• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      通過生物信息學(xué)分析預(yù)測(cè)肺鱗癌病人預(yù)后的免疫信號(hào)

      2021-11-17 11:38樊雨喬林玫徐文華

      樊雨喬 林玫 徐文華

      [摘要] 目的 基于免疫相關(guān)基因(IRGs)構(gòu)建肺鱗癌(LUSC)病人預(yù)后風(fēng)險(xiǎn)模型。

      方法 從癌癥基因組圖譜(TCGA)數(shù)據(jù)庫下載551例LUSC病人的基因表達(dá)譜,并從ImmPort數(shù)據(jù)庫中獲得IRGs,再利用R軟件篩選差異表達(dá)的免疫相關(guān)基因(DEIRGs);構(gòu)建轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò),探討其異常表達(dá)的機(jī)制。應(yīng)用單變量Cox回歸確定DEIRGs的預(yù)后價(jià)值,應(yīng)用Lasso回歸和多變量Cox比例風(fēng)險(xiǎn)回歸構(gòu)建預(yù)后風(fēng)險(xiǎn)模型,并對(duì)模型的預(yù)測(cè)性能進(jìn)行驗(yàn)證。評(píng)估這些危險(xiǎn)因素與各種臨床變量和免疫浸潤細(xì)胞之間的關(guān)系。

      結(jié)果 由PLAU、JUN、RNASE7、FOS、IGGD3-22、IGKV1-6、SEMA4C、APLN、FGFR4和TRAV39共10個(gè)IRGs構(gòu)成的風(fēng)險(xiǎn)模型顯示出良好的預(yù)測(cè)性能,有望成為預(yù)測(cè)LUSC病人預(yù)后的獨(dú)立因素,且該模型還能對(duì)不同預(yù)后的病人進(jìn)行分層,風(fēng)險(xiǎn)評(píng)分高的病人更容易出現(xiàn)免疫細(xì)胞浸潤。

      結(jié)論 IRGs可用于評(píng)估LUSC病人的預(yù)后和腫瘤免疫微環(huán)境的狀態(tài)。

      [關(guān)鍵詞] 肺腫瘤;轉(zhuǎn)錄因子;計(jì)算生物學(xué);ROC曲線;預(yù)后

      [中圖分類號(hào)] R734.2

      [文獻(xiàn)標(biāo)志碼] A

      [文章編號(hào)] 2096-5532(2021)05-0679-06

      doi:10.11712/jms.2096-5532.2021.57.169

      [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

      [網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210909.1511.001.html;2021-09-09 17:35:37

      A BIOINFORMATICS ANALYSIS OF IMMUNE SIGNALS FOR PREDICTING THE PROGNOSIS OF PATIENTS WITH LUNG SQUAMOUS CELL CARCINOMA

      FAN Yuqiao, LIN Mei, XU Wenhua

      (Qingdao University Medical College, Medical Inspection Department, Qingdao 266071, China)

      [ABSTRACT] Objective To establish a prognostic risk model for patients with lung squamous cell carcinoma (LUSC) based on immune-related genes (IRGs).

      Methods The gene expression profiles of 551 LUSC patients were downloaded from The Cancer Genome Atlas (TCGA) database, and IRGs were obtained from the ImmPort database. R software was used to screen out differentially expressed IRGs (DEIRGs), and a transcription factor regulatory network was constructed to investigate the mechanism of abnormal expression. A univariate Cox regression analysis was used to investigate the prognostic value of DEIRGs; Lasso regression analysis and multivariate Cox proportional-hazards regression model were used to construct a prognostic risk model, and the predictive performance of this model was verified. In addition, the association of these risk factors with various clinical variables and immune infiltrating cells was evaluated.

      Results The risk model based on the 10 IRGs of PLAU, JUN, RNASE7, FOS, IGGD3-22, IGKV1-6, SEMA4C, APLN, FGFR4, and TRAV39 showed good predictive performance and was expected to be used as an independent factor for predicting the prognosis of LUSC patients. The model was able to stratify patients based on prognosis, and patients with high risk scores were more likely to develop immune cell infiltration.

      Conclusion IRGs can be used to evaluate the prognosis of patients with LUSC and the state of tumor immune microenvironment.

      [KEY WORDS] lung neoplasms; transcription factors; computational biology; ROC curve; prognosis

      肺鱗癌(LUSC)是肺癌常見的亞型[1-2],病人病死率高[3]。目前,LUSC治療策略主要包括手術(shù)、化療、靶向治療和免疫治療。早期病人多采用手術(shù)切除治療,晚期則以化療為主[4],但后者預(yù)后不佳[5-6]。致癌基因的發(fā)現(xiàn)對(duì)肺癌的治療策略選擇產(chǎn)生了重大的影響,但LUSC病人很少發(fā)生表皮生長因子受體(EGFR)基因突變和間變性淋巴瘤激酶(ALK)易位,這限制了其靶向分子治療的選擇[7-10]。目前,免疫治療成為提高LUSC病人生存率的重要方法[11],阻斷免疫檢查點(diǎn)通路是抗腫瘤治療的熱點(diǎn)[12-14]。然而,一些病人對(duì)免疫檢查點(diǎn)抑制劑不敏感[15]。有研究結(jié)果表明,免疫相關(guān)基因(IRGs)不僅與病人的預(yù)后有關(guān),還通過影響腫瘤免疫微環(huán)境影響病人對(duì)免疫治療的敏感性[16]。本研究旨在開發(fā)一種基于多個(gè)IRGs的預(yù)后信號(hào),評(píng)估LUSC病人的預(yù)后及對(duì)免疫治療的敏感性。

      1 資料和方法

      1.1 數(shù)據(jù)采集

      數(shù)據(jù)資源下載于TCGA數(shù)據(jù)庫(http://portal.gdc.cancer.gov/)。①登錄TCGA數(shù)據(jù)下載官網(wǎng)(https://portal.gdc.cancer.gov/),點(diǎn)擊Repository,進(jìn)入數(shù)據(jù)存儲(chǔ)地;②點(diǎn)擊Case,選擇腫瘤原發(fā)部位、項(xiàng)目、疾病類型;③點(diǎn)擊Files,選擇基因表達(dá)的測(cè)序數(shù)據(jù)HTSeq-FPKM進(jìn)行下載(https://gdc-hub.s3.us-east-1.amazonaws.com/latest/TCGA-LUSC.htseq_fpkm.tsv.gz)。其中包括所有病人的基因表達(dá)譜和臨床統(tǒng)計(jì)數(shù)據(jù),總共獲得了502例LUSC組織和49例正常肺組織。臨床信息包括病人的年齡、性別、TNM分期、T分期、N分期、M分期、生存時(shí)間和生存狀態(tài)。從ImmPort數(shù)據(jù)庫(http://www.immport.org)下載了2 483個(gè)IRGs[17]。

      IRGs根據(jù)功能不同,分為細(xì)胞因子、腫瘤壞死因子家族受體、B細(xì)胞受體信號(hào)通路和白細(xì)胞介素等17個(gè)免疫類別。從AnimalTFDB(http://bioinfo.life.hust.edu.cn/AnimalTFDB/)下載了1 665個(gè)轉(zhuǎn)錄因子。

      1.2 差異表達(dá)免疫相關(guān)基因(DEIRGs)的鑒定

      從TCGA數(shù)據(jù)庫下載LUSC及正常肺組織樣本,用R軟件(3.6.1版)進(jìn)行分析,鑒定腫瘤組織和正常肺組織之間差異表達(dá)的基因。使用火山圖和熱圖對(duì)篩選出的差異表達(dá)基因進(jìn)行可視化處理,分別通過R軟件的ggplot2包和pheatmap包進(jìn)行構(gòu)建。然后,從中篩選IRGs,獲得DEIRGs。

      1.3 轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò)

      構(gòu)建轉(zhuǎn)錄因子調(diào)控的網(wǎng)絡(luò),通過R軟件分析LUSC和正常肺組織間差異表達(dá)的轉(zhuǎn)錄因子,并構(gòu)建火山圖和熱圖;然后建立轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò),探討其與DEIRGs的關(guān)聯(lián)性。

      1.4 模型建立與驗(yàn)證

      從TCGA數(shù)據(jù)庫中選取有完善預(yù)后信息的LUSC病人215例,隨機(jī)分為訓(xùn)練集(n=108)和測(cè)試集(n=107)。在訓(xùn)練集中建立風(fēng)險(xiǎn)回歸模型,并在測(cè)試集中進(jìn)行驗(yàn)證。通過單變量Cox回歸分析,確定與預(yù)后相關(guān)的風(fēng)險(xiǎn)基因。通過Lasso回歸分析,去除彼此之間高度相關(guān)的風(fēng)險(xiǎn)基因;通過多變量Cox回歸分析建立與預(yù)后相關(guān)的風(fēng)險(xiǎn)回歸模型。

      1.5 生存分析

      根據(jù)預(yù)后模型計(jì)算每個(gè)LUSC病人風(fēng)險(xiǎn)評(píng)分。以中位風(fēng)險(xiǎn)評(píng)分作為臨界值,將LUSC病人分為低風(fēng)險(xiǎn)組和高風(fēng)險(xiǎn)組,用R軟件中的survival包繪制Kaplan-Meier生存曲線,散點(diǎn)圖示病人隨訪時(shí)間。

      1.6 腫瘤免疫微環(huán)境分析

      使用腫瘤免疫微環(huán)境估計(jì)資源(TIMER,http://cistrome.dfci.harvard.edu/TIMER/)算法[18],分析預(yù)后模型的風(fēng)險(xiǎn)評(píng)分與腫瘤浸潤免疫細(xì)胞之間的相關(guān)性。

      1.7 統(tǒng)計(jì)分析

      應(yīng)用R軟件包limma進(jìn)行差異表達(dá)基因分析,采用Benjamini-Hochberg法進(jìn)行校正,以|log2 fold change(FC)|>1和FDR<0.05作為篩選差異基因的標(biāo)準(zhǔn)。應(yīng)用R軟件中survival包分析受試者工作特征(ROC)曲線,ROC曲線下面積(AUC)>0.60被認(rèn)為是一個(gè)可接受的預(yù)測(cè)模型,而AUC>0.70被認(rèn)為具有顯著的預(yù)測(cè)價(jià)值[19-20]。比較高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組的臨床參數(shù),連續(xù)變量比較采用t檢驗(yàn),分類變量比較采用χ2檢驗(yàn)、對(duì)數(shù)秩檢驗(yàn)和Cox比例風(fēng)險(xiǎn)回歸模型。以P<0.05為差異有顯著性。

      2 結(jié)? 果

      2.1 DEIRGs的鑒定

      根據(jù)TCGA數(shù)據(jù)庫,共鑒定出8 478個(gè)差異表達(dá)的基因。其中,與正常肺組織相比較,LUSC組織中有5 893個(gè)基因表達(dá)上調(diào),2 585個(gè)基因表達(dá)下調(diào)。從獲得的差異表達(dá)基因中進(jìn)一步篩選出593個(gè)DEIRGs,在這17個(gè)當(dāng)中,307個(gè)DEIRGs表達(dá)上調(diào),286個(gè)DEIRGs表達(dá)下調(diào)。

      2.2 轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò)

      共發(fā)現(xiàn)了70種在正常肺組織和LUSC組織之間顯著差異表達(dá)的轉(zhuǎn)錄因子,其中17個(gè)與DEIRGs異常表達(dá)顯著相關(guān)(r>0.4,P<0.05)。在這17個(gè)當(dāng)中,3個(gè)轉(zhuǎn)錄因子負(fù)調(diào)控IRGs的表達(dá),14個(gè)轉(zhuǎn)錄因子正調(diào)控IRGs的表達(dá)。

      2.3 與預(yù)后相關(guān)的DEIRGs的鑒別

      單變量Cox回歸分析表明,共有24個(gè)DEIRGs與LUSC病人的預(yù)后顯著相關(guān)(P<0.01)(圖1)。

      2.4 風(fēng)險(xiǎn)模型中與預(yù)后相關(guān)的DEIRGs的鑒定

      基于預(yù)后指標(biāo)對(duì)LUSC病人總體生存率的影響,進(jìn)一步篩選預(yù)后指標(biāo),構(gòu)建基于訓(xùn)練集數(shù)據(jù)的Cox回歸風(fēng)險(xiǎn)模型。Lasso回歸分析獲得了14個(gè)候選基因(圖2),經(jīng)多變量Cox比例風(fēng)險(xiǎn)回歸分析最終獲得了10個(gè)高?;颍謩e為PLAU、JUN、RNASE7、FOS、IGGD3-22、IGKV1-6、SEMA4C、APLN、FGFR4和TRAV39。這10個(gè)基因均與LUSC病人預(yù)后不良有關(guān)。

      2.5 基于訓(xùn)練集的預(yù)后風(fēng)險(xiǎn)模型

      為了探討風(fēng)險(xiǎn)基因在評(píng)估LUSC病人預(yù)后中的意義,使用以下公式計(jì)算每個(gè)病人的風(fēng)險(xiǎn)評(píng)分:風(fēng)險(xiǎn)評(píng)分=(0.002 071 216×PLAU的表達(dá)量)+(0.005 001 859×JUN的表達(dá)量)+(0.011 714 662×RNASE7的表達(dá)量)+(0.001 904 47×FOS的表達(dá)量)+(0.008 147 631×IGGD3-22的表達(dá)量)+

      (0.000 379 557×IGKV1-6的表達(dá)量)+(0.013 048 762×SEMA4C的表達(dá)量)+(0.061 256 145×APLN的表達(dá)量)+(0.059 219 257×FGFR4的表達(dá)量)+(0.397 970 139×TRAV39的表達(dá)量)。以中位風(fēng)險(xiǎn)評(píng)分作為臨界值,將訓(xùn)練集中的病人分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組。Kaplan-Meier曲線分析顯示,高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組在訓(xùn)練集中的存活時(shí)間差異有顯著性(χ2=11.4,P<0.05)(圖3A);時(shí)間相關(guān)的ROC曲線分析結(jié)果顯示,建立的預(yù)后模型可靠,ROC曲線AUC在3年和5年分別為0.721和0.715(圖3B、C),低風(fēng)險(xiǎn)評(píng)分病人的生存狀況優(yōu)于高風(fēng)險(xiǎn)評(píng)分病人(圖3D、E)。熱圖分析結(jié)果顯示,與低風(fēng)險(xiǎn)組相比,高風(fēng)險(xiǎn)組10種風(fēng)險(xiǎn)基因的表達(dá)水平高于低風(fēng)險(xiǎn)組(圖3F)。

      2.6 預(yù)后模型性能的驗(yàn)證

      分別在測(cè)試集和整個(gè)TCGA集中驗(yàn)證建立的預(yù)后風(fēng)險(xiǎn)模型的預(yù)測(cè)性能。根據(jù)每個(gè)病人的風(fēng)險(xiǎn)評(píng)分,將測(cè)試集和整個(gè)TCGA集的病人分別按照風(fēng)險(xiǎn)評(píng)分中位數(shù)分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組,進(jìn)一步繪制Kaplan-Meier曲線和時(shí)間相關(guān)的ROC曲線,比較高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組的3年生存率和5年生存率。結(jié)果表明,無論是在測(cè)試集還是整個(gè)TCGA集中,低風(fēng)險(xiǎn)組的生存率都高于高風(fēng)險(xiǎn)組(圖4A、B)。在測(cè)試集和整個(gè)TCGA集中,3年生存率AUC分別為0.631和0.679(圖4C、D),5年生存率AUC分別為0.634和0.692(圖4E、F)。與低風(fēng)險(xiǎn)組相比,高風(fēng)險(xiǎn)組病人生存狀況更差,風(fēng)險(xiǎn)基因表達(dá)水平更高。表明建立的預(yù)后風(fēng)險(xiǎn)模型具有良好的預(yù)測(cè)性能。

      2.7 風(fēng)險(xiǎn)評(píng)分在整個(gè)TCGA集中的獨(dú)立預(yù)后價(jià)值

      單變量Cox回歸分析顯示,病理分期(P=0.005)、T分期(P=0.005)和風(fēng)險(xiǎn)評(píng)分(P<0.001)與LUSC病人的生存結(jié)果顯著相關(guān)。多變量Cox回歸分析結(jié)果表明,風(fēng)險(xiǎn)評(píng)分可作為預(yù)測(cè)LUSC病人預(yù)后的獨(dú)立危險(xiǎn)因素(P<0.001)。時(shí)間相關(guān)的ROC曲線分析顯示,3年時(shí)病理分期、T分期和風(fēng)險(xiǎn)評(píng)分的AUC分別為0.587、0.597和0.691,5年時(shí)分別為0.536、0.526和0.694。

      2.8 預(yù)后模型的臨床有效性

      基于整個(gè)TCGA集分析模型變量(風(fēng)險(xiǎn)基因和風(fēng)險(xiǎn)評(píng)分)和臨床變量(年齡、性別、病理分期和TNM分期)之間的關(guān)系顯示,隨著PLAU表達(dá)的增加,LUSC的T分期進(jìn)展迅速(P=0.021);不同年齡的病人某些危險(xiǎn)基因的表達(dá)也不同,APLN

      (P=0.038)、JUN(P=0.019)和PLAU(P=0.008)

      在65歲以上LUSC病人中的表達(dá)水平明顯高于年輕病人;FGFR4在男性LUSC病人中的表達(dá)水平顯著高于女性病人(P=0.020)。風(fēng)險(xiǎn)評(píng)分與B細(xì)胞、CD8+T細(xì)胞、樹突狀細(xì)胞、巨噬細(xì)胞和中性粒細(xì)胞等浸潤程度呈正相關(guān)(r=0.106~0.171,P<0.05)。表明風(fēng)險(xiǎn)評(píng)分能夠評(píng)估LUSC病人腫瘤免疫微環(huán)境的狀態(tài)。

      3 討? 論

      肺癌是一種病死率較高的惡性腫瘤,雖然近年來在診療方面取得了很大進(jìn)展,但生存率仍然不容樂觀。免疫治療的興起及臨床應(yīng)用為肺癌的診療手段提供了新的思路。越來越多的證據(jù)表明,腫瘤免疫微環(huán)境可以影響腫瘤的惡性表型[21-23]。在多種惡性腫瘤中,免疫浸潤與臨床結(jié)果密切相關(guān)[24-25],尤其是在肺癌中[26-27]。本文研究基于TCGA數(shù)據(jù)庫,確定了與預(yù)后相關(guān)的DEIRGs,并構(gòu)建了一個(gè)預(yù)后風(fēng)險(xiǎn)模型來評(píng)估LUSC病人的生存結(jié)果及腫瘤免疫微環(huán)境的狀態(tài)。

      本研究分析了LUSC組織和正常肺組織之間DEIRGs,并構(gòu)建了轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò),得到17個(gè)轉(zhuǎn)錄因子與IRGs異常表達(dá)相關(guān)。表明腫瘤轉(zhuǎn)錄因子可能通過調(diào)節(jié)IRGs的表達(dá)來影響LUSC病人的預(yù)后。本研究還探討了DEIRGs與LUSC病人預(yù)后之間的相關(guān)性,并評(píng)估了與LUSC預(yù)后相關(guān)的DEIRGs在預(yù)測(cè)病人預(yù)后中的效率。通過Lasso回歸分析,最終獲得10個(gè)風(fēng)險(xiǎn)基因,納入預(yù)后風(fēng)險(xiǎn)模型,并在整個(gè)TCGA數(shù)據(jù)集中進(jìn)行驗(yàn)證。本文研究結(jié)果表明,本文建立的預(yù)后模型能夠有效區(qū)分不同風(fēng)險(xiǎn)的病人,風(fēng)險(xiǎn)評(píng)分可作為預(yù)測(cè)LUSC病人預(yù)后的獨(dú)立因素,且優(yōu)于其他臨床參數(shù)。因此,風(fēng)險(xiǎn)模型可用于篩查高危病人,以便通過早期治療改善預(yù)后。本文研究評(píng)估了危險(xiǎn)因素和一些臨床變量之間的關(guān)系,結(jié)果顯示,一些風(fēng)險(xiǎn)基因的表達(dá)與LUSC進(jìn)程呈正相關(guān),表明所構(gòu)建的風(fēng)險(xiǎn)模型能夠有效預(yù)測(cè)LUSC進(jìn)程。

      免疫療法在肺癌的治療中顯示出不同的臨床效果,這部分取決于腫瘤浸潤淋巴細(xì)胞的數(shù)量和特征[28-29]。有研究認(rèn)為,肺惡性腫瘤中浸潤的免疫細(xì)胞可能對(duì)病人的免疫治療反應(yīng)和預(yù)后產(chǎn)生重要影響[22]。本文分析了風(fēng)險(xiǎn)評(píng)分與腫瘤浸潤免疫細(xì)胞之間的關(guān)系,結(jié)果表明,病人風(fēng)險(xiǎn)評(píng)分越高,免疫細(xì)胞浸潤程度越高,說明風(fēng)險(xiǎn)模型在評(píng)估LUSC生存結(jié)果中可信度較高。

      基于IRGs的風(fēng)險(xiǎn)模型被廣泛用于評(píng)估多種惡性腫瘤病人的預(yù)后。本文研究具有以下優(yōu)勢(shì):①分析了IRGs在LUSC中的表達(dá)模式;②進(jìn)行Lasso回歸,刪除彼此高度相關(guān)的基因,增加了結(jié)果的可信度;③所建立的模型不僅可用于預(yù)測(cè)LUSC病人的預(yù)后,還可用于評(píng)估病人腫瘤免疫微環(huán)境的狀態(tài),從而輔助制定個(gè)性化的治療方案。

      綜上所述,本文通過生物信息學(xué)分析,得到了基于IRGs的預(yù)后信號(hào),該信號(hào)可用于評(píng)估LUSC病人的預(yù)后和腫瘤免疫微環(huán)境的狀態(tài),從而幫助制定個(gè)性化的治療方案,提高病人的生存率。

      [參考文獻(xiàn)]

      [1]SORBER L, ZWAENEPOEL K, DESCHOOLMEESTER V, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients[J].? Lung Cancer (Amsterdam, Netherlands), 2017,107:100-107.

      [2]CHEN W J, GAN T Q, QIN H, et al. Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma[J].? Pathology, Research and Practice, 2017,213(4):364-372.

      [3]XU F, ZHANG H P, CHEN J X, et al. Immune signature of T follicular helper cells predicts clinical prognostic and therapeutic impact in lung squamous cell carcinoma[J].? Internatio-

      nal Immunopharmacology, 2020,81:105932.

      [4]KURIBAYASHI K, FUNAGUCHI N, NAKANO T. Chemotherapy for advanced non-small cell lung cancer with a focus on squamous cell carcinoma[J].? Journal of Cancer Research and Therapeutics, 2016,12(2):528.

      [5]THATCHER N, HIRSCH F R, LUFT A V, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage Ⅳ squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial[J].? The Lancet Oncology, 2015,16(7):763-774.

      [6]SCAGLIOTTI G V, PARIKH P, VON PAWEL J, et al. Phase Ⅲ study comparing cisplatin plus gemcitabine with cis-platin plus pemetrexed in chemotherapy-naive patients with ?advanced-stage non-small-cell lung cancer[J].? Journal of Cli-nical Oncology: Official Journal of the American Society of Clinical Oncology, 2008,26(21):3543-3551.

      [7]PEREZ-MORENO P, BRAMBILLA E, THOMAS R, et al. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities[J].? Clinical Cancer Research, 2012,18(9):2443-2451.

      [8]GERBER D E, GANDHI L, COSTA D B. Management and future directions in non-small cell lung cancer with known activating mutations[J].? American Society of Clinical Oncology Educational Book American Society of Clinical Oncology Annual Meeting, 2014:e353-e365.

      [9]ROSE-JAMES A, TT S. Molecular markers with predictive and prognostic relevance in lung cancer[J].? Lung Cancer International, 2012, 2012:729532.

      [10]REKHTMAN N, PAIK P K, ARCILA M E, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations[J].? Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2012,18(4):1167-1176.

      [11]SENOO S, NINOMIYA K, HOTTA K, et al. Recent treatment strategy for advanced squamous cell carcinoma of the lung in Japan[J].? International Journal of Clinical Oncology, 2019,24(5):461-467.

      [12]LIM J S J, SOO R A. Nivolumab in the treatment of metasta-

      tic squamous non-small cell lung cancer: a review of the evidence[J].? Therapeutic Advances in Respiratory Disease, 2016,10(5):444-454.

      [13]GANDHI L, RODRGUEZ-ABREU D, GADGEEL S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer[J].? The New England Journal of Medicine, 2018,378(22):2078-2092.

      [14]SOCINSKI M A, OBASAJU C, GANDARA D, et al. Current and emergent therapy options for advanced squamous cell lung cancer[J].? Journal of Thoracic Oncology, 2018,13(2):165-183.

      [15]BODOR J N, BOUMBER Y, BORGHAEI H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC)[J].? Cancer, 2020,126(2):260-270.

      [16]QU Y, CHENG B, SHAO N, et al. Prognostic value of immune-related genes in the tumor microenvironment of lung

      adenocarcinoma and lung squamous cell carcinoma[J].? Aging, 2020,12(6):4757-4777.

      [17]BHATTACHARYA S, ANDORF S, GOMES L, et al. ImmPort: disseminating data to the public for the future of immunology[J].? Immunologic Research, 2014,58(2/3):234-239.

      [18]LI B, SEVERSON E, PIGNON J C, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J].? Genome Biology, 2016,17(1):174.

      [19]CHO S H, PAK K, JEONG D C, et al. The AP2M1 gene expression is a promising biomarker for predicting survival of patients with hepatocellular carcinoma[J].? Journal of Cellular Biochemistry, 2019,120(3):4140-4146.

      [20]HAN M E, KIM J Y, KIM G H, et al. SAC3D1: a novel prognostic marker in hepatocellular carcinoma[J].? Scientific Reports, 2018,8(1):15608.

      [21]MONY J T, SCHUCHERT M J. Prognostic implications of heterogeneity in intra-tumoral immune composition for recurrence in early stage lung cancer[J].? Frontiers in Immunology, 2018,9:2298.

      [22]LIU X Y, WU S C, YANG Y H, et al. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer[J].? Biomedecine & Pharmacotherapie, 2017,95:55-61.

      [23]XIONG Y F, WANG K, ZHOU H, et al. Profiles of immune infiltration in colorectal cancer and their clinical significant: a gene expression-based study[J].? Cancer Medicine, 2018,7(9):4496-4508.

      [24]FRIDMAN W H, PAGS F, SAUTS-FRIDMAN C, et al. The immune contexture in human tumours: impact on clinical outcome[J].? Nature Reviews Cancer, 2012,12(4):298-306.

      [25]FRIDMAN W H, GALON J, DIEU-NOSJEAN M C, et al. Immune infiltration in human cancer: prognostic significance and disease control[J].? Current Topics in Microbiology and Immunology, 2011,344:1-24.

      [26]BREMNES R M, BUSUND L T, KILVR T L, et al. The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer[J].? Journal of Thoracic Oncology, 2016,11(6):789-800.

      [27]KUREBAYASHI Y, EMOTO K, HAYASHI Y, et al. Comprehensive immune profiling of lung adenocarcinomas reveals four immunosubtypes with plasma cell subtype a negative indicator[J].? Cancer Immunology Research, 2016,4(3):234-247.

      [28]RIZVI N A, HELLMANN M D, SNYDER A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J].? Science (New York, N Y), 2015,348(6230):124-128.

      [29]TUMEH P C, HARVIEW C L, YEARLEY J H, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J].? Nature, 2014,515(7528):568-571.

      (本文編輯 黃建鄉(xiāng))

      麻江县| 安泽县| 茌平县| 任丘市| 云阳县| 调兵山市| 封开县| 门头沟区| 桐乡市| 都江堰市| 潞城市| 信宜市| 陇川县| 奈曼旗| 岱山县| 枝江市| 长寿区| 汉阴县| 高邑县| 北宁市| 沂源县| 岳普湖县| 东台市| 长葛市| 济宁市| 博爱县| 潍坊市| 乐平市| 嘉兴市| 临海市| 江达县| 都江堰市| 滕州市| 察哈| 鲁甸县| 永州市| 无锡市| 车险| 海口市| 抚州市| 外汇|