNA的丟失率,證實(shí)了在CAF1突變體中rDNA丟失與RAD51B依賴(lài)重組有關(guān)。在fas突變體中,45S rDNA中雙鏈斷裂的積累進(jìn)一步支持了DNA損傷修復(fù)的參與[41]。擬南芥CAF-1亞基FAS1及FAS2與擬南芥的同源重組(HR)相關(guān)[42],其中任何一個(gè)亞基的缺失均會(huì)導(dǎo)致HR及T-DNA整合頻率增高。Hisanaga等[43]通過(guò)微陣列分析,發(fā)現(xiàn)許多參與DNA損傷反應(yīng)的基因在CAF-1的亞基fas1突變體中上調(diào),在DNA損傷處理后,fas1-4突變體的葉片更窄,鋸齒更多,同時(shí)fas1-4比野生型細(xì)胞葉表皮下層?xùn)艡诩?xì)胞減少約40%,但平均單個(gè)細(xì)胞的大小與野生型相比大150%,說(shuō)明fas1-4中DNA損傷反應(yīng)的激活和伴隨的細(xì)胞數(shù)量減少與ATM(ataxia telangiectasia mutated)有關(guān),而與ATR(A TM and RAD3 related)無(wú)關(guān),CAF-1與ATM依賴(lài)性的DNA損傷反應(yīng)在fas1-4中起上游觸發(fā)器作用,延遲細(xì)胞周期并促進(jìn)進(jìn)入內(nèi)循環(huán),導(dǎo)致突變體細(xì)胞補(bǔ)償擴(kuò)張。CAF-1的功能缺失或突變會(huì)造成擬南芥毛狀體形狀的改變[44],通過(guò)與微管組裝及毛狀體模式、數(shù)量有關(guān)的STICHEL(STI)調(diào)控表現(xiàn)為fas1或fas2的突變?cè)斐蓴M南芥葉片毛狀分支增多[45]。擬南芥FAS1和FAS2基因維持SAM(shoot apical meristem)和RAM(root apical meristem)的細(xì)胞和組織功能,突變體fas1和fas2在維持SAM中的WUSCHEL(WUS)和RAM中的SCARECROW(SCR)的表達(dá)狀態(tài)方面存在缺陷,說(shuō)明CAF-1在胚胎后發(fā)育過(guò)程中通過(guò)促進(jìn)基因表達(dá)狀態(tài)的穩(wěn)定維持,在SAM和RAM的組織中起關(guān)鍵作用[36]。
擬南芥MSI1是真核生物中WD40蛋白家族中MSI1-like蛋白中的一員,它們形成作用于染色質(zhì)的幾個(gè)蛋白復(fù)合物的亞基,在擬南芥研究發(fā)現(xiàn)5個(gè)MSI1-like蛋白編碼基因MSI1-MSI5[46]。擬南芥MSI1與HDA19(Histone deacetylase 19)通過(guò)結(jié)合,形成組蛋白去乙?;笍?fù)合體,MSI1-HDA19復(fù)合物通過(guò)與脫落酸(ABA)受體基因的染色質(zhì)結(jié)合以及維持組蛋白H3的低水平乙?;瘉?lái)調(diào)節(jié)ABA信號(hào),從而影響ABA受體基因的表達(dá)水平,MSI1或HDA19的減少導(dǎo)致ABA受體基因的上調(diào)和ABA反應(yīng)基因的敏感[47]。在植物中,轉(zhuǎn)錄抑制作用的PcG蛋白通過(guò)形成如PRC1(polycomb repressive complex 1) 和PRC2在內(nèi)的多亞基蛋白復(fù)合物,其中PRC2發(fā)揮在靶基因調(diào)節(jié)下催化組蛋白H3賴(lài)氨酸27的三甲基化(H3K27me3)的作用,作為PCR1的重要組分LIKE HETEROCHROMATIN PROTEIN 1(LHP1)通過(guò)MSI1的作用識(shí)別H3K27me3位點(diǎn),發(fā)揮抑制FLC(flowering locus c)、FT(flowering time)、AG(agamous)等PcG蛋白靶點(diǎn)的作用[48]。擬南芥MSI1是MEA/FIE PcG蛋白復(fù)合體的組成部分,直接與FIE相互作用。當(dāng)突變等位基因?yàn)槟赶颠z傳時(shí),msi1雜合的突變植物的種子敗育率增高,說(shuō)明MSI1是種子發(fā)育所必需的,在種子發(fā)育的正確啟動(dòng)和進(jìn)程中具有重要的作用[49]。另一方面,擬南芥的花整合子基因SOC1(suppressor of co1)的正確表達(dá)需要MSI1。在長(zhǎng)日(LD)光周期中,MSI1通過(guò)光周期途徑降低CO(constans)的正常表達(dá)。導(dǎo)致FT和SOC1的激活失敗,造成擬南芥開(kāi)花延遲,說(shuō)明擬南芥對(duì)光周期的正常敏感性需要MSI1[50]。
2 DNA損傷修復(fù)研究進(jìn)展
生物體細(xì)胞會(huì)因?yàn)榧?xì)胞復(fù)制、重組錯(cuò)誤、代謝產(chǎn)生活性氧(ROS)[51]的過(guò)量等內(nèi)源性原因產(chǎn)生DNA損傷,植物也不例外。在受到諸如紫外線(xiàn)、電力輻射、化學(xué)誘變等外界環(huán)境壓力脅迫時(shí),植物除了生理結(jié)構(gòu)、各種產(chǎn)物成分會(huì)受到嚴(yán)重影響外,基因組核DNA也會(huì)受到影響[52]。數(shù)據(jù)采集表明到達(dá)地面的太陽(yáng)輻射中UV-B輻射僅占太陽(yáng)能輻射不到1%的極小一部分,但它卻是太陽(yáng)輻射的非?;钴S的成分,一定劑量的UV-B輻射對(duì)DNA產(chǎn)生影響[53-54]。細(xì)胞DNA對(duì)UV-B的吸收尤其強(qiáng)烈,因此DNA是UV-B輻射損傷的關(guān)鍵靶點(diǎn)[55]。細(xì)胞中的DNA損傷主要表現(xiàn)為核苷酸被修飾如堿基丟失、堿基化學(xué)修飾,鏈內(nèi)或鏈間交聯(lián)以及磷酸二酯鍵的斷裂[56]。嚴(yán)重的細(xì)胞DNA損傷是影響細(xì)胞遺傳物質(zhì),造成細(xì)胞中的單鏈DNA斷裂(DNA single strand breaks,SSBs),甚至造成雙鏈DNA斷裂(DNA double strand breaks,DSBs)。紫外線(xiàn)UV-B輻射在植物細(xì)胞DNA中產(chǎn)生2種主要類(lèi)型的病變:環(huán)丁烷嘧啶二聚體(cyclobutane pyrimidine dimers ,CPDs) 及6-4光產(chǎn)物(6-4 photo product,6-4 PPs)[55]。CPD作為UV-B輻射產(chǎn)生的主要危害約占75%,6-4 PPs約占25%[53]。CPD會(huì)影響DNA的結(jié)構(gòu),造成DNA雙螺旋結(jié)構(gòu)的輕微彎曲,而6-4 PPs則會(huì)造成DNA雙螺旋結(jié)構(gòu)更多的彎曲和解旋,6-4 PPs二聚體還可以被UV-A光異構(gòu)化,形成Dewar異構(gòu)體,三者的模擬三維結(jié)構(gòu)如圖1所示[50,52]。UV-B輻射對(duì)DNA堿基的損傷主要依賴(lài)DNA鏈的柔韌性及堿基的位置和種類(lèi),單鏈DNA (ssDNA)中2個(gè)嘧啶堿基與poly (dA)-(dT)縮合帶柔性末端的環(huán)加成反應(yīng)可以形成CPD,顯然易變形和解選的部位更容易被損傷[57]。在植物細(xì)胞中存在轉(zhuǎn)錄因子TATA-box結(jié)合蛋白(TATA-box binding protein,TBP),這種結(jié)合蛋白影響CPD的選擇性形成。6-4 PPs的TATA-box可以中和DNA彎曲的地方,而CPD優(yōu)先形成在TATA box的邊緣和DNA沒(méi)有彎曲的外部[58]。
許多研究表明,不同的細(xì)胞周期節(jié)點(diǎn)、不同原因?qū)е碌牟煌?lèi)型的DNA損傷下,有著各自針對(duì)性的損傷修復(fù)機(jī)制。在植物中UV-B輻射導(dǎo)致的低頻率DNA損傷主要依賴(lài)光修復(fù)(photoreactivation)這種修復(fù)途徑,光解酶(photolyase)是單體黃素依賴(lài)性修復(fù)酶,通過(guò)含有的2個(gè)生色團(tuán)吸收藍(lán)光/UV-A (320~400 nm)光介導(dǎo)主要過(guò)程,利用吸收的藍(lán)光能量切斷二聚體,將二聚體單體化[52,59]。CPD光解酶和6-4光溶酶介導(dǎo)光溶酶特異性地結(jié)合在DNA損傷上,通過(guò)吸收300~600 nm的光,有效快速地去除UV-B輻射造成的CPDs和6-4 PPs[60-61]。除擬南芥外,水稻[62]、苜蓿[63]、紫菜[62]、煙草[64]中都開(kāi)展了可靠的研究。除光修復(fù)外還存在與之相應(yīng)的不需要借助光的暗修復(fù),暗修復(fù)可以分為切除修復(fù)(包含NER、堿基切除修復(fù)(base excision repair,BER)在內(nèi)),參與嚴(yán)重DNA損傷DSBs修復(fù)的同源重組(HR)和非同源端連接(NHEJ),及保障DNA正確配對(duì)的錯(cuò)配修復(fù)(mismatch repair,MMR)等DNA修復(fù)途徑[65]。NER是修復(fù)暴露于紫外線(xiàn)或環(huán)境誘變引起的大量DNA損傷的分子途徑,包括修復(fù)整個(gè)基因組DNA損傷的全基因組核苷酸切除修復(fù)(global genomic NER,GG-NER)和選擇性修復(fù)轉(zhuǎn)錄DNA鏈的轉(zhuǎn)錄偶聯(lián)核苷酸切除修復(fù)(transcription-coup-led NER,TCR)[66]。BER是防止各種形式氧化、烷基化和自發(fā)性DAN損傷的主要保護(hù)修復(fù)途徑,DNA糖基化酶識(shí)別損傷產(chǎn)生脫嘌呤/嘧啶(apurinic/apyrimidinic,AP)位點(diǎn),通過(guò)切割磷酸糖鏈、切除堿性殘基或含有寡核苷酸的堿性殘基以及DNA合成和連接來(lái)啟動(dòng)修復(fù)過(guò)程[13]。對(duì)于復(fù)制中發(fā)生錯(cuò)誤等導(dǎo)致的堿基錯(cuò)誤配對(duì)依靠MMR將錯(cuò)誤堿基用正確的堿基置換,完成修復(fù)[67]。
3 組蛋白分子伴侶CAF-1與DNA損傷修復(fù)
作為一個(gè)復(fù)雜的DNA損傷感知和修復(fù)響應(yīng)通路,DDR信號(hào)的調(diào)節(jié)需要借助一系列表觀(guān)遺傳修飾影響染色質(zhì)動(dòng)力學(xué),如改變核小體位置和結(jié)構(gòu)的染色質(zhì)重塑,包含乙?;⒓谆?、磷酸化、泛素化等在內(nèi)的組蛋白修飾,DNA(去)甲基化,與非編碼RNA產(chǎn)生相應(yīng)的反應(yīng)。真核細(xì)胞中,主要的DNA修復(fù)機(jī)制如HR、NHEJ、BER、NER和MMR都受到多種染色質(zhì)重塑的影響,包括INO80、SWR1、RAD54等在內(nèi)的染色質(zhì)重塑復(fù)合體已被證明在植物DDR中發(fā)揮重要作用[14],當(dāng)收到DNA損傷信號(hào),產(chǎn)生修復(fù)途徑時(shí),會(huì)引起染色質(zhì)重排[67],DNA損傷會(huì)引起組蛋白修飾的改變,引起染色質(zhì)組織不穩(wěn)定,隨著DNA修復(fù),染色質(zhì)也會(huì)被相應(yīng)修復(fù)[68],而在此過(guò)程依賴(lài)組蛋白分子伴侶的協(xié)助。
CAF-1復(fù)合物在植物中是進(jìn)化保守的,其損傷會(huì)導(dǎo)致多種表型,包括DDR缺陷[69]。已發(fā)現(xiàn)CAF-1與包括PCNA、DNA解旋酶BLM和WRN 在內(nèi)的多種蛋白質(zhì)在不同的DNA修復(fù)過(guò)程中協(xié)同作用[70]。研究發(fā)現(xiàn)DNA修復(fù)和染色質(zhì)組裝之間有相應(yīng)的聯(lián)系,在具有修復(fù)能力的無(wú)細(xì)胞提取物中對(duì)紫外線(xiàn)照射損傷的DNA進(jìn)行孵育,發(fā)現(xiàn)核小體的重新組裝與NER同時(shí)發(fā)生[71]。核小體裝配途徑涉及CAF-1,該因子的最大亞基(p150)與增殖細(xì)胞核抗原(PCNA)直接相互作用,并在2個(gè)蛋白上繪制了這種相互作用的關(guān)鍵區(qū)域。在DNA損傷處理和檢查點(diǎn)控制的背景下,CAF-1與PCNA之間的相互作用極其重要,PCNA和CAF-1與受損DNA的結(jié)合取決于DNA損傷的數(shù)量,依賴(lài)于A(yíng)TP提供能量[72]。DNA損傷后,CAF-1定位于受損病灶,在NER和DSBs修復(fù)后重組核小體[73]。在擬南芥中,CAF-1任意1個(gè)亞基的缺失均導(dǎo)致體細(xì)胞HR的頻率增加40倍左右,同時(shí)T-DNA整合的頻率也發(fā)生增加,說(shuō)明CAF-1的功能缺失會(huì)延遲染色質(zhì)組裝,從而導(dǎo)致未染色質(zhì)化的DNA被介導(dǎo)HR或NHEJ的酶所影響,產(chǎn)生修復(fù)[42]。對(duì)人體靜息細(xì)胞通過(guò)博來(lái)霉素(Bleocin)處理,發(fā)現(xiàn)CAF-1和其相互作用蛋白PCNA顯著表達(dá),CAF-1和PCNA被招募到受損的染色質(zhì)中通過(guò)NER和NHEJ修復(fù)途徑進(jìn)行SSBs和DSBs的DNA損傷修復(fù),再通過(guò)RNA干擾導(dǎo)致CAF-1的缺失,靜息細(xì)胞活力顯著下降、DSBs增加,說(shuō)明CAF-1在人類(lèi)靜息細(xì)胞中發(fā)揮著修復(fù)DNA鏈斷裂后重組染色質(zhì)的作用[74]。
4 總結(jié)與展望
真核細(xì)胞內(nèi)DNA損傷被識(shí)別時(shí),會(huì)激活DDR,關(guān)于DNA損傷及修復(fù)的產(chǎn)物、途徑及相關(guān)機(jī)制已有較長(zhǎng)的歷史及較深入的研究。目前已經(jīng)有許多證據(jù)證明DNA損傷反應(yīng)(DDR)與核小體重裝、染色質(zhì)重塑以及染色質(zhì)的相關(guān)活動(dòng)有相應(yīng)的聯(lián)系,但是染色質(zhì)背景下DNA損傷修復(fù)的作用機(jī)制還尚待解決。目前關(guān)于組蛋白分子伴侶CAF-1結(jié)合染色質(zhì)在DNA損傷修復(fù)中的作用機(jī)制及在NER的相關(guān)作用研究還停留在淺表。DDR和DNA修復(fù)機(jī)制是如何被一系列指導(dǎo)染色質(zhì)重塑和表觀(guān)遺傳修飾的表觀(guān)遺傳修飾協(xié)同調(diào)控的是未來(lái)研究DNA損傷修復(fù)的研究方向。未來(lái)希望通過(guò)研究組蛋白伴侶在參與染色質(zhì)相關(guān)的DNA損傷識(shí)別修復(fù)機(jī)制,深入了解表觀(guān)遺傳在DNA損傷修復(fù)中起到的作用,加深認(rèn)識(shí)DNA損傷修復(fù)的深層作用機(jī)制。
參考文獻(xiàn)
[1] KARETSOU Z,EMMANOUILIDOU A,SANIDAS I,et al.Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction[J].BMC Biochem,2009,10:10-22.
[2] VERGARA Z,GUTIERREZ C.Emerging roles of chromatin in the maintenance of genome organization and function in plants[J].Genome Biol,2017,18(1):96-108.
[3] OJOLO S P,CAO S,PRIYADARSHANI S V G N,et al.Regulation of plant growth and development:A review from a chromatin remodeling perspective[J].Front Plant Sci,2018,9(13):1232-1245.
[4] MELLO J A,ALMOUZNI G.The ins and outs of nucleosome assembly[J].Curr Opin Genet Dev,2001,11(2):136-141.
[5] MELLOR J.The dynamics of chromatin remodeling at promoters[J].Mol Cell,2005,19(2):147-157.
[6] MEAS R,WYRICK J J,SMERDON M J.Nucleosomes regulate base excision repair in Chromatin[J].Mutat Res/Rev Mutat Res,2019,780:29-36.
[7] DAS C,TYLER J K,CHURCHILL M E.The histone shuffle:Histone chaperones in an energetic dance[J].Trends Biochem Sci,2010,35(9):476-489.
[8] SAUER P V,GU Y,LIU W H,et al.Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1[J].Nucleic Acids Res,2018,46(19):9907-9917.
[9] PARDAL A J,F(xiàn)ERNANDES-DUARTE F,BOWMAN A J.The histone chaperoning pathway:From ribosome to nucleosome[J].Essays Biochem,2019,63(1):29-43.
[10] PARK Y J,LUGER K.Histone chaperones in nucleosome eviction and histone exchange[J].Curr Opin Struct Biol,2008,18(3):282-289.
[11] GURARD-LEVIN Z A,QUIVY J P,ALMOUZNI G.Histone chaperones:Assisting histone traffic and nucleosome dynamics[J].Annu Rev Biochem,2014,83:487-517.
[12] MAHAJAN S,TUTEJA N.Cold,salinity and drought stresses:An overview[J].Arch Biochem Biophys,2005,444(2):139-158.
[13] BRITT A B.Molecular genetics of DNA repair in higher plants[J].Trends Plant Sci,1999,4(1):20-25.
[14] KIM J H.Chromatin remodeling and epigenetic regulation in plant DNA damage repair[J].Int J Mol Sci,2019,20(17):4093-4115.
[15] GONZ LEZ-ARZOLA K,DAZ-MORENO I,CANO-GONZ LEZ A,et al.Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c[J].PNAS,2015,112(32):9908-9913.
[16] SMITH S,STILLMAN B.Purification and characterization of CAF-I,a human cell factor required for chromatin assembly during DNA replication in vitro[J].Cell,1989,58(1):15-25.
[17] SHIBAHARA K,STILLMAN B.Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin[J].Cell,1999,96(4):575-585.
[18] YU Z S,LIU J Y,DENG W M,et al.Histone chaperone CAF-1:Essential roles in multi-cellular organism development[J].Cell Mol Life Sci,2015,72(2):327-337.
[19] LIU W H,ROEMER S C,ZHOU Y,et al.The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones[J].Elife,2016,5:e18023-e18049.
[20] KAUFMAN P D,COHEN J L,OSLEY M A.Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I[J].Mol Cell Biol,1998,18(8):4793-4806.
[21] ADKINS M W,HOWAR S R,TYLER S R.Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes[J].Mol Cell,2004,14(5):657-666.
[22] PRAKASH S,PRAKASH L.Nucleotide excision repair in yeast[J].Mutat Res,2000,451(1/2):13-24.
[23] KAUFMAN P D,KOBAYASHI R,STILLMAN B.Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I[J].Genes Dev,1997,11(3):345-357.
[24] CHOY J S,MISHRA P K,AU W C,et al.Insights into assembly and regulation of centromeric chromatin in Saccharomyces cerevisiae[J].Biochim Biophys Acta,2012,1819(7):776-783.
[25] HEWAWASAM G S,DHATCHINAMOORTHY K,MATTINGLY M,et al.Chromatin assembly factor-1 (CAF-1) chaperone regulates Cse4 deposition into chromatin in budding yeast[J].Nucleic Acids Res,2018,46(9):4440-4455.
[26] LO P K,HU Y C,CORCORAN D,et al.Inhibition of Notch signaling by the p105 and p180 subunits of Drosophila chromatin assembly factor 1 is required for follicle cell proliferation[J].J Cell Sci,2019,132(2):1-10.
[27] KAUFMAN P D,KOBAYASHI R,KESSLER N,et al.The p150 and p60 subunits of chromatin assembly factor I:A molecular link between newly synthesized histones and DNA replication[J].Cell,1995,81(7):1105-1114.
[28] 趙占克,王玉鳳.組蛋白伴侶在發(fā)育過(guò)程中的功能[J].遺傳,2010,32(1):41-48.
[29] KLAPHOLZ B,DIETRICH B H,SCHAFFNER C,et al.CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells[J].Chromosoma,2009,118(2):235-248.
[30] STAIBANO S,MASCOLO M,MANCINI F P,et al.Overexpression of chromatin assembly factor-1 (CAF-1) p60 is predictive of adverse behaviour of prostatic cancer[J].Histopathology,2009,54(5):580-590.
[31] MASCOLO M,VECCHIONE M L,ILARDI G,et al.Overexpression of Chromatin Assembly Factor-1/p60 helps to predict the prognosis of melanoma patients[J].BMC Cancer,2010,10(1):1-14.
[32] MASCOLO M,ILARID G,MEROLLA F,et al.Tissue microarray-based evaluation of Chromatin Assembly Factor-1 (CAF-1)/p60 as tumour prognostic marker[J].In J Mol Sci,2012,13(9):11044-11062.
[33] WU? Z H,CUI F F,YU F D,et al.Up-regulation of CHAF1A,a poor prognostic factor,facilitates cell proliferation of colon cancer[J].Biochem Biophys Res Commun,2014,449(2):208-215.
[34] XU M,JIA Y L,LIU Z K,et al.Chromatin assembly factor 1,subunit A (P150) facilitates cell proliferation in human hepatocellular carcinoma[J].Onco Targets Ther,2016,9:4023-4035.
[35] HOULARD M,BERLIVET S,PROBST A V,et al.CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells[J].PLoS Genetics,2006,2(11):1686-1696.
[36] KAYA H,SHIBAHARA K I,TAOKA K I,et al.FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems[J].Cell,2001,104(1):131-142.
[37]? KIRIK A,PECINKA A,WENDELER E,et al.The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants[J].Plant Cell,2006,18(10):2431-2442.
[38] MANZANO C,RAMIREZ-PARRA E,CASIMIRO I,et al.Auxin and epigenetic regulation of SKP2B,an F-box that represses lateral root formation[J].Plant Physiol,2012 ,160(2):749-762.
[39] YAO X Z,F(xiàn)ENG H Y,YU Y,et al.SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development[J].PLoS One,2013,8(2):1-11.
[40] SERRA H,DA INES O,DEGROOTE F,et al.Roles of XRCC2,RAD51B and RAD51D in RAD51-independent SSA recombination[J].PLoS Genet,2013,9(11):1-9.
[41] MUCHOVA V,AMIARD S,MOZGOVA I,et al.Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants[J].Plant J,2015,81(2):198-209.
[42] ENDO M,ISHIKAWA Y,OSAKABE K,et al.Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants[J].EMBO J,2006,25(23):5579-5590.
[43] HISANAGA T,F(xiàn)ERJANI A,HORIGUCHI G,et al.The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development[J].Plant Physiol,2013,162(2):831-841.
[44] ONO T,KAYA H,TAKEDA S,et al.Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis[J].Genes Cells,2006,11(2):153-162.
[45] PLETT J M,MATHUR J,REGAN S.Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana[J].J Exp Bot,2009,60(13):3923-3933.
[46] HENNIG L,BOUVERET R,GRUISSEM W.MSI1-like proteins:An escort service for chromatin assembly and remodeling complexes[J].Trends Cell Biol,2005,15(6):295-302.
[47] MEHDI S,DERKACHEVA M,RAMSTRM M,et al.The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling[J].Plant Cell,2016,28(1):42-54.
[48] DERKACHEVA M,STEINBACH Y,WILDHABER T,et al.Arabidopsis MSI1 connects LHP1 to PRC2 complexes[J].EMBO J,2013,32(14):2073-2085.
[49] KHLER C,HENNIG L,BOUVERET R,et al.Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development[J].EMBO J,2003,22(18):4804-4814.
[50] STEINBACH Y,HENNIG L.Arabidopsis MSI1 functions in photoperiodic flowering time control[J].Front Plant Sci,2014,5:77-85.
[51] BIEDERMANN S,MOONEY S,HELLMANN H.Recognition and repair pathways of damaged DNA in higher plants[M]//Selected Topics in DNA Repair.[s.l.]:InTech,2011:201-236.
[52] TUTEJA N,AHMAD P,PANDA B B,et al.Genotoxic stress in plants:Shedding light on DNA damage,repair and DNA repair helicases[J].Mutat Res,2009,681(2/3):134-149.
[53] SINHA R P,HDER D P.UV-induced DNA damage and repair:A review[J].Photochem Photobiol Sci,2002,1(4):225-236.
[54] RASTOGI R P,RICHA,KUMAR A,et al.Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair[J].J Nucleic Acids,2010,2010:1-32.
[55] GILL S S,ANJUM N A,GILL R,et al.DNA damage and repair in plants under ultraviolet and ionizing radiations[J].Sci World J,2015,2015:1-11.
[56] MANOVA V,GRUSZKA D.DNA damage and repair in plants - from models to crops[J].Front Plant Sci,2015,6:885-911.
[57] LYAMICHEV V.Unusual conformation of (dA)n· (dT)n-tracts as revealed by cyclobutane thymine-thymine dimer formation[J].Nucleic Acids Res,1991,19(16):4491-4496.
[58] ABOUSSEKHRA A,THOMA F.TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box[J].EMBO J,1999,18(2):433-443.
[59] GALLEGO F,F(xiàn)LECK O,LI A,et al.AtRAD1,a plant homologue of human and yeast nucleotide excision repair endonucleases,is involved in dark repair of UV damages and recombination[J].Plant J,2000,21(6):507-518.
[60] PANG Q S,HAYS J B.UV-B-Inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana[J].Plant Physiol,1991,95(2):536-543.
[61] TAKEUCHI Y,MURAKAMI M,NAKAJIMA N,et al.The photorepair and photoisomerization of DNA lesions in etiolated cucumber cotyledons after irradiation by UV-B depends on wavelength[J].Plant Cell Physiol,1998,39(7):745-750.
[62] TERANISHI M,TAGUCHI T,ONO T,et al.Augmentation of CPD photolyase activity in japonica and indica rice increases their UVB resistance but still leaves the difference in their sensitivities[J].Photochem Photobiol,2012,11(5):812-820.
[63] KUMAGAI T,SATO T.Inhibitory effects of increase in near-UV radiation on the growth of Japanese rice cultivars(Oryza sativa L.) in a phytotron and recovery by exposure to visible radiation[J].Ikushugaku zasshi,1992,42(3):545-552.
[64] 李韶山,王艷,LARS OLOF BJRN.溫度對(duì)UV-B誘導(dǎo)的煙草葉圓片DNA損傷的影響[J].生態(tài)科學(xué),2002,21(2):115-117.
[65] BRAY C M,WEST C E.DNA repair mechanisms in plants:Crucial sensors and effectors for the maintenance of genome integrity[J].New Phytol,2005,168(3):511-528.
[66] HANAWALT P C,SPIVAK G.Transcription-coupled DNA repair:Two decades of progress and surprises[J].Nat Rev Mol Cell Biol,2008,9(12):958-970.
[67] LEONARD J M,BOLLMANN S R,HAYS J B.Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function[J].Plant Physiol,2003,133(1):328-338.
[68] DANTUMA N P,VAN ATTIKUM H.Spatiotemporal regulation of posttranslational modifications in the DNA damage response[J].EMBO J,2016,35(1):6-23.
[69] DON M,MITTELSTEN SCHEID O.DNA damage repair in the context of plant chromatin[J].Plant Physiol,2015,168(4):1206-1218.
[70] JIAO R,HARRIGAN J A,SHEVELEV I,et al.The Werner syndrome protein is required for recruitment of chromatin assembly factor 1 following DNA damage[J].Oncogene,2007,26(26):3811-3822.
[71] GAILLARD P H L,MARTINI E M,KAUFMAN P D,et al.Chromatin assembly coupled to DNA repair:A new role for chromatin assembly factor I[J].Cell,1996,86(6):887-896.
[72] MOGGS J G,GRANDI P,QUIVY J P,et al.A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage[J].Mol Cell Biol,2000,20(4):1206-1218.
[73] ZHANG W,TYL M,WARD R,et al.Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1[J].Mol Biol,2013,20(1):29-35.
[74] NABATIYAN A,SZ TS D,KRUDE T.Induction of CAF-1 expression in response to DNA strand breaks in quiescent human cells[J].Mol Cell Biol,2006,26(5):1839-1849.