• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      生物質(zhì)炭對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和微生物群落的影響*

      2021-11-15 05:23:00蔣雪洋張前前沈浩杰何鐵虎熊正琴
      土壤學(xué)報(bào) 2021年6期
      關(guān)鍵詞:句容叢枝粒級(jí)

      蔣雪洋,張前前,沈浩杰,何鐵虎,熊正琴?

      生物質(zhì)炭對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和微生物群落的影響*

      蔣雪洋1,張前前1,沈浩杰1,何鐵虎2,熊正琴1?

      (1. 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,江蘇省低碳農(nóng)業(yè)與溫室氣體減排重點(diǎn)實(shí)驗(yàn)室,南京 210095;2. 土壤與可持續(xù)農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008)

      土壤團(tuán)聚體決定著土壤功能與質(zhì)量,受土壤生物與非生物因素的共同作用。本文從非生物和生物學(xué)角度解析生物質(zhì)炭施用對(duì)土壤團(tuán)聚體穩(wěn)定性的長(zhǎng)期影響。以句容和南京兩個(gè)獨(dú)立施用生物質(zhì)炭3年或5年后的稻田麥季土壤為研究對(duì)象,選取常規(guī)施肥(CK)和常規(guī)施肥+生物質(zhì)炭(AB)處理,利用濕篩法獲得不同粒級(jí)土壤團(tuán)聚體,并測(cè)定其中有機(jī)碳(SOC)、全氮、全磷含量,同時(shí)采用定量PCR技術(shù)測(cè)定土壤微生物(細(xì)菌、真菌、叢枝菌根真菌、古細(xì)菌和放線菌)豐度。結(jié)果表明:句容和南京土壤AB處理生物質(zhì)炭原位老化后,土壤pH、田間持水量和大團(tuán)聚體比例(>0.25)顯著增加,平均重量直徑和幾何平均直徑表現(xiàn)出增加趨勢(shì)(>0.05);土壤團(tuán)聚體養(yǎng)分含量(SOC、全磷)和土壤微生物豐度發(fā)生顯著變化。與對(duì)照處理相比,句容和南京老化生物質(zhì)炭處理的土壤大團(tuán)聚體比例分別顯著增加93.0%和61.5%,0.002~0.053 mm和<0.002 mm粒級(jí)團(tuán)聚體均呈減少趨勢(shì);句容和南京土壤AB處理全土SOC含量分別顯著增加26.3%和26.9%,大團(tuán)聚體中SOC含量分別顯著增加72.4%和52.3%,微團(tuán)聚體中SOC含量分別顯著增加20.8%和30.0%,全土真菌豐度顯著增加;南京土壤全磷含量顯著增加25.4%,叢枝菌根真菌和古細(xì)菌豐度也呈增加趨勢(shì)(>0.05)。由相關(guān)性分析可知,土壤團(tuán)聚體平均重量直徑與大團(tuán)聚體比例、SOC含量、真菌和叢枝菌根真菌豐度極顯著正相關(guān)(<0.01),與全磷含量和古細(xì)菌豐度顯著正相關(guān),相關(guān)系數(shù)分別為0.641和0.646。綜上所述:生物質(zhì)炭可以改善土壤pH、田間持水量等理化性質(zhì),增加稻-麥輪作麥季土壤0.25~2 mm大團(tuán)聚體比例和碳、磷含量,增加土壤真菌、叢枝菌根真菌和古細(xì)菌豐度,提高土壤團(tuán)聚體穩(wěn)定性,具有持續(xù)性。

      生物質(zhì)炭;團(tuán)聚體;穩(wěn)定性;微生物

      土壤團(tuán)聚體協(xié)調(diào)土壤水、肥、氣、熱,影響土壤微生物棲居環(huán)境和微生物群落結(jié)構(gòu)的變化,進(jìn)而影響土壤物質(zhì)能量循環(huán);是膠體凝聚、膠結(jié)和黏結(jié)土壤原生顆粒,是生物和非生物因素共同作用的結(jié)果,其中微生物是形成土壤團(tuán)聚體最活躍的生物因素之一[1-2]。

      生物質(zhì)炭是在無(wú)氧或缺氧條件下通過(guò)有機(jī)廢棄物(例如廢木材、有機(jī)肥、作物殘余物、畜禽糞便等)熱解產(chǎn)生的富炭多孔物質(zhì),具有很高的抗分解能力[3],故能在土壤中穩(wěn)定地存在數(shù)千年[4]。已有研究表明,生物質(zhì)炭不僅提高土壤碳儲(chǔ)量和土壤養(yǎng)分含量,增加土壤pH、通氣性和持水量,降低土壤容重;還有利于微生物的生長(zhǎng)和繁殖,豐富微生物群落結(jié)構(gòu),促進(jìn)土壤團(tuán)聚體結(jié)構(gòu)的形成和穩(wěn)定[5-6]。Soinne等[7]指出,添加生物質(zhì)炭改變土壤性質(zhì),減少土壤侵蝕,增加黏土團(tuán)聚體穩(wěn)定性,減少膠體物質(zhì)的分離,進(jìn)而減少農(nóng)田中顆粒態(tài)磷的損失。Lehmann等[8]發(fā)現(xiàn),生物質(zhì)炭通過(guò)改善土壤容重、土壤持水量等土壤理化性質(zhì)影響土壤微生物豐度,為微生物生長(zhǎng)提供底物,改善微生物棲息地環(huán)境。何玉亭等[9]研究表明,煙稈炭和桑條炭均能促進(jìn)紅壤大團(tuán)聚體(0.25~1 mm)的形成,提高紅壤團(tuán)聚體結(jié)構(gòu)穩(wěn)定性,增加土壤微生物群落豐度。但也有研究發(fā)現(xiàn),施用生物質(zhì)炭導(dǎo)致土壤團(tuán)聚體穩(wěn)定性降低[10]。這可能與生物質(zhì)炭的制備材料、生產(chǎn)條件[11]、土壤類型、老化作用或其他環(huán)境因素有關(guān)[12]。

      目前有關(guān)生物質(zhì)炭改良土壤的研究主要來(lái)自短期試驗(yàn),但是生物質(zhì)炭中不穩(wěn)定組分可以在短期內(nèi)(數(shù)月)迅速降解[13],隨后其表面形態(tài)、比表面積、孔隙度、元素組成、表面含氧官能團(tuán)和pH等均會(huì)發(fā)生一系列的變化,進(jìn)而顯著改變土壤理化性質(zhì)和微生物群落[8,12]。Duan等[14]研究發(fā)現(xiàn),大田原位老化5年生物質(zhì)炭納米微孔結(jié)構(gòu)被破壞,孔徑、比表面積和銨吸附能力增大,同時(shí)對(duì)土壤pH的提升顯著減弱。Zheng等[15]研究發(fā)現(xiàn),添加生物質(zhì)炭4年后對(duì)酸性稻田土壤理化性質(zhì)和微生物群落組成均有影響。也有研究表明,生物質(zhì)炭在田間原位老化過(guò)程中顆粒破碎,含氧官能團(tuán)增加,與黏粒結(jié)合,增加土壤團(tuán)聚和養(yǎng)分固持,改善土壤結(jié)構(gòu)[16-17]。生物質(zhì)炭的緩慢氧化特性決定了其對(duì)土壤團(tuán)聚體的長(zhǎng)期影響[18]。有必要關(guān)注老化生物質(zhì)炭對(duì)土壤團(tuán)聚體結(jié)構(gòu)的影響機(jī)制[12]。因此,本研究針對(duì)不同地區(qū)稻麥輪作麥季土壤原位老化生物質(zhì)炭,采用團(tuán)聚體濕篩法和定量PCR技術(shù),從非生物和生物角度探究生物質(zhì)炭對(duì)土壤團(tuán)聚體穩(wěn)定性的長(zhǎng)期影響,明確生物質(zhì)炭在土壤結(jié)構(gòu)改良上的可利用性和可持續(xù)性。

      1 材料與方法

      1.1 研究區(qū)概況

      選取2個(gè)獨(dú)立進(jìn)行的水稻-小麥輪作農(nóng)田開(kāi)展研究。試驗(yàn)地一[19]位于江蘇省句容市茅山鎮(zhèn)(31°92′N,119°28′E),土壤類型為潴育型水稻土,土壤質(zhì)地為黏壤土,基本組成為黏粒26%、粉粒34%和砂粒40%。0~20 cm土壤pH 5.3、有機(jī)碳14.6 g·kg–1和全氮1.8 g·kg–1。試驗(yàn)地二[20]位于江蘇省南京市秣陵鎮(zhèn)(31°52′N,118°50′E),土壤類型為潛育型水稻土,土壤質(zhì)地為黏壤土,基本組成為黏粒14%、粉粒80%和砂粒6%。0~20 cm土壤pH 5.6、有機(jī)碳14.6 g·kg–1和全氮1.3 g·kg–1。兩試驗(yàn)地均位于長(zhǎng)江中下游地區(qū),屬于北亞熱帶季風(fēng)氣候區(qū),年均日照時(shí)間2 048 h,年均氣溫接近15.7℃,年均降水量約1 050 mm。

      1.2 試驗(yàn)設(shè)計(jì)

      試驗(yàn)地一、二均設(shè)置兩個(gè)處理:CK(施用NPK肥)和AB(施用NPK肥+生物質(zhì)炭),每個(gè)處理均設(shè)置3個(gè)重復(fù)小區(qū),采用隨機(jī)區(qū)組設(shè)計(jì)。每個(gè)小區(qū)間均具有獨(dú)立灌水排水系統(tǒng)。試驗(yàn)田周圍設(shè)有2 m保護(hù)行。種植、灌溉、施肥以及病蟲(chóng)害防治等田間管理措施均遵循當(dāng)?shù)爻R?guī)管理方式。

      試驗(yàn)地一生物質(zhì)炭于2014年6月(15 t·hm–2)一次性施入句容試驗(yàn)地0~20 cm土層中,后續(xù)不再施用,為小麥秸稈在高溫450℃限氧條件下制得,總碳含量513.0 g·kg–1、總氮11.3 g·kg–1、pH 10.5、表面積22.1 m2·g–1。自2014年6月開(kāi)始,每個(gè)小區(qū)(3 m × 8 m)在移栽水稻當(dāng)天施入化肥,施氮處理為尿素(以N計(jì)),每季用作基肥(120 kg·hm–2)、分蘗肥(120 kg·hm–2)和穗肥(60 kg·hm–2),分三次施入;每季過(guò)磷酸鈣(以P2O5計(jì))和氯化鉀(以K2O計(jì))均為125 kg·hm–2,作基肥一次性施入。

      試驗(yàn)地二生物質(zhì)炭于2012年6月(20 t·hm–2)一次性施入南京試驗(yàn)地0~20 cm土層中,后續(xù)不再施用,購(gòu)自河南三利新能源有限公司,為小麥秸稈在高溫400℃限氧條件下制得。總碳含量467.0 g·kg–1、總氮5.6 g·kg–1、pH 9.4、表面積8.9 m2·g–1、灰分20.8%。自2012年6月開(kāi)始,每個(gè)小區(qū)(5 m × 4 m)在移栽水稻前一天施入化肥,施氮處理為尿素(以N計(jì)),每季用量為250 kg·hm–2,以4︰3︰3的比例分基肥和2次追肥施用;每季鈣鎂磷肥(以P2O5計(jì))60 kg·hm–2和氯化鉀(以K2O計(jì))120 kg·hm–2用作基肥一次施入。

      1.3 樣品采集及測(cè)定方法

      兩個(gè)試驗(yàn)地土壤樣品均于2017年6月小麥?zhǔn)斋@后采集,每個(gè)處理3個(gè)重復(fù)小區(qū),每個(gè)小區(qū)使用S型采樣法采集5個(gè)0~20 cm混合土樣?;旌虾蠓殖扇?,一份存儲(chǔ)在4℃下用于土壤的基本理化特性和團(tuán)聚體分析,一份土壤風(fēng)干用于測(cè)定SOC、全氮和全磷含量,而另一份存儲(chǔ)在–80℃下進(jìn)行DNA提取和定量PCR測(cè)定。

      土壤團(tuán)聚體分級(jí)采用濕篩法[21]。干燥和重新潤(rùn)濕在稻麥輪作系統(tǒng)中非常普遍,故水穩(wěn)性團(tuán)聚體可以反映土壤結(jié)構(gòu)和微生物群落的真實(shí)狀態(tài)[16,22]。四種團(tuán)聚體粒級(jí),包括0.25~2 mm(大團(tuán)聚體)、0.053~0.25 mm(微團(tuán)聚體)、0.002~0.053 mm(粉砂粒)和<0.002 mm(黏粒),分別使用2、0.25和0.053 mm篩組和離心方法獲得。將相當(dāng)于100 g干土的新鮮土壤放置在2 mm篩上面,并在去離子水

      中浸泡10 min,通過(guò)手動(dòng)上下晃動(dòng)篩子3 cm,2 min內(nèi)重復(fù)50次實(shí)現(xiàn)團(tuán)聚體分離,使所有土樣通過(guò)2 mm篩子。篩子上殘留的團(tuán)聚體(>2 mm)數(shù)量有限,使用鑷子收集清洗>2 mm篩上面漂浮的植物殘?jiān)褪[等。將通過(guò)2 mm篩子的土樣傾倒通過(guò)0.25 mm篩子,從而得到大團(tuán)聚體,將留在篩上的大團(tuán)聚體轉(zhuǎn)移到預(yù)先稱重的燒杯中干燥。使用相同的方法將通過(guò)0.25 mm篩子的土樣分多次通過(guò)0.053 mm篩,保留篩網(wǎng)上的微團(tuán)聚體,同樣將其轉(zhuǎn)移到預(yù)先稱重的燒杯中干燥。將通過(guò)0.053 mm篩子的土樣轉(zhuǎn)移到離心瓶中,通過(guò)逐步離心(600 r·min–1,15℃,4 min)分離出砂粒,并且將<0.002 mm粒級(jí)的上清液轉(zhuǎn)移到其他離心瓶進(jìn)行離心(4 200 r·min–1,15℃,36 min)得到黏粒。將不同粒級(jí)團(tuán)聚體風(fēng)干、稱重,同時(shí)記錄殘?jiān)褪[質(zhì)量,計(jì)算各粒級(jí)團(tuán)聚體比例和回收率,同時(shí)用風(fēng)干樣品進(jìn)一步測(cè)定不同粒級(jí)團(tuán)聚體SOC、全氮和全磷含量。

      土壤團(tuán)聚體穩(wěn)定性評(píng)價(jià)指標(biāo)采用平均重量直徑(MWD)、幾何平均直徑(GMD)、>0.25 mm大團(tuán)聚體比例(>0.25)衡量,分別按以下公式計(jì)算[23-24]:

      土壤容重和田間持水量分別采用環(huán)刀法和環(huán)刀浸水法測(cè)定[25]。土壤pH和電導(dǎo)率按水土比5︰1浸提后,分別用pH計(jì)(PHS-3C,上海)和電導(dǎo)率儀(FE30-K,上海)測(cè)定。土壤有機(jī)碳用外加熱重鉻酸鉀氧化容量法測(cè)定;全氮用凱氏法測(cè)定;全磷用HClO4-H2SO4消煮、鉬銻抗比色法測(cè)定[26]。

      土壤樣品DNA使用Fast DNA SPIN試劑盒(MP Biomedicals,美國(guó))提取,取0.5 g土壤樣品,用NanoDrop ND-1000分光光度計(jì)(Nano Drop Technologies,美國(guó))測(cè)定DNA濃度和質(zhì)量,在0.8%瓊脂糖電泳測(cè)定土壤DNA質(zhì)量和大小。定量PCR擴(kuò)增引物和反應(yīng)條件如表1所示。使用iCycler iQ5(美國(guó)Bio-Rad)進(jìn)行實(shí)時(shí)定量PCR,擴(kuò)增在20 μL反應(yīng)混合物中進(jìn)行,其中包括10 μL SYBR Green(日本TaKaRa),0.2 μL Rox DYEII,1 μL模板,0.4 μL前后引物(10 μmol–1)和8 μL無(wú)菌液。通過(guò)定量PCR估算土壤微生物豐度,描述為每克干土壤的基因拷貝數(shù)。

      表1 熒光實(shí)時(shí)定量PCR擴(kuò)增引物和反應(yīng)條件

      1.4 數(shù)據(jù)分析

      統(tǒng)計(jì)分析前將土壤微生物拷貝數(shù)進(jìn)行l(wèi)g轉(zhuǎn)換為歸一化處理。采用IBM SPSS 22.0軟件對(duì)土壤理化性質(zhì)、土壤團(tuán)聚體組成以及養(yǎng)分分布、微生物群落進(jìn)行單因素方差分析(One-way ANOVA),Duncan法多重比較(α=0.05),結(jié)果以“平均值±標(biāo)準(zhǔn)差”形式表示,對(duì)平均重量直徑與大團(tuán)聚體比例、SOC、全磷、真菌、叢枝菌根真菌和古細(xì)菌的關(guān)系進(jìn)行Pearson相關(guān)性分析。采用Origin Pro 2018軟件繪圖。

      2 結(jié) 果

      2.1 原位老化生物質(zhì)炭對(duì)土壤理化性質(zhì)的影響

      如表2所示,生物質(zhì)炭原位老化后對(duì)土壤性質(zhì)產(chǎn)生顯著影響。句容和南京土壤AB處理pH較CK分別顯著增加0.19和0.24個(gè)pH單位,土壤田間持水量顯著增加,大團(tuán)聚體比例分別顯著增加93.0%和61.5%,平均重量直徑和幾何平均直徑表現(xiàn)出增加趨勢(shì)(>0.05)。句容土壤容重顯著降低,南京土壤容重也呈降低趨勢(shì)(>0.05)。綜上所述,原位老化生物質(zhì)炭改善土壤質(zhì)量。

      表2 原位老化生物質(zhì)炭對(duì)土壤理化性質(zhì)的影響

      注:數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差顯示,=3。不同小寫(xiě)字母表示不同處理之間差異顯著(<0.05)。Note:Data are displayed as mean ± standard deviation,=3. Different small letters indicate significant differences between different treatments(<0.05).

      2.2 原位老化生物質(zhì)炭對(duì)土壤團(tuán)聚體組成及養(yǎng)分分布的影響

      如圖1a所示,各處理團(tuán)聚體主要由0.002~0.053 mm粒級(jí)構(gòu)成,該粒級(jí)約占團(tuán)聚體總量70.0%。句容和南京土壤AB處理的大團(tuán)聚體比例較CK分別顯著增加93.0%和61.5%,0.002~0.053 mm和<0.002 mm粒級(jí)團(tuán)聚體均呈減少趨勢(shì)。由圖1b可知,與對(duì)照相比,句容和南京土壤AB處理全土SOC含量分別顯著增加26.3%和26.9%,大團(tuán)聚體中SOC含量分別顯著增加72.4%和52.3%,微團(tuán)聚體中SOC含量分別顯著增加20.8%和30.0%。由圖1c可知,與對(duì)照相比,句容土壤全土全氮含量顯著增加21.9%,大團(tuán)聚體和微團(tuán)聚體分別顯著增加42.9%和18.2%。南京土壤全氮含量?jī)H在全土中表現(xiàn)增加趨勢(shì)(>0.05)。由圖1d可知,與CK處理相比,句容土壤全磷含量無(wú)顯著變化,而南京土壤全土全磷含量顯著增加25.4%。該結(jié)果表明,原位老化生物質(zhì)炭有利于土壤大、微團(tuán)聚體粒級(jí)形成和土壤碳、氮、磷養(yǎng)分增加。

      2.3 原位老化生物質(zhì)炭對(duì)微生物群落的影響

      原位老化生物質(zhì)炭對(duì)土壤微生物豐度的影響如表3所示。與對(duì)照相比,句容和南京土壤真菌豐度均顯著增加,放線菌豐度表現(xiàn)出增加趨勢(shì);同時(shí),南京土壤叢枝菌根真菌和古細(xì)菌豐度也顯著增加(<0.05)。綜上說(shuō)明,原位老化生物質(zhì)炭增加部分土壤微生物豐度。

      2.4 平均重量直徑與土壤養(yǎng)分和微生物豐度的相關(guān)性

      土壤平均重量直徑與大團(tuán)聚體比例、SOC、全磷、真菌、叢枝菌根真菌和古細(xì)菌的相關(guān)性分析如圖2所示。平均重量直徑與大團(tuán)聚體比例、SOC含量、真菌和叢枝菌根真菌豐度極顯著正相關(guān)(<0.01);與全磷和古細(xì)菌豐度顯著正相關(guān)(<0.05)。該結(jié)果表明,土壤團(tuán)聚體穩(wěn)定性與土壤碳、磷養(yǎng)分和真菌、叢枝菌根真菌和古細(xì)菌豐度顯著正相關(guān)。

      表3 原位老化生物質(zhì)炭對(duì)土壤微生物豐度(lg copies·g–1)的影響

      注:數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差顯示,=6。不同小寫(xiě)字母表示不同處理之間差異顯著(<0.05)。Note:Data are displayed as mean ± standard deviation,=6. Different small letters indicate significant differences between different treatments(<0.05).

      3 討 論

      3.1 土壤團(tuán)聚體組分特征對(duì)原位老化生物質(zhì)炭的響應(yīng)及其與養(yǎng)分分布關(guān)系

      土壤團(tuán)聚體平均重量直徑、幾何平均直徑和大團(tuán)聚體比例是表示土壤團(tuán)聚體穩(wěn)定性的關(guān)鍵指標(biāo),其值越高,代表土壤對(duì)侵蝕和耕作的抵抗力越好[16]。本研究表明,句容和南京兩地原位老化生物質(zhì)炭仍可提高稻麥輪作土壤pH、大團(tuán)聚體比例和平均重量直徑(表2);大、微團(tuán)聚體比例顯著增加,0.002~0.053 mm和<0.002 mm粒級(jí)團(tuán)聚體比例均呈減少趨勢(shì)(圖1),改善土壤結(jié)構(gòu)。生物質(zhì)炭隨著老化過(guò)程其表面部分芳香碳結(jié)構(gòu)被(含氧)烷基碳取代,羧基、羰基等酸性官能團(tuán)增多,與陽(yáng)離子結(jié)合形成羧酸鹽和酚鹽,釋放出H+,導(dǎo)致生物質(zhì)炭老化后pH降低,對(duì)土壤的堿性效應(yīng)下降[12],土壤pH增加減少。生物質(zhì)炭通過(guò)與礦物顆粒結(jié)合增加其內(nèi)部黏結(jié)力,提高土壤團(tuán)聚體的抗碎裂性,還刺激土壤微生物分泌物及膠結(jié)物質(zhì),從而有利于大團(tuán)聚體的形成并增強(qiáng)團(tuán)聚體穩(wěn)定性[33]。在相對(duì)溫和的模擬老化過(guò)程中,生物質(zhì)炭比表面積較新鮮生物質(zhì)炭增大一倍以上[34],對(duì)土壤稀釋作用增強(qiáng);Liang等[35]發(fā)現(xiàn),添加生物質(zhì)炭后,小麥在返青期生長(zhǎng)急劇增加,根系分泌物增多,土壤微生物和動(dòng)物呼吸作用增強(qiáng),使土壤疏松,從而改善土壤結(jié)構(gòu)。這可能還與老化生物質(zhì)炭刺激土壤微生物活性,通過(guò)菌絲纏繞或分泌膠結(jié)物質(zhì)等方式促進(jìn)小粒級(jí)團(tuán)聚體向大粒級(jí)團(tuán)聚體轉(zhuǎn)化有關(guān)[9]。

      本研究也表明,土壤團(tuán)聚體平均重量直徑與大團(tuán)聚體、SOC含量和全磷含量呈顯著正相關(guān)(圖2a)。生物質(zhì)炭可與土壤團(tuán)聚體結(jié)合,減少其與外界接觸面積,降低土壤有機(jī)質(zhì)礦化速率,促進(jìn)土壤固碳[36]。從污泥、豬糞和麥草制取的生物質(zhì)炭,也可通過(guò)一定的物理吸附效應(yīng)和化學(xué)作用抑制土壤CO2排放[37],提高土壤固碳潛力[12]?;蛘咄ㄟ^(guò)增強(qiáng)土壤團(tuán)聚體膠結(jié)作用,使微團(tuán)聚體黏結(jié)在一起,再通過(guò)菌絲體纏繞等形成大團(tuán)聚體[38]。生物質(zhì)炭還可以吸附磷酸鹽[39],利于微生物和植物根系活動(dòng),促進(jìn)土壤有機(jī)質(zhì)合成,增強(qiáng)土壤抗侵蝕能力,提高團(tuán)聚體穩(wěn)定性[40],從而減輕農(nóng)田顆粒態(tài)磷的損失,增強(qiáng)對(duì)磷的吸收并且降低溶解態(tài)磷地表徑流損失風(fēng)險(xiǎn)[7]。

      3.2 土壤微生物豐度對(duì)原位老化生物質(zhì)炭的響應(yīng)及其與土壤團(tuán)聚體穩(wěn)定性的關(guān)系

      生物質(zhì)炭通過(guò)改變土壤理化性質(zhì)直接影響微生物活動(dòng),進(jìn)而改變土壤微生物群落豐度[6]。本研究結(jié)果顯示,老化生物質(zhì)炭能顯著增加土壤真菌豐度,而放線菌豐度無(wú)顯著變化(表3)。有研究發(fā)現(xiàn),生物質(zhì)炭有利于增加蛋白水解酶(L-亮氨酸氨基肽酶)活性以及氨基酸和胺的利用,從而增加微生物代謝活性[41]。Zhu等[42]研究也表明,生物質(zhì)炭通過(guò)其表面官能團(tuán)(羧酸基等含氧基團(tuán))吸附并提供土壤微生物生長(zhǎng)所需要的養(yǎng)分。Yao等[43]利用定量PCR發(fā)現(xiàn),生物質(zhì)炭的高孔隙度和大表面積可以改善土壤通氣和持水能力,促進(jìn)真菌菌絲生長(zhǎng),為土壤真菌提供良好的棲息地。此外,真菌能降解生物質(zhì)炭中的頑固性碳[8]。Watzinger等[44]研究表明,放線菌豐度在酸性黏磐土比在鈣質(zhì)黑土中增加更顯著,因?yàn)樯镔|(zhì)炭對(duì)酸性黏磐土pH影響更大,而放線菌對(duì)酸性土壤比較敏感。Zheng等[15]則發(fā)現(xiàn),酸性稻田中添加生物質(zhì)炭4年后,放線菌豐度顯著減少。這可能受土壤質(zhì)地影響。

      土壤團(tuán)聚體和微生物不可分割,前者是后者生存的場(chǎng)所,后者是前者形成的主要因素之一[2]。本試驗(yàn)條件下土壤平均重量直徑與真菌豐度極顯著相關(guān),相關(guān)系數(shù)為0.712(圖2b)。李景等[45]研究發(fā)現(xiàn),耕作土壤細(xì)菌和古菌香農(nóng)指數(shù)與平均重量直徑顯著相關(guān),而真菌香農(nóng)指數(shù)與平均重量直徑相關(guān)性不顯著。相反,何玉亭等[9]研究發(fā)現(xiàn)平均重量直徑與真菌相關(guān)系數(shù)為0.890,支持本研究結(jié)果。同時(shí),叢枝菌根真菌對(duì)植物與土壤理化性質(zhì)變化反應(yīng)靈敏,能夠與80%以上陸生植物形成共生體,能夠利用植物光合產(chǎn)物在土壤中形成根外菌絲,該菌絲體可為解磷細(xì)菌提供營(yíng)養(yǎng)元素,促進(jìn)解磷菌的生長(zhǎng),從而提高植物對(duì)磷的吸收[46]。而且叢枝菌根真菌在土壤碳、氮固存中起著關(guān)鍵作用,其菌絲的纏繞及其分泌的糖蛋白(球囊霉素)和多糖物質(zhì)有利于土壤團(tuán)聚體形成和結(jié)構(gòu)穩(wěn)定[47]。因此,老化生物質(zhì)炭可能通過(guò)增加真菌和叢枝菌根真菌豐度,提高團(tuán)聚體穩(wěn)定性,促進(jìn)植物對(duì)土壤碳、氮、磷養(yǎng)分的吸收。

      4 結(jié) 論

      老化生物質(zhì)炭改善土壤pH和田間持水量等理化性質(zhì),增加0.25~2 mm大團(tuán)聚體比例以及SOC和全磷含量,提高土壤團(tuán)聚體穩(wěn)定性。定量PCR結(jié)果表明,句容、南京兩地稻田土壤微生物豐度均有不同程度的增加。老化生物質(zhì)炭有利于土壤微生物的生長(zhǎng),增加真菌和叢枝菌根真菌豐度,促進(jìn)土壤團(tuán)聚體形成,間接提高土壤團(tuán)聚體穩(wěn)定性。綜上表明,老化生物質(zhì)炭能提高稻麥輪作麥季土壤團(tuán)聚體穩(wěn)定性,增加土壤微生物豐度。

      [1] Hemkemeyer M,Christensen B T,Martens R,et al. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants[J]. Soil Biology & Biochemistry,2015,90:255—265.

      [2] Li N,Han X Z,You M Y,et al. Research review on soil aggregates and microbes[J]. Ecology and Environmnet,2013,22(9):1625—1632. [李娜,韓曉增,尤孟陽(yáng),等. 土壤團(tuán)聚體與微生物相互作用研究[J]. 生態(tài)環(huán)境學(xué)報(bào),2013,22(9):1625—1632.]

      [3] Leng L J,Huang H J,Li H,et al. Biochar stability assessment methods:A review[J]. Science of the Total Environment,2019,647:210—222.

      [4] Sun X,Han X G,Ping F,et al. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO2and temperature[J]. Science of the Total Environment,2018,628:1009—1016.

      [5] Gomez J D,Denef K,Stewart C E,et al. Biochar addition rate influences soil microbial abundance and activity in temperate soils[J]. European Journal of Soil Science,2014,65(1):28—39.

      [6] Palansooriya K N,Wong J T F,Hashimoto Y,et al. Response of microbial communities to biochar-amended soils:A critical review[J]. Biochar,2019,1(1):3—22.

      [7] Soinne H,Hovi J,Tammeorg P,et al. Effect of biochar on phosphorus sorption and clay soil aggregate stability[J]. Geoderma,2014,219/220:162—167.

      [8] Lehmann J,Rillig M C,Thies J,et al. Biochar effects on soil biota – A review[J]. Soil Biology & Biochemistry,2011,43(9):1812—1836.

      [9] He Y T,Wang C Q,Shen J,et al. Effects of two biochars on red soil aggregate stability and microbial community[J]. Scientia Agricultura Sinica,2016,49(12):2333—2342. [何玉亭,王昌全,沈杰,等. 兩種生物質(zhì)炭對(duì)紅壤團(tuán)聚體結(jié)構(gòu)穩(wěn)定性和微生物群落的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(12):2333—2342.]

      [10] Ye L L,Wang C H,Zhou H,et al. Effects of rice straw-derived biochar addition on soil structure stability of an ultisol[J]. Soils,2012,44(1):62—66. [葉麗麗,王翠紅,周虎,等. 添加生物質(zhì)黑炭對(duì)紅壤結(jié)構(gòu)穩(wěn)定性的影響[J]. 土壤,2012,44(1):62—66.]

      [11] Gundale M J,DeLuca T H. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal[J]. Forest Ecology and Management,2006,231(1/2/3):86—93.

      [12] Yuan H J,Deng G S,Zhou S G,et al. Biochar ageing and its effects on greenhouse gases emissions:A review[J]. Ecology and Environmental Sciences,2019,28(9):1907—1914. [袁海靜,鄧桂森,周順桂,等. 生物炭的老化及其對(duì)溫室氣體排放影響的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2019,28(9):1907—1914.]

      [13] Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labeling[J]. Soil Biology & Biochemistry,2009,41(2):210—219.

      [14] Duan P P,Zhang X,Zhang Q Q,et al. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J]. Science of the Total Environment,2018,642:1303—1310.

      [15] Zheng J F,Chen J H,Pan G X,et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment,2016,571:206—217.

      [16] Zhang Q Q,Song Y F,Wu Z,et al. Effects of six-year biochar amendment on soil aggregation,crop growth,and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production,2020,242:118435. https://doi.org/10.1016/j.jclepro.2019.118435.

      [17] Luo S S,Wang S J,Tian L,et al. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland[J]. Applied Soil Ecology,2017,117/118:10—15.

      [18] Verheijen F G A,Jeffery S,Bastos A,et al. Biochar application to soils:A critical scientific review of effects on soil properties,processes and functions[M]. Luxembourg:European Commission Publication Office, 2010

      [19] He T H,Liu D Y,Yuan J J,et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture,Ecosystems & Environment,2018,264:44—53.

      [20] Wu Z,Zhang X,Dong Y B,et al. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:Six-year field observation and meta-analysis[J]. Agricultural and Forest Meteorology,2019,278:107625.

      [21] Six J,Elliott E,Paustian K,et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal,1998,62(5):1367—1377.

      [22] Bach E M,Hofmockel K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology & Biochemistry,2014,69:54—62.

      [23] Hou X N,Li H,Zhu L B,et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica,2015,48(4):705—712. [侯曉娜,李慧,朱劉兵,等. 生物炭與秸稈添加對(duì)砂姜黑土團(tuán)聚體組成和有機(jī)碳分布的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(4):705—712.]

      [24] Shang J,Geng Z C,Zhao J,et al. Effects of biochar on water thermal properties and aggregate stability of Lou soil[J]. Chinese Journal of Applied Ecology,2015,26(7):1969—1976. [尚杰,耿增超,趙軍,等. 生物炭對(duì)塿土水熱特性及團(tuán)聚體穩(wěn)定性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(7):1969—1976.]

      [25] Wang Y L. Analysis of experimental results of measuring soil field water holding capacity by ring knife method[J]. Ground Water,2016,38(3):55—57. [王艷麗. 環(huán)刀法測(cè)定土壤田間持水量實(shí)驗(yàn)結(jié)果分析[J]. 地下水,2016,38(3):55—57.]

      [26] Lu R K. Analytical methods for soil and agro- chemistry[M]. Beijing:China Agricultural Science and Technology Press,2000. [魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000.]

      [27] Muyzer G,de Waal E C,Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695—700.

      [28] May L A,Smiley B,Schmidt M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage[J]. Canadian Journal of Microbiology,2001,47(9):829—841.

      [29] P?aza G A,Upchurch R,Brigmon R,et al. Rapid DNA extraction for screening soil filamentous fungi using PCR amplification[J]. Polish Journal of Environmental Studies,2004,13(3):315—318.

      [30] Lumini E,Orgiazzi A,Borriello R,et al. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach[J]. Environmental Microbiology,2010,12(8):2165—2179.

      [31] Vetriani C,Jannasch H W,MacGregor B J,et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Applied and Environmental Microbiology,1999,65(10):4375—4384.

      [32] Heuer H,Krsek M,Baker P,et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Applied and Environmental Microbiology,1997,63(8):3233—3241.

      [33] Sun F F,Lu S G. Biochars improve aggregate stability,water retention,and pore‐space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science,2014,177(1):26—33.

      [34] Liu Y Y,Sohi S P,Jing F Q,et al. Oxidative ageing induces change in the functionality of biochar and hydrochar:Mechanistic insights from sorption of atrazine[J]. Environmental Pollution,2019,249:1002—1010.

      [35] Liang B Q,Lehmann J,Sohi S P,et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry,2010,41(2):206—213.

      [36] Li J Z,Dai K,Zhang L M,et al. Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae,2016,36(6):2114—2120. [李江舟,代快,張立猛,等. 施用生物炭對(duì)云南煙區(qū)紅壤團(tuán)聚體組成及有機(jī)碳分布的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2016,36(6):2114—2120.]

      [37] Xu X Y,Kan Y,Zhao L,et al. Chemical transformation of CO2during its capture by waste biomass derived biochars[J]. Environmental Pollution,2016,213:533—540.

      [38] Xiao J J,Xing D,Mao M M,et al. Mechanism of arbuscular mycorrhizal fungal affecting soil aggregates in rhizosphere of mulberry()[J]. Acta Pedologica Sinica,2020,57(3):773—782. [肖玖軍,邢丹,毛明明,等. AM真菌對(duì)桑樹(shù)根圍土壤團(tuán)聚體的影響機(jī)制[J].土壤學(xué)報(bào),2020,57(3):773—782.]

      [39] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology & the Environment,2007,5(7):381—387.

      [40] Zhu Q L,Wang C,Yan J H,et al. Effects of straw and waste application on soil aggregates and soil carbon,nitrogen and phosphorus in the jasmine garden[J]. Journal of Soil and Water Conservation,2017,31(4):191—197. [朱秋麗,王純,嚴(yán)錦華,等. 施加秸稈與廢棄物對(duì)茉莉園土壤團(tuán)聚體及碳氮磷含量的影響[J]. 水土保持學(xué)報(bào),2017,31(4):191—197.]

      [41] Tian J,Wang J Y,Dippold M,et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of the Total Environment,2016,556:89—97.

      [42] Zhu X M,Chen B L,Zhu L Z,et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation:A review[J]. Environmental Pollution,2017,227:98—115.

      [43] Yao Q,Liu J J,Yu Z H,et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology & Biochemistry,2017,110:56—67.

      [44] Watzinger A,F(xiàn)eichtmair S,Kitzler B,et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized13C-labelled biochar as revealed by13C PLFA analyses:Results from a short-term incubation and pot experiment[J]. European Journal of Soil Science,2014,65(1):40—51.

      [45] Li J,Wu H J,Wu X P,et al. Effects of long-term tillage measurements on soil aggregate characteristic and microbial diversity[J]. Chinese Journal of Applied Ecology,2014,25(8):2341—2348. [李景,吳會(huì)軍,武雪萍,等. 長(zhǎng)期不同耕作措施對(duì)土壤團(tuán)聚體特征及微生物多樣性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(8):2341—2348.]

      [46] Yue F X,Li J W,Wang Y F,et al. Mechanism of the improvement effect by biochar and AM fungi on the availability of soil nutrients in coal mining area[J]. Journal of Plant Nutrition and Fertilizer,2019,25(8):1325—1334. [悅飛雪,李繼偉,王艷芳,等. 生物炭和AM真菌提高礦區(qū)土壤養(yǎng)分有效性的機(jī)理[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(8):1325—1334.]

      [47] Peng S L,Guo T,Liu G C. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China[J]. Soil Biology & Biochemistry,2013,57:411—417.

      Effects of Biochar on Soil Aggregate Stability and Microbial Community in Paddy Field

      JIANG Xueyang1, ZHANG Qianqian1, SHEN Haojie1, HE Tiehu2, XIONG Zhengqin1?

      (1. Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

      【Objective】Soil aggregates, subjected to the joint impact of soil biological and non-biological factors, play a crucial role in determining soil functions and ecosystem services. Soil microorganisms are one of the most active biological factors that affect the formation of soil aggregates. This study is aimed to explore long-term effects of biochar application on stability of paddy soil aggregates in paddy soil at two locations from abiotic and biological perspectives.【Method】From two long-term field experiments under the wheat-rice rotation system, located in Jurong and Nanjing, separately, 3 and 5 years old in history, and consisting of two treatments each, i.e. CK (Conventional fertilization) and AB (Conventional fertilization + biochar), soil samples were collected after harvesting wheat in the annual rice-wheat rotations for particle size fractionation of soil aggregates using the wet sieve method, and for analysis of contents of organic carbon, total nitrogen and total phosphorus as well as abundance of soil microorganisms (bacteria, fungi, arbuscular mycorrhizal fungi, archaea and actinobacteria) in each fraction of soil aggregates using the quantitative PCR technique.【Result】Treatments AB in the two field experiments were significantly higher in soil pH, field soil water holding capacity macro aggregate ratio (>0.25) after biochar getting aged, and exhibited increase trends in both mean weight diameter and geometric mean diameter (>0.05). Soil nutrient contents (SOC, total phosphorus) and soil microbial abundance in soil aggregates changed significantly, too. Compared with Treatment CK, Treatment AB was 93.0% and 61.5% higher in content of macro aggregates, respectively, in the Jurong and Nanjing experiments, but exhibited a decreasing trend in both the 0.002–0.053 mm and <0.002 mm fractions of soil aggregates; besides, Treatment AB was significantly or 26.3% and 26.9% higher in SOC content of the bulk soil, 72.4% and 52.3% higher in SOC content of the macro aggregates, and 20.8% and 30.0% higher in SOC content of the micro aggregates, respectively, in the Jurong and Nanjing experiments, significantly higher in fungi abundance of the bulk soil in both experiments, significantly or 25.4% higher in total phosphorus in the Nanjing experiment; and also exhibited an increasing trend in abundance of the arbuscular mycorrhizal fungi and archaea (>0.05). Correlation analysis showed that the soil aggregate mean weight diameter was very significantly and positively related to macro aggregate ratio, SOC content, abundance of fungi and arbuscular mycorrhizal fungi (<0.01). The total phosphorus content and archaea abundance were significantly and positively correlated, with correlation coefficient being 0.641 and 0.646, respectively.【Conclusion】Aging biochar improves soil pH, field water holding capacity, other physical and chemical properties, increases the proportion of 0.25–2 mm macro aggregates, SOC and total phosphorus content, and stabilizes soil aggregates. Moreover, it increases abundance of the soil microbes in the rice fields in Jurong and Nanjing to a varying degree. Aging biochar is beneficial to the growth of soil microorganisms, increases the abundance of fungi and arbuscular mycorrhizal fungi, promotes the formation of soil aggregates, and indirectly improves the stability of soil aggregates. To sum up, biochar demonstrates sustained effects of increasing macro aggregate ratio, carbon and phosphorus contents, and fungal, arbuscular mycorrhizal fungal and archaeal abundances, and improving soil aggregate stability during the wheat season of the rice-wheat rotation system.

      Biochar; Aggregate; Stability; Microorganism

      S152.4+7

      A

      10.11766/trxb202005280258

      蔣雪洋,張前前,沈浩杰,何鐵虎,熊正琴. 生物質(zhì)炭對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和微生物群落的影響[J]. 土壤學(xué)報(bào),2021,58(6):1564–1573.

      JIANG Xueyang,ZHANG Qianqian,SHEN Haojie,HE Tiehu,XIONG Zhengqin. Effects of Biochar on Soil Aggregate Stability and Microbial Community in Paddy Field[J]. Acta Pedologica Sinica,2021,58(6):1564–1573.

      *國(guó)家自然科學(xué)基金項(xiàng)目(41977078)資助 Supported by the National Natural Science Foundation of China(No. 41977078)

      Corresponding author,E-mail:zqxiong@njau.edu.cn

      蔣雪洋(1994—),女,河南省鄭州人,碩士研究生,主要從事土壤碳氮循環(huán)研究。E-mail:2018103087@njau.edu.cn

      2020–05–28;

      2020–08–24;

      2020–10–07

      (責(zé)任編輯:盧 萍)

      猜你喜歡
      句容叢枝粒級(jí)
      國(guó)外某大型銅礦選礦廠流程考查與分析①
      礦冶工程(2022年6期)2023-01-12 02:15:10
      江蘇省句容經(jīng)濟(jì)開(kāi)發(fā)區(qū)中心小學(xué)
      山地暗棕壤不同剖面深度的團(tuán)聚體分布
      從句容的“容”到茅山的“隱士哲學(xué)”
      心系句容百姓的徐九經(jīng)
      公民與法治(2020年2期)2020-05-30 12:28:52
      解放思想,推動(dòng)句容農(nóng)業(yè)提質(zhì)增效
      活力(2019年17期)2019-11-26 00:41:44
      叢枝蓼化學(xué)成分的研究
      中成藥(2018年3期)2018-05-07 13:34:24
      不同粒級(jí)再生骨料取代的混凝土基本性能試驗(yàn)研究
      長(zhǎng)期不同施肥對(duì)土壤各粒級(jí)組分中氮含量及分配比例的影響
      供硫和叢枝菌根真菌對(duì)洋蔥生長(zhǎng)和品質(zhì)的影響
      镶黄旗| 泗阳县| 桓仁| 庄河市| 周口市| 云梦县| 安陆市| 河南省| 青川县| 保亭| 集安市| 清原| 临高县| 两当县| 东丽区| 辽宁省| 德州市| 新巴尔虎右旗| 老河口市| 镇平县| 利川市| 灵宝市| 曲松县| 潞西市| 丁青县| 筠连县| 南雄市| 天门市| 集贤县| 阿克陶县| 太白县| 微山县| 兴城市| 游戏| 叙永县| 含山县| 大化| 宜阳县| 阿坝县| 满洲里市| 盐亭县|