何靜怡 王富博 侯建全
摘 要 細(xì)胞外囊泡中包含著由細(xì)胞分泌的各種生物分子,其具有脂質(zhì)雙層封閉結(jié)構(gòu),作為一種細(xì)胞間的通信介質(zhì),能將生物活性分子轉(zhuǎn)移到受體細(xì)胞,導(dǎo)致遺傳信息交換和受體細(xì)胞重編程,參與多種生理和病理過(guò)程。腫瘤細(xì)胞能分泌過(guò)量的細(xì)胞外囊泡,傳遞致癌蛋白和核酸組分到靶細(xì)胞,進(jìn)而誘導(dǎo)正常細(xì)胞癌變,促進(jìn)新生血管形成,提高腫瘤細(xì)胞的遷徙和侵襲能力等;也能與包括免疫細(xì)胞和基質(zhì)細(xì)胞在內(nèi)的腫瘤微環(huán)境中的其他細(xì)胞進(jìn)行多方面的相互作用,協(xié)助腫瘤細(xì)胞逃避免疫監(jiān)視,促進(jìn)腫瘤細(xì)胞生態(tài)位的形成,影響腫瘤的發(fā)生、進(jìn)展和轉(zhuǎn)移。本文概要介紹細(xì)胞外囊泡在腫瘤復(fù)發(fā)和轉(zhuǎn)移中作用的研究進(jìn)展。
關(guān)鍵詞 細(xì)胞外囊泡 腫瘤轉(zhuǎn)移 免疫抑制 腫瘤微環(huán)境
中圖分類號(hào):R73-37 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2021)21-0062-05
Research advances on the role of extracellular vesicles in tumor recurrence and metastasis
HE Jingyi1, WANG Fubo2, HOU Jianquan1
[1. Department of Urology, the First Hospital affiliated to Suzhou University, Suzhou 215006, China; 2. Department of Urology, the First Hospital affiliated to Naval Medical University (Shanghai Changhai Hospital), Shanghai 200433, China]
ABSTRACT Extracellular vesicles (EVs) have a lipid bilayer closed structure containing various biological molecules secreted by cells. As a medium of intercellular communication, EVs can transfer bioactive molecules to recipient cells, leading the exchange of genetic information and reprogramming of recipient cells and participating in various physiological and pathological processes. Tumor cells can secrete excessive EVs and deliver carcinogenic proteins and nucleic acid components to the target cells, thereby inducing normal cell to become carcinogenesis, promoting angiogenesis, improving the capabilities of tumor cell migration and invasion and so on. EVs can also interact with other cells in tumor microenvironment, including immune cells and stromal cells, to assist tumor in evading immune surveillance, promote the formation of tumor niche and affect the tumorigenesis, progression and metastasis. This paper reviews the research advances on the role of EVs in tumor recurrence and metastasis.
KEy wORDS extracellular vesicles; tumor metastasis; immunosuppression; tumor microenvironment
細(xì)胞外囊泡首先是作為存在于健康人血漿中的具有促凝作用的血小板微顆粒而被發(fā)現(xiàn)的[1],后Johnstone等[2]將其命名為“外泌體(exosomes)”。但是由于最初認(rèn)為細(xì)胞外囊泡是細(xì)胞排泄的廢物,故數(shù)十年來(lái)一直未引起科學(xué)家們的重視。直到1996年Raposo等[3]發(fā)現(xiàn),B淋巴細(xì)胞分泌的細(xì)胞外囊泡可呈遞抗原激活T淋巴細(xì)胞,參與調(diào)控免疫細(xì)胞功能,科學(xué)家們才開(kāi)始重視并逐漸探尋細(xì)胞外囊泡的生物學(xué)功能。1998年Zitvogel等[4]發(fā)現(xiàn),樹(shù)突狀細(xì)胞也可分泌細(xì)胞外囊泡。2007年Valadi等[5]發(fā)現(xiàn),細(xì)胞間可通過(guò)細(xì)胞外囊泡中的RNA交換遺傳物質(zhì)。此后,越來(lái)越多的研究發(fā)現(xiàn),細(xì)胞外囊泡可攜帶并傳遞細(xì)胞分泌的信號(hào)分子至相鄰及遠(yuǎn)處的細(xì)胞,從而調(diào)節(jié)細(xì)胞的生理和病理狀態(tài),參與許多重要疾病的發(fā)生、發(fā)展過(guò)程[6]。
根據(jù)大小、生物學(xué)特性和形成過(guò)程的不同,可將細(xì)胞外囊泡主要分為外泌體、微囊泡(microvesicles)和凋亡小體(apoptotic bodies)3類[7]。外泌體是由多囊泡體與細(xì)胞膜融合形成的直徑為40 ~ 160 nm(平均100 nm)的細(xì)胞外囊泡[8];微囊泡是由細(xì)胞膜出芽形成的直徑為200 ~ 1 000 nm(或100 ~ 1 000 nm)的細(xì)胞外囊泡[9];凋亡小體是細(xì)胞在凋亡過(guò)程中細(xì)胞萎縮、碎裂形成的有膜包裹的含有胞質(zhì)和細(xì)胞器的直徑為500 ~ 2 000 nm(或50 ~ 5 000 nm)的泡狀小體[9-10]。細(xì)胞外囊泡中富含多種生物活性物質(zhì),主要包括蛋白、核酸(DNA、mRNA、miRNA、lncRNA等)和脂類等[11]。
2.1 細(xì)胞外囊泡介導(dǎo)瘤內(nèi)異質(zhì)性
瘤內(nèi)異質(zhì)性是指相同腫瘤內(nèi)存在多個(gè)具有不同細(xì)胞形態(tài)的亞克隆[12],其可被進(jìn)一步分為空間異質(zhì)性和時(shí)間異質(zhì)性[13],其中前者是指腫瘤的不同區(qū)域不同,后者是指原發(fā)性與繼發(fā)性腫瘤不同,體現(xiàn)了腫瘤發(fā)展過(guò)程中的高度復(fù)雜性和多樣性。
Zomer等[14]發(fā)現(xiàn),腫瘤來(lái)源的細(xì)胞外囊泡中攜帶著參與腫瘤遷徙和轉(zhuǎn)移的mRNA,能被位于同處和遠(yuǎn)處的腫瘤細(xì)胞攝取。通過(guò)活體成像技術(shù)發(fā)現(xiàn),攝取細(xì)胞外囊泡后的惡性程度較低的腫瘤細(xì)胞表現(xiàn)出了更強(qiáng)的遷徙行為和轉(zhuǎn)移能力。Godlewski等[15]發(fā)現(xiàn),膠質(zhì)母細(xì)胞瘤來(lái)源的細(xì)胞外囊泡攜帶miRNA,這些細(xì)胞外囊泡不僅可在腫瘤細(xì)胞亞群間轉(zhuǎn)移惡性特征,且還會(huì)傳播腫瘤異質(zhì)性。細(xì)胞外囊泡除介導(dǎo)腫瘤細(xì)胞間的信息共享外,也參與腫瘤細(xì)胞與非腫瘤細(xì)胞間的信息交流。Wu等[16]發(fā)現(xiàn),長(zhǎng)期暴露于腫瘤細(xì)胞分泌的細(xì)胞外囊泡可通過(guò)抑制促凋亡信號(hào),激活腫瘤或促進(jìn)內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的未折疊蛋白反應(yīng)和炎性反應(yīng)而促進(jìn)非惡性的人永生化尿路上皮細(xì)胞向腫瘤細(xì)胞轉(zhuǎn)化。
2.2 細(xì)胞外囊泡介導(dǎo)上皮細(xì)胞—間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)
EMT是指上皮細(xì)胞向準(zhǔn)間充質(zhì)細(xì)胞狀態(tài)轉(zhuǎn)化的可逆性細(xì)胞過(guò)程,其結(jié)果會(huì)導(dǎo)致上皮細(xì)胞失去極性和黏附性,從而使其具有遷徙和侵襲能力[17]。EMT是上皮細(xì)胞來(lái)源的腫瘤細(xì)胞獲得遷徙和侵襲能力的重要生物學(xué)機(jī)制,細(xì)胞外囊泡在此過(guò)程中起著重要作用。細(xì)胞外囊泡的來(lái)源可大致分為3類,分別為來(lái)源于間充質(zhì)干細(xì)胞、腫瘤相關(guān)成纖維細(xì)胞(carcinoma-associated fibroblasts, CAF)和腫瘤細(xì)胞。
間充質(zhì)干細(xì)胞可促進(jìn)或抑制腫瘤細(xì)胞發(fā)生EMT。最新研究表明,間充質(zhì)干細(xì)胞與駐留上皮細(xì)胞間的細(xì)胞間通信在EMT的誘導(dǎo)發(fā)生中起著重要作用[18]。Zhou等[19]發(fā)現(xiàn),來(lái)源于間充質(zhì)干細(xì)胞的細(xì)胞外囊泡可提高乳腺癌細(xì)胞的體外增殖和遷徙能力,通過(guò)激活細(xì)胞外調(diào)節(jié)蛋白激酶信號(hào)通路促進(jìn)EMT,導(dǎo)致腫瘤進(jìn)展和轉(zhuǎn)移。Zhang等[20]則在體內(nèi)外實(shí)驗(yàn)中發(fā)現(xiàn),來(lái)源于骨髓間充質(zhì)干細(xì)胞的外泌體miR-206可通過(guò)靶向轉(zhuǎn)化因子2β轉(zhuǎn)移至骨肉瘤細(xì)胞中,從而抑制骨肉瘤細(xì)胞的增殖、遷徙和侵襲,并誘導(dǎo)其凋亡,抑制腫瘤進(jìn)展。
CAF是腫瘤微環(huán)境中含量最高的成分之一,在腫瘤進(jìn)展和轉(zhuǎn)移過(guò)程中起著重要作用。腫瘤細(xì)胞與鄰近CAF間的相互作用是通過(guò)旁分泌信號(hào)(細(xì)胞因子、外泌體和細(xì)胞代謝產(chǎn)物)或周圍的細(xì)胞外基質(zhì)發(fā)生的[21]。Wang等[22]發(fā)現(xiàn),來(lái)源于CAF的含miRNA-181d-5p的細(xì)胞外囊泡可促進(jìn)人乳腺癌細(xì)胞MCF-7增殖,拮抗其凋亡,并能通過(guò)調(diào)節(jié)尾型同源盒轉(zhuǎn)錄因子-2/同源盒轉(zhuǎn)錄因子A5促進(jìn)乳腺癌細(xì)胞的EMT。Li等[23]發(fā)現(xiàn),在口腔鱗癌中,來(lái)源于CAF的外泌體攜帶的miR-34a-5p參與miR-34a-5p/AXL受體酪氨酸激酶軸,并可通過(guò)蛋白激酶B/糖原合成酶激酶-3β/β-連環(huán)蛋白/Snail家族轉(zhuǎn)錄抑制因子信號(hào)轉(zhuǎn)導(dǎo)級(jí)聯(lián)誘導(dǎo)EMT,從而促進(jìn)腫瘤轉(zhuǎn)移。Li等[24]通過(guò)體內(nèi)外實(shí)驗(yàn)發(fā)現(xiàn),在子宮內(nèi)膜癌中,來(lái)源于CAF的細(xì)胞外囊泡攜帶的miR-148b可直接與其下游靶基因DNA甲基轉(zhuǎn)移酶-1基因結(jié)合,通過(guò)抑制EMT產(chǎn)生腫瘤抑制作用。
腫瘤細(xì)胞也可通過(guò)分泌細(xì)胞外囊泡促進(jìn)受體細(xì)胞發(fā)生EMT。Takahashi等[25]發(fā)現(xiàn),胰腺導(dǎo)管癌來(lái)源的細(xì)胞外囊泡可轉(zhuǎn)移肝癌高表達(dá)轉(zhuǎn)錄本(high up-regulated in liver cancer, HULC),從而誘導(dǎo)EMT,促進(jìn)腫瘤細(xì)胞的侵襲和遷徙,而通過(guò)miRNA-133b靶向HULC則能抑制EMT的發(fā)生。Eguchi等[26]發(fā)現(xiàn),耐去勢(shì)前列腺癌來(lái)源的細(xì)胞外囊泡可促進(jìn)正常前列腺上皮細(xì)胞發(fā)生EMT。Fujiwara等[27]發(fā)現(xiàn),口腔鱗癌來(lái)源的細(xì)胞外囊泡攜帶著過(guò)量的表皮生長(zhǎng)因子受體(epidermal growth factor receptor, EGFR),后者在表皮生長(zhǎng)因子刺激下能夠進(jìn)入正常上皮細(xì)胞并將其轉(zhuǎn)化為間充質(zhì)表型,而使用抗EGFR抗體西妥昔單抗可在很大程度上抑制這種口腔鱗癌細(xì)胞對(duì)富含EGFR的細(xì)胞外囊泡的內(nèi)化和EMT的發(fā)生。
2.3 細(xì)胞外囊泡參與新生血管形成
腫瘤細(xì)胞會(huì)和腫瘤來(lái)源的細(xì)胞外囊泡激活的血小板等發(fā)生相互作用,由此形成促凝和促炎狀態(tài),這有助于激發(fā)腫瘤微環(huán)境,導(dǎo)致腫瘤外滲、腫瘤細(xì)胞微血栓形成、血小板聚集和轉(zhuǎn)移等,并在腫瘤進(jìn)展中發(fā)揮重要作用[28]。新生血管形成是指在原有的毛細(xì)血管或微靜脈基礎(chǔ)上,通過(guò)內(nèi)皮細(xì)胞的增殖、分化和遷徙,以芽生或非芽生的形式生成新的血管,是血管從少到多的一個(gè)生物學(xué)過(guò)程。腫瘤來(lái)源的細(xì)胞外囊泡有可能將復(fù)雜的信息傳遞給內(nèi)皮細(xì)胞,通過(guò)與內(nèi)皮細(xì)胞結(jié)合而使之失去內(nèi)皮屏障并隨后發(fā)生EMT,即細(xì)胞外基質(zhì)重塑,產(chǎn)生促血管形成或抗血管形成信號(hào)[29]。因此,腫瘤與內(nèi)皮細(xì)胞間通過(guò)細(xì)胞外囊泡進(jìn)行的細(xì)胞間通信也是促進(jìn)腫瘤進(jìn)展的重要途徑。
在新生血管形成的初期,腫瘤來(lái)源的細(xì)胞外囊泡可將其攜帶的促新生血管形成因子傳遞給內(nèi)皮細(xì)胞,從而誘發(fā)新生血管形成。Feng等[30]發(fā)現(xiàn),乳腺癌來(lái)源的細(xì)胞外囊泡可激活血管內(nèi)皮生長(zhǎng)因子受體,誘發(fā)腫瘤新生血管形成。當(dāng)新生的血管進(jìn)入增生侵入期,腫瘤來(lái)源的細(xì)胞外囊泡可通過(guò)其攜帶的核酸促進(jìn)新生血管形成,尤其是細(xì)胞外囊泡中的miRNA能使內(nèi)皮細(xì)胞擺脫被周圍組織黏附的狀態(tài),促進(jìn)內(nèi)皮細(xì)胞增生、遷徙和浸潤(rùn),在誘導(dǎo)新生血管形成過(guò)程中發(fā)揮重要作用。Yamada等[31]發(fā)現(xiàn),結(jié)腸癌來(lái)源的細(xì)胞外囊泡富含miR-92a-3p,這些細(xì)胞外囊泡可被血管內(nèi)皮細(xì)胞攝取,miR-92a-3p下調(diào)連接蛋白-11的表達(dá),破壞內(nèi)皮細(xì)胞間的緊密連接,導(dǎo)致新生血管進(jìn)入成熟分化期,促進(jìn)部分EMT發(fā)生、血管腔形成。
總之,這些研究結(jié)果顯示,腫瘤來(lái)源的細(xì)胞外囊泡含有促新生血管形成的細(xì)胞因子或miRNA,它們可通過(guò)促進(jìn)內(nèi)皮細(xì)胞的增殖、遷徙和小管形成,參與整個(gè)新生血管形成過(guò)程,從而促進(jìn)腫瘤進(jìn)展。
2.4 細(xì)胞外囊泡介導(dǎo)的免疫抑制
在腫瘤微環(huán)境中,腫瘤細(xì)胞可通過(guò)Fas配體/Fas和細(xì)胞程序性死亡受體配體-1(programmed cell deathligand 1, PD-L1)/細(xì)胞程序性死亡受體-1(programmed cell death 1, PD-1)途徑誘導(dǎo)免疫細(xì)胞死亡,使T細(xì)胞和自然殺傷細(xì)胞數(shù)量減少,同時(shí)通過(guò)募集免疫抑制性調(diào)節(jié)性T細(xì)胞和骨髓來(lái)源的抑制CD8+ T細(xì)胞的抑制性細(xì)胞,導(dǎo)致腫瘤免疫逃逸,最終促進(jìn)腫瘤增殖和轉(zhuǎn)移。腫瘤來(lái)源的細(xì)胞外囊泡可促進(jìn)腫瘤介導(dǎo)的免疫抑制,創(chuàng)造有利于腫瘤轉(zhuǎn)移的微環(huán)境[32]。
Miyazaki等[33]發(fā)現(xiàn),前列腺癌來(lái)源的細(xì)胞外囊泡可介導(dǎo)雌激素受體結(jié)合片段相關(guān)抗原從腫瘤細(xì)胞轉(zhuǎn)移至腫瘤微環(huán)境,通過(guò)抑制T細(xì)胞的細(xì)胞毒作用和調(diào)節(jié)T細(xì)胞中免疫相關(guān)基因的表達(dá),促進(jìn)腫瘤免疫逃逸和腫瘤進(jìn)展。Hsu等[34]發(fā)現(xiàn),肺癌細(xì)胞在乏氧條件下分泌的富含miR-103a的細(xì)胞外囊泡可通過(guò)降低磷酸酯酶與張力蛋白同源物水平,增強(qiáng)蛋白激酶B和信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子-3的激活,使巨噬細(xì)胞轉(zhuǎn)化為具有免疫抑制作用的M2型巨噬細(xì)胞,導(dǎo)致腫瘤免疫逃逸。CzystowskaKuzmicz等[35]發(fā)現(xiàn),卵巢癌細(xì)胞可分泌含有精氨酸酶-1的細(xì)胞外囊泡,后者能被轉(zhuǎn)運(yùn)至引流淋巴結(jié)并被樹(shù)突狀細(xì)胞攝取,由此抑制抗原特異性T細(xì)胞的增殖,促進(jìn)腫瘤生長(zhǎng)。Ricklefs等[36]發(fā)現(xiàn),部分膠質(zhì)母細(xì)胞瘤來(lái)源的細(xì)胞外囊泡表面表達(dá)著PD-L1,其可與PD-1結(jié)合,通過(guò)抑制T細(xì)胞功能而導(dǎo)致腫瘤免疫逃逸。
2.5 細(xì)胞外囊泡介導(dǎo)的轉(zhuǎn)移前微環(huán)境形成
依據(jù)“種子和土壤”假說(shuō)[37],轉(zhuǎn)移前微環(huán)境是指原發(fā)性腫瘤在次級(jí)器官和組織部位創(chuàng)造的有利于其后續(xù)轉(zhuǎn)移的微環(huán)境。轉(zhuǎn)移前微環(huán)境具有6大特征,分別為免疫抑制、炎性反應(yīng)、血管形成及滲透、淋巴管生成、親器官性和受體細(xì)胞重編程,這些特征決定了循環(huán)腫瘤細(xì)胞的駐留、生存和增殖[38]。
Ji等[39]發(fā)現(xiàn),結(jié)直腸癌來(lái)源的細(xì)胞外囊泡中含有整合素β樣因子-1,后者可通過(guò)刺激腫瘤壞死因子-α誘導(dǎo)蛋白-3介導(dǎo)的核轉(zhuǎn)錄因子κB信號(hào)通路激活成纖維細(xì)胞,使之產(chǎn)生高水平的促炎細(xì)胞因子,從而促進(jìn)轉(zhuǎn)移性腫瘤的生長(zhǎng)。Kong等[40]發(fā)現(xiàn),在涎腺腺樣囊性癌(salivary adenoid cystic carcinoma, SACC)中,來(lái)源于CAF的細(xì)胞外囊泡中含有整合素α2β1,后者可通過(guò)激活肺成纖維細(xì)胞,使肺內(nèi)形成轉(zhuǎn)移前生態(tài)位。他們還發(fā)現(xiàn),在高肺轉(zhuǎn)移風(fēng)險(xiǎn)的異種移植小鼠中,其血漿細(xì)胞外囊泡中的整合素β1水平顯著增高,有成為預(yù)測(cè)早期SACC肺轉(zhuǎn)移的生物標(biāo)志物的潛能。Zhang等[41]發(fā)現(xiàn),胰腺癌來(lái)源的細(xì)胞外囊泡可將其所含蛋白Lin28b轉(zhuǎn)移至受體細(xì)胞并激活Lin28b/Let-7/高遷移率族蛋白A2/血小板衍生生長(zhǎng)因子-β信號(hào)通路,促進(jìn)胰腺癌細(xì)胞的胰腺星形細(xì)胞募集,使胰腺星形細(xì)胞向胰腺癌細(xì)胞趨化、遷徙,從而促進(jìn)胰腺癌的遠(yuǎn)處轉(zhuǎn)移。Sun等[42]發(fā)現(xiàn),結(jié)直腸癌來(lái)源的細(xì)胞外囊泡可通過(guò)干擾素調(diào)節(jié)因子-2促進(jìn)前哨淋巴結(jié)中淋巴管內(nèi)皮細(xì)胞的增殖和淋巴網(wǎng)絡(luò)的形成,誘導(dǎo)巨噬細(xì)胞分泌血管內(nèi)皮生長(zhǎng)因子C,從而促進(jìn)結(jié)直腸癌向前哨淋巴結(jié)的轉(zhuǎn)移。
目前,細(xì)胞外囊泡是細(xì)胞間通信的重要介質(zhì)這一結(jié)論已得到廣泛認(rèn)同。在腫瘤進(jìn)展過(guò)程中,腫瘤細(xì)胞分泌的細(xì)胞外囊泡可改變腫瘤及其微環(huán)境,且參與腫瘤復(fù)發(fā)和轉(zhuǎn)移的過(guò)程。對(duì)細(xì)胞外囊泡,至今的絕大多數(shù)研究都集中在其是如何產(chǎn)生各種作用的方面,而對(duì)細(xì)胞外囊泡來(lái)源的研究則甚少。另外,在介導(dǎo)腫瘤復(fù)發(fā)和轉(zhuǎn)移的過(guò)程中,細(xì)胞外囊泡會(huì)否協(xié)同循環(huán)腫瘤細(xì)胞來(lái)促進(jìn)腫瘤復(fù)發(fā)和轉(zhuǎn)移,以及不同生物學(xué)特征的細(xì)胞外囊泡在參與腫瘤復(fù)發(fā)和轉(zhuǎn)移過(guò)程中所起的作用是否不同等,這些問(wèn)題均值得進(jìn)一步研究。
在臨床上,細(xì)胞外囊泡可能是腫瘤進(jìn)展的生物標(biāo)志物和新型治療靶點(diǎn),特別是在預(yù)測(cè)和預(yù)防未來(lái)的腫瘤轉(zhuǎn)移方面有良好的應(yīng)用潛能[43]。此外,細(xì)胞外囊泡本身作為功能性miRNA和蛋白的天然載體,用于藥物遞送亦有極大的優(yōu)勢(shì),包括能透過(guò)生物屏障(如血腦屏障)、固有的靶向性和在全身循環(huán)中穩(wěn)定等[44]。雖然關(guān)于細(xì)胞外囊泡的提取、純化和貯存現(xiàn)還沒(méi)有標(biāo)準(zhǔn)化,但相信未來(lái)細(xì)胞外囊泡完全有可能作為液體活組織檢查樣本用于腫瘤診斷和監(jiān)測(cè),作為“無(wú)細(xì)胞療法(cell-free therapy)”輔助治療腫瘤。
參考文獻(xiàn)
[1] Chargaff E, West R. The biological significance of the thromboplastic protein of blood [J]. J Biol Chem, 1946, 166(1): 189-197.
[2] Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
[3] Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles [J]. J Exp Med, 1996, 183(3): 1161-1172.
[4] Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes [J]. Nat Med, 1998, 4(5): 594-600.
[5] Valadi H, Ekstr?m K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol, 2007, 9(6): 654-659.
[6] van Niel G, DAngelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles [J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[7] Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles [J]. Chem Rev, 2018, 118(4): 1917-1950.
[8] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
[9] Gurunathan S, Kang MH, Jeyaraj M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes [J]. Cells, 2019, 8(4): 307.
[10] Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis [J]. Nat Rev Mol Cell Biol, 2007, 8(8): 603-612.
[11] Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer—implications for future improvements in cancer care [J]. Nat Rev Clin Oncol, 2018, 15(10): 617-638.
[12] McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future [J]. Cell, 2017, 168(4): 613-628.
[13] Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy [J]. J Hematol Oncol, 2019, 12(1): 134.
[14] Zomer A, Maynard C, Verweij FJ, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior [J]. Cell, 2015, 161(5): 1046-1057.
[15] Godlewski J, Ferrer-Luna R, Rooj AK, et al. MicroRNA signatures and molecular subtypes of glioblastoma: the role of extracellular transfer [J]. Stem Cell Reports, 2017, 8(6): 1497-1505.
[16] Wu CH, Silvers CR, Messing EM, et al. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells [J]. J Biol Chem, 2019, 294(9): 3207-3218.
[17] Kim H, Lee S, Shin E, et al. The emerging roles of exosomes as EMT regulators in cancer [J]. Cells, 2020, 9(4): 861.
[18] Kletukhina S, Neustroeva O, James V, et al. Role of mesenchymal stem cell-derived extracellular vesicles in epithelial-mesenchymal transition [J]. Int J Mol Sci, 2019, 20(19): 4813.
[19] Zhou X, Li T, Chen Y, et al. Mesenchymal stem cell derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway [J]. Int J Oncol, 2019, 54(5): 1843-1852.
[20] Zhang H, Wang J, Ren T, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B [J]. Cancer Lett, 2020, 490: 54-65.
[21] Fiori ME, Di Franco S, Villanova L, et al. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance [J]. Mol Cancer, 2019, 18(1): 70.
[22] Wang H, Wei H, Wang J, et al. MicroRNA-181d-5pcontaining exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer [J]. Mol Ther Nucleic Acids, 2020, 19: 654-667.
[23] Li YY, Tao YW, Gao S, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p [J]. EBioMedicine, 2018, 36: 209-220.
[24] Li BL, Lu W, Qu JJ, et al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis [J]. J Cell Physiol, 2018, 234(3): 2943-2953.
[25] Takahashi K, Ota Y, Kogure T, et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer [J]. Cancer Sci, 2020, 111(1): 98-111.
[26] Eguchi T, Sogawa C, Ono K, et al. Cell stress induced stressome release including damaged membrane vesicles and extracellular HSP90 by prostate cancer cells [J]. Cells, 2020, 9(3): 755.
[27] Fujiwara T, Eguchi T, Sogawa C, et al. Carcinogenic epithelial-mesenchymal transition initiated by oral cancer exosomes is inhibited by anti-EGFR antibody cetuximab [J]. Oral Oncol, 2018, 86: 251-257.
[28] Kikuchi S, Yoshioka Y, Prieto-Vila M, et al. Involvement of extracellular vesicles in vascular-related functions in cancer progression and metastasis [J]. Int J Mol Sci, 2019, 20(10): 2584.
[29] Todorova D, Simoncini S, Lacroix R, et al. Extracellular vesicles in angiogenesis [J]. Circ Res, 2017, 120(10): 1658-1673.
[30] Feng Q, Zhang C, Lum D, et al. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis [J]. Nat Commun, 2017, 8: 14450.
[31] Yamada NO, Heishima K, Akao Y, et al. Extracellular vesicles containing microRNA-92a-3p facilitate partial endothelial- mesenchymal transition and angiogenesis in endothelial cells[J]. Int J Mol Sci, 2019, 20(18): 4406.
[32] Raimondo S, Pucci M, Alessandro R, et al. Extracellular vesicles and tumor-immune escape: biological functions and clinical perspectives [J]. Int J Mol Sci, 2020, 21(7): 2286.
[33] Miyazaki T, Ikeda K, Sato W, et al. Extracellular vesiclemediated EBAG9 transfer from cancer cells to tumor microenvironment promotes immune escape and tumor progression [J]. Oncogenesis, 2018, 7(1): 7.
[34] Hsu YL, Hung JY, Chang WA, et al. Hypoxic lung-cancerderived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN [J]. Mol Ther, 2018, 26(2): 568-581.
[35] Czystowska-Kuzmicz M, Sosnowska A, Nowis D, et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma[J]. Nat Commun, 2019, 10(1): 3000.
[36] Ricklefs FL, Alayo Q, Krenzlin H, et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles [J]. Sci Adv, 2018, 4(3): eaar2766.
[37] Zhao Y, Li J, Li D, et al. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers [J]. Semin Cancer Biol, 2020, 60: 334-343.
[38] Liu Y, Cao X. Characteristics and significance of the premetastatic niche [J]. Cancer Cell, 2016, 30(5): 668-681.
[39] Ji Q, Zhou L, Sui H, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation [J]. Nat Commun, 2020, 11(1): 1211.
[40] Kong J, Tian H, Zhang F, et al. Extracellular vesicles of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts [J]. Mol Cancer, 2019, 18(1): 175.
[41] Zhang YF, Zhou YZ, Zhang B, et al. Pancreatic cancerderived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer [J]. J Cancer, 2019, 10(18): 4397-4407.
[42] Sun B, Zhou Y, Fang Y, et al. Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes [J]. Int J Cancer, 2019, 145(6): 1648-1659.
[43] Becker A, Thakur BK, Weiss JM, et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis [J]. Cancer Cell, 2016, 30(6): 836-848.
[44] Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases [J]. Pharmacol Ther, 2017, 174: 63-78.