王詩宇 王志興 張麗麗 毛艇 李鑫 劉研 趙一洲 倪善君 鐘順成 張戰(zhàn)
摘要:植物具有可以抵抗病原菌的復(fù)雜防御系統(tǒng)。病原菌侵襲植物時(shí),其相關(guān)分子模式和效應(yīng)因子觸發(fā)的植物免疫誘導(dǎo)相關(guān)致病基因表達(dá),進(jìn)而改變不同類型的激酶如絲裂原活化蛋白激酶(MAPKs)調(diào)控植物激素或轉(zhuǎn)錄因子進(jìn)一步影響下游事件,例如超敏反應(yīng)、活性氧的生成、細(xì)胞壁修復(fù)、氣孔關(guān)閉或幾丁質(zhì)酶、蛋白酶抑制劑、防御素和植物抗毒素等抗微生物蛋白質(zhì)的分泌。本文總結(jié)了上述植物防御系統(tǒng)的主要途徑、防御反應(yīng)和未來抗性育種的研究方向,為植物抗性育種提供理論參考。
關(guān)鍵詞:植物防御系統(tǒng);病原菌;抗性育種;研究進(jìn)展
中圖分類號:Q945.78 文獻(xiàn)標(biāo)志碼: A文章編號:1002-1302(2021)19-0039-06
由病原菌和害蟲引起的植物病害一直威脅著全球糧食安全,為減少作物直接損失而用于防控病害的措施(如使用殺蟲劑)具有重大的農(nóng)業(yè)、經(jīng)濟(jì)和社會(huì)影響。因此,我們必須了解植物防御系統(tǒng)的機(jī)制,這一系統(tǒng)使植物能夠抵抗從昆蟲到病原菌等多種生物的攻擊。植物防御系統(tǒng)涉及與病原菌相互作用及雙向協(xié)同進(jìn)化的過程。在這一過程中,病原菌已經(jīng)進(jìn)化出從宿主中獲取營養(yǎng)來供應(yīng)生長的機(jī)制作為回應(yīng),植物進(jìn)化出了多種防御途徑來進(jìn)行自我保護(hù)。
1防御機(jī)制
普遍的防御機(jī)制分為3個(gè)防御層:病原菌相關(guān)分子模式(PAMP)引發(fā)的免疫(PTI)[1]、效應(yīng)因子引發(fā)的免疫(ETI)和RNAi介導(dǎo)的防御。PAMPs被定義為高度保守的分子,對PAMP的識別會(huì)激活PAMP觸發(fā)的免疫反應(yīng),從而引發(fā)一系列的免疫反應(yīng),但成功感染植物的病原菌會(huì)將效應(yīng)子分泌到植物細(xì)胞中,從而抑制PTI,為了抵消這些效應(yīng)因子,植物觸發(fā)第2級防御,即ETI。ETI與強(qiáng)烈的免疫反應(yīng)相關(guān),例如感染部位的程序性細(xì)胞死亡即HR。這些免疫反應(yīng)可以減少病原菌的進(jìn)一步擴(kuò)散。
1.1植物第1層防御反應(yīng):PTI
植物細(xì)胞壁是病原性真菌、卵菌、病毒和細(xì)菌面對的物理屏障。突破此障礙后,病原菌會(huì)被植物模式識別受體(PRR)識別,從而激活PTI。PAMP是微生物衍生的分子,對微生物至關(guān)重要,可以被植物識別。植物PRR位于細(xì)胞表面,PRR通常是質(zhì)膜結(jié)合受體激酶(RLK)和受體蛋白(RLPs),可感知微生物相關(guān)分子模式/損傷相關(guān)分子模式(MAMP/DAMP)。RLK由細(xì)胞外結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和細(xì)胞內(nèi)激酶結(jié)構(gòu)域組成,它們是將信號傳輸至下游防御反應(yīng)所必需的,而RLP僅由基本構(gòu)象組成,而沒有細(xì)胞內(nèi)激酶結(jié)構(gòu)域,已經(jīng)克隆了各種MAMP及其相應(yīng)的PRR。一些最典型的MAMP-PRR是鞭毛蛋白(flg22):鞭毛蛋白受體(FLS2)、延伸因子Tu(EF-Tu):延伸因子Tu受體(EFR)等。FLS2直接與flg22相互作用,flg22是一種來源于鞭毛蛋白氨基末端的22氨基酸肽。EFR特異識別EF-Tu N端的第1個(gè)18個(gè)氨基酸序列elf18肽。植物感應(yīng)到病原菌/微生物相關(guān)的分子模式后,這些模式識別受體立即觸發(fā)許多下游響應(yīng)。
1.2植物第2層防御反應(yīng):ETI
具有廣譜防御的PTI不足以防御大多數(shù)病原菌,病原菌利用各種效應(yīng)因子來克服PTI并成功感染,植物Resistance (R) 蛋白感知病原菌相關(guān)無毒基本(Avr)蛋白觸發(fā)植物生理防御反應(yīng)的表達(dá),稱為ETI。因此可以說ETI在效應(yīng)因子介導(dǎo)的第二防御中發(fā)揮作用。ETI也稱為基因?qū)蚩剐?,植物已?jīng)進(jìn)化出數(shù)百種抗性(R)基因來防御多種病原菌。最早克隆的R基因是玉米(Zea mays)Hm1。Hm1編碼一種酶,可以使來自真菌病原菌的蠕蟲炭疽毒素解毒。繼Hm1的克隆之后,在番茄、煙草、擬南芥中又相繼克隆了Pto、Cf-9、RPS2等R基因。到目前為止,已經(jīng)鑒定并分離出許多不同的R基因[2]。大多數(shù)植物R基因編碼具有核苷酸結(jié)合和富亮氨酸重復(fù)(NB-LRR)結(jié)構(gòu)域的蛋白質(zhì)。LRR的C末端結(jié)構(gòu)域在不同的R蛋白之間高度可變,是決定不同Avr分子特異性的主要區(qū)域。R-Avr相互作用很少通過R受體與Avr因子直接接觸而發(fā)生,而是通過其他宿主特異性蛋白間接發(fā)生[3]。
為了抑制病原菌死亡侵襲,PTI和ETI均可誘導(dǎo)一系列抗菌肽(AMP)、致病相關(guān)蛋白(PR)、核糖體抑制蛋白(RIP)和防御性次級代謝產(chǎn)物以及其他植物生理防御生物分子的表達(dá)[4]。AMP是植物防御肽,其長度最多為100個(gè)氨基酸,大多范圍為 10~50個(gè)氨基酸。AMP表現(xiàn)出結(jié)構(gòu)和功能的多樣性,通過各種機(jī)制對不同的植物病原菌發(fā)揮抗微生物活性。PR蛋白在患病植物中積累,并直接或間接參與植物對病原菌的防御。到目前為止,已經(jīng)描述了總共17個(gè)PR蛋白家族(PR-1~PR-17)[5]。RIP可能會(huì)不可逆地使核糖體失活,并抑制目標(biāo)病原菌中蛋白的合成。感染細(xì)胞中的HR與之前積累的防御信號向同一器官內(nèi)相鄰未感染細(xì)胞的轉(zhuǎn)移以激活植物遠(yuǎn)端的系統(tǒng)防御反應(yīng),以保護(hù)未受傷害的組織免受病原菌的后續(xù)入侵。
1.3RNAi介導(dǎo)的防御
在染病初期,植物可以通過導(dǎo)致基因沉默的RNA干涉(RNAi)來規(guī)避病毒感染。其中,包括2種不同的基因沉默現(xiàn)象,即轉(zhuǎn)錄基因沉默(TGS)和轉(zhuǎn)錄后基因沉默(PTGS)[6]。植物通過小型調(diào)節(jié)RNA(sRNA)特異性靶向并滅活侵入核酸。sRNA是 20~30個(gè)核苷酸(nt)長的非編碼RNA分子。sRNA通過與Argonaute(AGO)蛋白結(jié)合并將RNA誘導(dǎo)的沉默復(fù)合體(RISC)引導(dǎo)至具有互補(bǔ)序列的基因來誘導(dǎo)基因沉默[7]。病原菌可以將sRNA傳遞到植物中。例如灰葡萄孢菌將小RNA(Bc-sRNA)傳遞至植物細(xì)胞,以沉默宿主免疫基因。相反,宿主也可以將天然存在的小RNA轉(zhuǎn)移到有害生物或病原菌中,以減弱其毒力[8]。為響應(yīng)黃萎病菌的感染,棉花會(huì)增加microRNA 159(miR159)和microRNA 166(miR166)的表達(dá)水平,然后將二者輸出到真菌菌絲中進(jìn)行特定沉默[9]??傊?,植物可以通過輸出特定的sRNA來誘導(dǎo)病原真菌中的基因沉默,并賦予植株抗病性,從而確定宿主植物的新型防御策略(圖1)。
總的來說,植物具有一組稱為跨膜蛋白的識別受體[11],這些受體識別與病原菌或微生物相關(guān)的分子模式,并啟動(dòng)PAMP觸發(fā)的PTI與病原菌作斗爭[12-13]。針對這一防御系統(tǒng),一些病原菌分泌效應(yīng)因子來對抗植物自身免疫,并通過激活敏感蛋白來抑制PTI,從而進(jìn)行侵染,這個(gè)過程被稱為效應(yīng)器觸發(fā)的侵染(ETS)。為了對抗病原菌分泌的效應(yīng)因子,植物利用抗性R基因啟動(dòng)第2道防線,該基因通過識別來自效應(yīng)因子或無毒(avr)蛋白信號而被激活,從而引發(fā)ETI。通常,PTI是一種非特異性的免疫形式,在一類病原菌中保守。與此相反,ETI是一種高度特異性的免疫,通過對病原菌效應(yīng)因子的識別來激活,并通過超敏反應(yīng)引起程序性細(xì)胞死亡,抑制病原菌在感染部位的蔓延[14]。RNAi與PTI和ETI一起,是植物檢測和根除病原菌的一種方式[15-17]。
2防御反應(yīng)
2.1HR、ROS和細(xì)胞壁增強(qiáng)抑制病原菌感染
HR是病原體被識別后由免疫受體激活觸發(fā)的植物防御反應(yīng),其特征是感染部位或其周圍細(xì)胞迅速死亡。細(xì)胞死亡的部位相當(dāng)于隔離區(qū),可以阻止病原菌進(jìn)一步擴(kuò)散。病原菌感染植物細(xì)胞會(huì)觸發(fā)過氧化物酶的產(chǎn)生,從而產(chǎn)生活性氧(ROS),這些活性氧參與抗性反應(yīng)的多個(gè)方面[18]。NADPH氧化酶是產(chǎn)生超氧物所必需的,過氧化物酶利用超氧物產(chǎn)生過氧化氫(H2O2)。一種NADPH氧化酶D(RBOHD)結(jié)合植物模式識別受體EFR(PRRs EFR)和FLS2,被BIK1磷酸化,觸發(fā)活性氧的產(chǎn)生[19],活性氧引發(fā)程序性細(xì)胞死亡,H2O2轉(zhuǎn)移至臨近的細(xì)胞,保護(hù)其免受損傷[20]。ROS與HR創(chuàng)造了不適合病原菌生存和繁殖的環(huán)境,在這個(gè)過程中ROS直接參與信號轉(zhuǎn)導(dǎo)和防御反應(yīng),從而抑制真菌孢子的萌發(fā)[21],ROS也可以介導(dǎo)糖蛋白交聯(lián),以增強(qiáng)細(xì)胞壁。由于真菌、細(xì)菌和線蟲需要穿透植物細(xì)胞壁來獲得完成繁殖所需的營養(yǎng)物質(zhì),但細(xì)菌病原菌缺乏許多真菌所具有的降解酶,所以它們利用傷口和氣孔來獲取植物營養(yǎng)物質(zhì)。氣孔保衛(wèi)細(xì)胞識別細(xì)菌PAMP(即flg22)和脂多糖,通過相關(guān)激素信號誘導(dǎo)氣孔關(guān)閉,以防止其侵入[22-23]。
2.2酶和酶抑制劑可對抗致病因子
真菌合成纖維素酶等蛋白酶降解植物細(xì)胞壁。同樣地,植物細(xì)胞通過合成酶抑制劑,并積累胼胝質(zhì)和木質(zhì)素來加固細(xì)胞壁[24]。除了纖維素酶之外,像禾谷鐮刀菌這樣的病原菌還利用果膠酶和木聚糖酶降解植物碳水化合物[25-26]。同樣地,植物也進(jìn)化出降解病原菌碳水化合物的酶,包括幾丁質(zhì)酶和β-1-3-葡聚糖酶[27-28]。小麥幾丁質(zhì)酶降解真菌細(xì)胞壁的主要成分,抑制真菌孢子萌發(fā)。重組小麥幾丁質(zhì)酶已被證明對多種不同的真菌具有抗性,而且抗性不僅限于小麥病原真菌[29]。與幾丁質(zhì)酶類似,植物β-1,3-葡聚糖酶降解真菌細(xì)胞壁中的 β-1,3-葡聚糖,并產(chǎn)生能進(jìn)一步刺激植物防御反應(yīng)的單體[30]。這些方法都是通過降低病原菌中致病成分的有效性來增強(qiáng)植物的防御能力。由于細(xì)胞壁的組成成分(即纖維素、半纖維素、果膠、木質(zhì)素等)多種多樣,病原菌必須有一組不同的蛋白質(zhì)來感染寄主,從而導(dǎo)致植物受體防御蛋白的排列也更加復(fù)雜。因此,圍繞穿透或強(qiáng)化細(xì)胞壁能力的進(jìn)化之爭是植物-病原相互作用整體共同進(jìn)化的一個(gè)縮影。
植物和病原菌均釋放出蛋白酶,從而降低了催化蛋白(即植物幾丁質(zhì)酶和真菌纖維素酶)的活性。同時(shí),植物和病原菌利用蛋白酶抑制劑來抑制這些蛋白酶的活性[31]。Thomas 等討論了10種重要的蛋白酶類型,并根據(jù)位置將它們分為質(zhì)外體、細(xì)胞核、液泡、內(nèi)膜[32],這些蛋白酶在防御機(jī)制中起多種作用。大麥蛋白酶抑制劑可以抑制鐮刀菌胰蛋白酶、胰凝乳蛋白酶和α-淀粉酶的活性[33]。小麥和大麥α-淀粉酶抑制劑通過干擾α-淀粉酶(昆蟲和真菌用來代謝淀粉)來干擾害蟲對淀粉的消化[34-35]。與蛋白質(zhì)一樣,脂質(zhì)也參與許多細(xì)胞活動(dòng)。脂類可以形成將寄主植物與潛在病原菌分開的主要屏障。小麥銹菌和小麥青霉菌分別在與小麥和大麥的表面蠟質(zhì)接觸時(shí)啟動(dòng)附著孢的形成[36-37],然后真菌利用角質(zhì)酶將角質(zhì)水解成角質(zhì)單體,并在角質(zhì)層中移動(dòng)。脂質(zhì)轉(zhuǎn)移蛋白通過增加病原菌膜的通透性來提高植物的抗菌功能。然而,關(guān)于這些蛋白質(zhì)如何影響微生物的細(xì)節(jié)仍有待闡明[38]。脂質(zhì)也可以是病原菌或植物感知信號的直接靶點(diǎn),例如鐮刀菌毒素伏馬菌素干擾鞘脂代謝和細(xì)菌脂多糖PAMPs引發(fā)的防御反應(yīng)[39],磷脂酶和脂氧合酶(LOX)參與磷脂/半乳糖脂分解為游離脂肪酸以產(chǎn)生防御因子[40],并在氣孔關(guān)閉中發(fā)揮作用[41]。磷脂酶活性與各種激素和應(yīng)激反應(yīng)有關(guān)[42],可以產(chǎn)生直接參與防御反應(yīng)的產(chǎn)物,如磷脂酸[43]。
2.3防御素和Thaumatin蛋白可抑制病原菌感染
防御素是一類小植物蛋白,直接攻擊或抑制入侵的微生物和寄生植物。最初報(bào)道的有大麥和小麥γ-硫素,研究表明,它們與動(dòng)物防御素具有結(jié)構(gòu)相似性[44]。與許多醫(yī)用抗生素的作用類似,植物防御素干擾病原菌蛋白的合成和酶的功能。大麥防御素γ-大麥硫磺素(hordothionin)和ω-大麥硫磺素可以干擾病原菌蛋白的合成和酶的功能[3,45]。小麥防御素1(Tad1)在冠層中表達(dá),具有抗病原特性[46]。與抑制細(xì)菌生長的動(dòng)物防御素不同,許多植物防御素具有抗真菌作用,并且在種子中特別活躍。在植物的許多組織中都發(fā)現(xiàn)了防御素,并且其產(chǎn)生可能受季節(jié)變化的誘導(dǎo)。植物防御素由45~54個(gè)氨基酸組成,其中包含蝎毒素樣結(jié)構(gòu)、結(jié)蛋白和嘌呤蛋白結(jié)構(gòu)域,具有保守的半胱氨酸殘基。在擬南芥[47]和蒺藜苜蓿[48]中鑒定了300多種富含半胱氨酸的防御素樣蛋白。Nicole等根據(jù)防御素的種類、結(jié)構(gòu)和功能提出了將防御素分為18類的建議[49]。植物防御素具有作為醫(yī)用抗生素、抗腫瘤藥物[50]和人造甜味劑的潛力。Thaumatin樣蛋白也是致病相關(guān)蛋白。大麥Thaumatin樣蛋白與1,3-β-D-葡聚糖結(jié)合[51],參與白粉病、禾谷鐮刀菌[52]和其他真菌的抗性反應(yīng)。Thaumatin樣蛋白是構(gòu)成PR蛋白的17種類別之一,包括氧化酶和氧化酶樣(PR-9、15和16)、幾丁質(zhì)酶(PR-3、4、8和11)、β-1,3-葡聚糖酶(PR-2)、內(nèi)蛋白酶(PR-7)、蛋白酶抑制劑(PR-6)、脂質(zhì)轉(zhuǎn)移蛋白(PR-14)、核糖核酸酶樣(PR-10)、防御素和硫蛋白(分別為 PR-12 和13)、Thaumatin樣(PR-5)抗真菌(PR-1)和功能性未分的(PR-17)[53-55]。
2.4植物抗毒素和有益共生體是化學(xué)和生物武器
植物抗毒素是響應(yīng)入侵害蟲并干擾其代謝、發(fā)育和繁殖而產(chǎn)生的有機(jī)化合物。最初研究的植物抗毒素是作為保護(hù)馬鈴薯免受馬鈴薯晚疫病菌侵染的防御化合物。在擬南芥上應(yīng)用的一種植物抗毒素Camalexin,是針對許多不同類型的微生物病原菌和害蟲而產(chǎn)生的[56],由MAPK級聯(lián)[57]和WRKY轉(zhuǎn)錄因子[58-59]調(diào)節(jié)。谷物和其他植物的抗毒素包括燕麥中的安非他明和水稻中的二萜類化合物。作為一種皂苷類植物抗毒素,燕麥酸A-1由燕麥根表皮產(chǎn)生,并通過與真菌膜甾醇相互作用在真菌膜上形成孔隙[60]。雖然植物抗毒素已在許多物種中被發(fā)現(xiàn)具有分類化感作用[61],但其產(chǎn)生的信號機(jī)制仍然難以捉摸。植物抗毒素可用于醫(yī)學(xué)[62],也可應(yīng)用于作物的外源化學(xué)物質(zhì),如草甘膦基除草劑,增加作物對疾病的敏感性[63]。
植物也可以通過草食動(dòng)物誘導(dǎo)的植物揮發(fā)物來招募草食性昆蟲的天敵。以玉米葉為食的毛蟲誘導(dǎo)萜類化合物和吲哚的產(chǎn)生,吸引以毛蟲為食的寄生蜂[64]。為了保護(hù)自己免受侵害,植物還可以產(chǎn)生黏著物來誘捕昆蟲,如樹脂和乳膠[65-66]。除了為植物提供養(yǎng)分外,一些共生體還可以協(xié)助宿主防御病原菌。小麥根瘤菌通過產(chǎn)生抗生素物質(zhì)來防御土傳病原菌禾頂囊殼菌(Gaeumanomyces graminis)。水稻叢枝菌根可觸發(fā)并增強(qiáng)免疫反應(yīng)來保護(hù)宿主[67]。也有研究表明,共生體通過抑制茉莉酸(JA)介導(dǎo)的防御[68]或干擾ROS和β-1,3-葡聚糖酶的產(chǎn)生[69-70]而影響抗性反應(yīng)。這些相互作用證明了植物免疫系統(tǒng)的多層性。
3結(jié)論與展望
在農(nóng)業(yè)中,植物病害導(dǎo)致農(nóng)作物減產(chǎn),抗性成為育種的關(guān)鍵因素之一[71]。因此,了解植物免疫系統(tǒng)是必不可少的。盡管在這里回顧了大量的研究,但仍需要進(jìn)一步的研究來充分了解植物防御系統(tǒng)是如何整體地發(fā)揮作用來產(chǎn)生抗病性的。未來的幾年里,生物信息學(xué)和分子生物學(xué)的飛速發(fā)展,這將推動(dòng)信息爆炸式增長,有關(guān)植物與病原菌相互作用的更多細(xì)節(jié)將會(huì)陸續(xù)被發(fā)現(xiàn),更多的抗性調(diào)控和反應(yīng)機(jī)制將被闡明,這將會(huì)提高我們對植物免疫的認(rèn)識并育成更好的抗性品種將其應(yīng)用于農(nóng)業(yè)系統(tǒng)?,F(xiàn)代植物育種項(xiàng)目已經(jīng)聯(lián)合了具有統(tǒng)計(jì)學(xué)、生物化學(xué)、生理學(xué)、生物信息學(xué)、分子生物學(xué)、農(nóng)學(xué)和經(jīng)濟(jì)學(xué)領(lǐng)域?qū)I(yè)知識的跨學(xué)科團(tuán)隊(duì),作物育種已經(jīng)發(fā)生了革命性的變化,DNA測序技術(shù)的進(jìn)步已經(jīng)開啟了作物改良的“基因組學(xué)時(shí)代”。一些防御相關(guān)基因包括水稻bsr-d1和bsr-k1等,介導(dǎo)了對稻瘟病的持久抗性,使用組成型啟動(dòng)子驅(qū)動(dòng)防御反應(yīng)相關(guān)基因的表達(dá),在不降低產(chǎn)量的情況下獲得高抗性,但轉(zhuǎn)基因技術(shù)在育種計(jì)劃中的應(yīng)用仍然存在爭議。因此,有必要從現(xiàn)有的遺傳資源中鑒定出更多的天然或修飾的基因/等位基因。分子工具作為作物育種的新策略得到了迅速的發(fā)展,分子育種是在短時(shí)間內(nèi)整合多個(gè)顯性基因的有效途徑[72]。通過分子設(shè)計(jì)和基因組編輯等分子方法應(yīng)用這些基因/等位基因資源,是未來抗性育種的潮流方向。
參考文獻(xiàn):
[1]Zipfel C. Early molecular events in PAMP-triggered immunity[J]. Current Opinion in Plant Biology,2009,12(4):414-420.
[2]Kourelis J,van der Hoorn R A L. Defended to the nines:25 years of resistance gene cloning identifies nine mechanisms for R protein function[J]. The Plant Cell,2018,30(2):285-299.
[3]van der Weerden N L,Lay F T. The plant defensin,NaD1,enters the cytoplasm of Fusarium oxysporum hyphae[J]. The Journal of Biological Chemistry,2008,283(21):14445-14452.
[4]Silva M S,Arraes F B M,Campos M D A,et al. Review:potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops[J]. Plant Science,2018,270:72-84.
[5]Ng T B,Wong J H X,Wang H. Recent progress in research on ribosome inactivating proteins[J]. Current Protein & Peptide Science,2010,11(1):37-53.
[6]Muthamilarasan M,Prasad M. Plant innate immunity:An updated insight into defense mechanism[J]. Journal of Biosciences,2013,38(2):433-449.
[7]Weiberg A,Wang M,Lin F M,et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science,2013,342(6154):118-123.
[8]Wang M,Weiberg A,Lin F M,et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature Plants,2016,2(19):16151.
[9]Zhang T,Zhao Y L,Zhao J H,et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature Plants,2016,2(10):16153.
[10]Tyagi S,Kumar R,Kumar V,et al. Engineering disease resistant plants through CRISPR-Cas9 technology[J]. Crops & Food,2021,12(1):125-144.
[11]Kachroo A,Vincelli P,Kachroo P. Signaling mechanisms underlying resistance responses:what have we learned,and how is it being applied?[J]. Phytopathology,2017,107(12):1452-1461.
[12]Andersen E,Ali S,Byamukama E,et al. Disease resistance mechanisms in plants[J]. Genes,2018,9(7):339.
[13]Tyagi S,Mulla S I,Lee K J,et al. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes[J]. Critical Reviews in Biotechnology,2018,38(8):1277-1296.
[14]Oskar M,Buchwald W,Nawrot R. Plant defense responses against viral and bacterial pathogen infections.Focus on RNA-binding proteins(RBPs)[J]. Herba Polonica,2015,60(4):60-73.
[15]Almagro L,Ros L V G,Belchi-Navarro S,et al. Class Ⅲ peroxidases in plant defence reactions[J]. Journal of Experimental Botany,2009,60(2):377-390.
[16]Dong O X,Ronald P C. Genetic engineering for disease resistance in plants:recent progress and future perspectives[J]. Plant Physiology,2019,180(1):26-38.
[17]Rosa E,Woestmann L,Biere A,et al. A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore[J]. Oikos,2018,127(10):1539-1549.
[18]Passardi F,Cosio C,Penel C,et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports,2005,24(5):255-265.
[19]Kadota Y,Sklenar J,Derbyshire P,et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Molecular Cell,2014,54(1):43-55.
[20]Levine A,Tenhaken R,Dixon R,et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell,1994,79(4):583-593.
[21]Lamb C,Dixon R A. The oxidative burst in plant disease resistance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48(1):251-275.
[22]Melotto M,Underwood W,He S Y. Role of stomata in plant innate immunity and foliar bacterial diseases[J]. Annual Review of Phytopathology,2008,46(2):101-122.
[23]Melotto M,Underwood W,Koczan J,et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell,2006,126(5):969-980.
[24]Bellincampi D,Cervone F,Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J]. Frontiers in Plant Science,2014,5:228.
[25]Kang Z,Buchenauer H. Ultrastructural and cytochemical studies on cellulose,xylan and pectin degradation in wheat spikes infected by Fusarium culmorum[J]. Journal of Phytopathology,2000,148(5):263-275.
[26]Wanjiru W M,Kang Z S,Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads[J]. European Journal of Plant Pathology,2002,108(8):803-810.
[27]Anguelova-Merhar V S,Westhuizen A J,Pretorius Z A. β-1,3-Glucanase and chitinase activities and the resistance response of wheat to leaf rust[J]. Journal of Phytopathology,2008,149(7/8):381-384.
[28]Kong L R,Anderson J M,Ohm H W. Induction of wheat defense and stress-related genes in response to Fusarium graminearum[J]. Genome,2005,48(1):29-40.
[29]Singh A,Kirubakaran S I,Sakthivel N.Heterologous expression of new antifungal chitinase from wheat[J]. Protein Expression & Purification,2007,56(1):100-109.
[30]Doxey A C,Yaish Mahmoud W F,Moffatt Barbara A,et al. Functional divergence in the arabidopsis β-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states[J]. Molecular Biology & Evolution,2007,24(4):1045-1055.
[31]Jashni M K,Mehrabi R,Collemare J,et al. The battle in the apoplast:further insights into the roles of proteases and their inhibitors in plant-pathogen interactions[J]. Frontiers in Plant Science,2015,6:584.
[32]Thomas E L,van der Hoorn R A L. Ten prominent host proteases in Plant-Pathogen interactions[J]. International Journal of Molecular Sciences,2018,19(2):639.
[33]Pekkarinen A I,Longstaff C,Jones B L. Kinetics of the inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors[J]. Journal of Agricultural and Food Chemistry,2007,55(7):2736-2742.
[34]Franco O L,Rigden D J,Melo F R,et al. Plant α-amylase inhibitors and their interaction with insect α-amylases[J]. European Journal of Biochemistry,2002,269(2):397-412.
[35]Franco O L,Rigden D J,Melo F R,et al. Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities[J]. European Journal of Biochemistry,2000,267(8):2166-2173.
[36]Reisige K,Gorzelanny C,Daniels U,et al. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus[J]. Physiol Molec Plant Pathol,2006,68(1/2/3):33-40.
[37]Tsuba M,Katagiri C,Takeuchi Y,et al. Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis[J]. Physiological & Molecular Plant Pathology,2002,60(2):51-57.
[38]Finkina E I,Melnikova D N,Bogdanov I V,et al. Lipid transfer proteins as components of the plant innate immune system:structure,functions,and applications[J]. Acta Naturae,2016,8(2):47-61.
[39]Desaki Y,Miya A,Venkatesh B,et al. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells[J]. Plant & Cell Physiology,2006,47(11):1530-1540.
[40]Canonne J,F(xiàn)roidure-Nicolas S,Rivas S. Phospholipases in action during plant defense signaling[J]. Plant Signaling & Behavior,2011,6(1):13-18.
[41]Montillet J L,Leonhardt N,Mondy S,et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis[J]. PLoS Biology,2013,11(3):e1001513.
[42]Zhao J A. Phospholipase D and phosphatidic acid in plant defence response:from protein-protein and lipid-protein interactions to hormone signalling[J]. Journal of Experimental Botany,2015,66(7):1721-1736.
[43]Rentel M C,Lecourieux D,Ouaked F,et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis[J]. Nature,2004,427(6977):858-861.
[44]Terras F R,Eggermont K,Kovaleva V,et al. Small cysteine-rich antifungal proteins from radish:their role in host defense[J]. Plant Cell,1995,7(5):573-588.
[45]van der Weerden N L,Hancock R E W,Anderson M A. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process[J]. The Journal of Biological Chemistry,2010,285(48):37513-37520.
[46]Koike M,Okamoto T,Tsuda S,et al. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation[J]. Biochemical and Biophysical Research Communications,2002,298(1):46-53.
[47]Silverstein K A,Graham M A,Paape T D,et al. Genome organization of more than 300 defensin-like genes in Arabidopsis[J]. Plant Physiology,2005,138(2):600-610.
[48]Graham M A,Silverstein K A,Cannon S B,et al. Computational identification and characterization of novel genes from legumes[J]. Plant Physiology,2004,135(3):1179-1197.
[49]van der Weerden N L,Anderson M A. Plant defensins:common fold,multiple functions[J]. Fungal Biology Reviews,2013,26(4):121-131.
[50]Wang S Y,Rao P F,Ye X Y. Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency[J]. Applied Microbiology and Biotechnology,2009,82(1):79-86.
[51]Osmond R I W,Hrmova M,F(xiàn)ontaine F,et al. Binding interactions between barley thaumatin-like proteins and (1,3)-β-D-glucans. Kinetics,specificity,structural analysis and biological implications[J]. European Journal of Biochemistry,2001,268(15):4190-4199.
[52]Trümper C,Paffenholz K,Smit I,et al. Identification of regulated proteins in naked barley grains (Hordeum vulgare nudum) after Fusarium graminearum infection at different grain ripening stages[J]. Journal of Proteomics,2016,133:86-92.
[53]Singh A,Singh I K. Role of pathogenesis-related (PR) proteins in plant defense mechanism[M]//Archana S,Indrakant K S. Molecular aspects of plant-pathogen interaction. Berlin:Springer,2018,12(1):265-281.
[54]van Loon L C,Rep M,Pieterse C M. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology,2006,44(1):135-162.
[55]Sinha M,Singh R P,Kushwaha G S,et al. Current overview of allergens of plant pathogenesis related protein families[J]. The Scientific World Journal,2014:543195.
[56]Gj K,Drurey C,Schoonbeek H J,et al. Resistance of arabidopsis thaliana to the green peach aphid,myzus persicae,involves camalexin and is regulated by microRNAs[J]. The New Phytologist,2013,198(4):1178-1190.
[57]Xu J,Li Y,Wang Y,et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis[J]. The Journal of Biological Chemistry,2008,283(40):26996-27006.
[58]Ahuja I,Kissen R,Bones A M. Phytoalexins in defense against pathogens[J]. Trends in Plant Science,2012,17(2):73-90.
[59]Mao G H,Meng X Z,Liu Y D,et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. Plant Cell,2011,23(4):1639-1653.
[60]González-Lamothe R,Mitchell G,Gattuso M,et al. Plant antimicrobial agents and their effects on plant and human pathogens[J]. International Journal of Molecular Sciences,2009,10(8):3400-3419.
[61]Wu H,Pratley J,Lemerle D,et al. Allelopathy in wheat(Triticum aestivum)[J]. Annals of Applied Biology,2006,139(1):1-9.
[62]Adhikari K B,Tanwir F,Gregersen P L,et al. Benzoxazinoids:cereal phytochemicals with putative therapeutic and health-protecting properties[J]. Molecular Nutrition & Food Research,2015,59(7):1324-1338.
[63]Martinez D,Loening U E,Graham M C. Impacts of glyphosate-based herbicides on disease resistance and health of crops:a review[J]. Environmental Sciences Europe,2018,30(1):2.
[64]Turlings T C J,McCall P J,Alborn H T,et al. An elicitor in Caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps[J]. Journal of Chemical Ecology,1993,19(3):411-425.
[65]Agrawal A A,Konno K. Latex:A model for understanding mechanisms,ecology,and evolution of plant defense against herbivory[J]. Annual Review of Ecology Evolution and Systematics,2009,40(1):311-331.
[66]McKay S A B,Hunter W L,Godard K A,et al. Insect attack and wounding induce traumatic resin duct development and gene expression of (—)-pinene synthase in Sitka spruce[J]. Plant Physiology,2003,133(1):368-378.
[67]Campos-Soriano L,García-Martínez J,Segundo B S. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection[J]. Molecular Plant Pathology,2012,13(6):579-592.
[68]Plett J M,Daguerre Y,Wittulsky S,et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(22):8299-8304.
[69]Cárdenas L,Martínez A,Sánchez F,et al. Fast,transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs)[J]. The Plant Journal,2008,56(5):802-813.
[70]Mitra R M,Long S R. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis[J]. Plant Physiology,2004,134(2):595-604.
[71]Bentham A R,de la Concepcion J C,Mukhi N,et al. A molecular roadmap to the plant immune system[J]. Journal of Biological Chemistry,2020,295(44):14916-14935.
[72]Wang L,Long X Y,Chern M,et al. Understanding the molecular mechanisms of trade-offs between plant growth and immunity[J]. Science China. Life Sciences,2021,64(2):234-241.
基金項(xiàng)目:遼寧省自然科學(xué)基金(編號:2020-MS-342);東北南部濱海稻區(qū)耐鹽堿優(yōu)質(zhì)高產(chǎn)高效新品培育項(xiàng)目(編號:2017YFD0100502-3)。
作者簡介:王詩宇(1992—),遼寧蓋州人,女,碩士,助理研究員,主要從事水稻抗性基因的鑒定和克隆、水稻遺傳育種研究。E-mail:1603487409@qq.com。
通信作者:張戰(zhàn),研究員,主要從事水稻常規(guī)育種研究。E-mail:skycg_zz@126.com。