吳娟
一、旋轉(zhuǎn)與計算
例1(2021·重慶)如圖1,正方形ABCD的對角線AC,BD交于點O,M為AD上一點,連接OM,過點O作ON⊥OM,交CD于點N.若四邊形MOND的面積是1,則AB的長為( ).
A. 1? ? ? B. [2]? ? ? C. 2? ? ? ? D. 2[2]
解析:由題設(shè)條件可知,將△DON逆時針旋轉(zhuǎn)90°后與△AOM重合,因此S△AOD = S△AOM + S△DOM = S△DON + S△DOM = S四邊形MOND = 1,所以正方形ABCD的面積為4,則AB的長為2. 故選C.
點評:本題中并沒有“旋轉(zhuǎn)”的字眼,但應(yīng)用旋轉(zhuǎn)的思想,抓住正方形的特征,“無中生有”地轉(zhuǎn)化為旋轉(zhuǎn)問題,使問題迅速得到了解決.
二、旋轉(zhuǎn)與推理
例2(2021·浙江·麗水)如圖2,在菱形ABCD中,∠ABC是銳角,E是BC邊上的點,將射線AE繞點A按逆時針方向旋轉(zhuǎn),交直線CD于點F.當(dāng)AE⊥BC,∠EAF = ∠ABC時,求證:AE = AF.
解析:因為四邊形ABCD是菱形,∴AB = AD,∠ABC = ∠ADC,AD[?]BC. ∵AE⊥BC,∴AE⊥AD,∴∠ABE + ∠BAE = ∠EAF + ∠DAF = 90°. ∵∠EAF = ∠ABC,∴∠BAE = ∠DAF,∴△ABE ≌△ADF(ASA),∴AE = AF.
點評:全等三角形是證明兩條線段相等最基本、最有力的武器.
三、旋轉(zhuǎn)與探究
例3(2021·浙江·嘉興)小王在學(xué)習(xí)浙教版九上課本第72頁例2后,進(jìn)一步開展探究活動:將一個矩形ABCD繞點A順時針旋轉(zhuǎn)α(0°<α ≤90°),得到矩形AB′C′D′,如圖3,連接BD,AC′,過點D′作D′M[?]AC′,交BD于點M. 線段D′M與DM相等嗎?請說明理由.
解析:DM' = DM.
理由如下:連接DD'.∵D'M[?]AC',∴∠AD'M = ∠D'AC'.
∵AD' = AD,∠AD'C' = ∠DAB = 90°,D'C' = AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC' = ∠ADB,∴∠ADB = ∠AD'M. ∵AD' = AD,∴∠ADD' = ∠AD'D,∴∠MDD' = ∠MD'D,∴D'M = DM.
點評:本題是結(jié)論探索型問題,解決這類問題首先要通過觀察、測量、畫圖等合情推理的手段得到正確的結(jié)論,再用演繹推理的方法來說明結(jié)論的正確性.
(作者單位:江蘇省興化市安豐初級中學(xué))
初中生學(xué)習(xí)指導(dǎo)·中考版2021年10期