◎施永紅
(浙江省義烏市江東中學(xué),浙江 義烏 322000)
初中教學(xué)中學(xué)生形成的猜想探究是針對某個教學(xué)現(xiàn)象或者是教學(xué)事實進(jìn)行觀察與研究,并和自身擁有的數(shù)學(xué)經(jīng)驗以及掌握的數(shù)學(xué)知識結(jié)合在一起,通過運用推理論證、實驗等多種方式對猜想進(jìn)行證實.就猜想探究內(nèi)容來講,主要為發(fā)現(xiàn)問題、分析問題、假設(shè)、論證、結(jié)論幾個方面.在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生猜想探究能力,對于促進(jìn)教學(xué)改革實施有重要現(xiàn)實意義[1].
數(shù)學(xué)猜想主要為結(jié)合事實以及數(shù)學(xué)知識,針對未知量與其的關(guān)系進(jìn)行推斷,數(shù)學(xué)猜想屬于能夠體現(xiàn)出創(chuàng)造性思維的理念,需實現(xiàn)合情推理,在此過程中,主要是以多種邏輯方法作為基礎(chǔ),部分情況下與直覺比較類似,但是卻存在明顯區(qū)別,直覺為收斂性思維,而猜想為發(fā)散性思維.在進(jìn)行數(shù)學(xué)猜想過程中,整個猜想過程和生活中的猜想有所不同,生活中產(chǎn)生猜想往往是憑借直覺,并不具備充分理由,猜想結(jié)果是否正確也沒有進(jìn)行嚴(yán)格要求[2].數(shù)學(xué)猜想屬于數(shù)學(xué)思維的體現(xiàn),需要進(jìn)行觀察、類比、試驗以及總結(jié),并在此基礎(chǔ)上進(jìn)行估計與推測,需獲得邏輯推理方面的支持.因此數(shù)學(xué)猜想應(yīng)和邏輯推理之間相互適應(yīng),不能盲目猜想,數(shù)學(xué)猜想能夠?qū)W(xué)生綜合能力體現(xiàn)出來.
初中數(shù)學(xué)教學(xué)中,多數(shù)是運用滿堂灌方式,學(xué)生的整個學(xué)習(xí)過程比較被動,課堂學(xué)習(xí)氛圍相對枯燥,學(xué)生在學(xué)習(xí)時十分容易產(chǎn)生厭倦與乏味心理,思維能力也難以獲得較好發(fā)展[3].同時受中考影響,教師教學(xué)中往往會運用題海戰(zhàn)術(shù),借此提高學(xué)生成績.在此過程中,雖然學(xué)生學(xué)習(xí)成績會獲得一定程度提高,但是對于知識的靈活運用能力卻不強,同時學(xué)生想象力也難以得到充分發(fā)揮.在學(xué)習(xí)數(shù)學(xué)知識時,需引導(dǎo)學(xué)生形成較強探究意識,主動對問題進(jìn)行探究,實現(xiàn)對知識的靈活運用,而不是將學(xué)習(xí)內(nèi)容僅僅停留于書面上.多數(shù)學(xué)校雖然已經(jīng)開展了教學(xué)模式的改革,但是改革過程中往往會存在形式化問題,教師在教學(xué)內(nèi)容與教學(xué)目標(biāo)方面并沒有發(fā)生實質(zhì)性改變,進(jìn)而導(dǎo)致學(xué)生思維能力未能得到很好培養(yǎng).
基于新課程教學(xué)理念對初中學(xué)校教育提出的新要求,初中學(xué)校不僅要將關(guān)注點集中到知識的講授教育中,更要使學(xué)生在教師的幫助下,不斷形成獨立學(xué)習(xí)和自主學(xué)習(xí)的意識,讓學(xué)生能夠在脫離學(xué)校學(xué)習(xí)環(huán)境和教師監(jiān)督的情況下,仍然開展各項學(xué)習(xí)活動,這對于學(xué)生的長期發(fā)展具有積極意義.學(xué)生的自學(xué)能力包括了兩方面內(nèi)容,一是自主學(xué)習(xí)能力,即學(xué)生在課余時間能夠充分進(jìn)行預(yù)習(xí)、復(fù)習(xí)等學(xué)習(xí)活動.二是獨立學(xué)習(xí)能力,即學(xué)生可以通過自主探究,發(fā)現(xiàn)相關(guān)數(shù)學(xué)知識的內(nèi)涵,掌握解決數(shù)學(xué)問題的相關(guān)技巧.探究性學(xué)習(xí)活動中,教師要進(jìn)一步凸顯學(xué)生的主體作用,讓學(xué)生通過自己動腦思考,不斷提升個人學(xué)習(xí)能力,讓學(xué)生在已有學(xué)習(xí)水平的基礎(chǔ)上,不斷拓展在數(shù)學(xué)能力方面的學(xué)習(xí).針對個人學(xué)習(xí)過程中遇到的重點難點問題進(jìn)行自主的深入探究,使獨立學(xué)習(xí)成為學(xué)生主要的學(xué)習(xí)方式,學(xué)生針對教師提出的關(guān)鍵知識進(jìn)行分析,獨自尋找相關(guān)資料,并解決相關(guān)數(shù)學(xué)問題,并對個人探究的學(xué)習(xí)成果進(jìn)行有效總結(jié),這就是探究性學(xué)習(xí)的總體概括.要在初中數(shù)學(xué)教育過程中培養(yǎng)學(xué)生的探究性思維,教師應(yīng)當(dāng)充分認(rèn)識到培養(yǎng)學(xué)生自主學(xué)習(xí)能力的重要性,深刻分析班級內(nèi)每個學(xué)生的個人學(xué)習(xí)能力和知識基礎(chǔ),以此為安排教學(xué)任務(wù)的依據(jù),使學(xué)生都能夠在課后利用個人的學(xué)習(xí)能力和學(xué)習(xí)技巧開展各種自主學(xué)習(xí)活動.
基于傳統(tǒng)的學(xué)校教育的教學(xué)形式相對落后,導(dǎo)致學(xué)生在參與課堂教學(xué)過程中學(xué)習(xí)效率相對低下,尤其對于數(shù)學(xué)學(xué)科而言,往往具有一些內(nèi)容復(fù)雜、晦澀難懂的數(shù)學(xué)知識.在數(shù)學(xué)學(xué)科教學(xué)中,如果盲目地采取灌輸式教學(xué),學(xué)生通常不能較好接受相關(guān)知識的原理,在學(xué)習(xí)過程中往往會存在一些難點和疑點,學(xué)生學(xué)習(xí)數(shù)學(xué)知識的效率也相對低下.而在探究性學(xué)習(xí)教學(xué)策略指導(dǎo)下,教師要將培養(yǎng)學(xué)生高效學(xué)習(xí)方式作為一項重大的教學(xué)目標(biāo),以學(xué)生的學(xué)習(xí)興趣為指引,讓學(xué)生在興趣的驅(qū)使下自主開展數(shù)學(xué)問題探究,以此來深化學(xué)生對相關(guān)數(shù)學(xué)原理的理解,不斷提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識的效率.在探究式學(xué)習(xí)幫助下,學(xué)生學(xué)習(xí)數(shù)學(xué)知識的形式得到了充分轉(zhuǎn)變,將不再扮演被動的學(xué)習(xí)角色,而是在主動探索、積極思考的前提下吸收相關(guān)數(shù)學(xué)知識.這不僅符合探究式學(xué)習(xí)的基本要求,也與當(dāng)前教育改革的總體思路保持了高度統(tǒng)一,是促進(jìn)初中數(shù)學(xué)教學(xué)邁向更高層次的優(yōu)秀教學(xué)方式.因此,教師有必要設(shè)計課堂教學(xué)內(nèi)容,利用各種教學(xué)手段,使學(xué)生形成高效學(xué)習(xí)的意識,通過科學(xué)應(yīng)用正確學(xué)習(xí)方式,不斷形成高效率、高質(zhì)量的數(shù)學(xué)課堂教學(xué)現(xiàn)狀.
對于初中數(shù)學(xué)教學(xué)而言,培養(yǎng)學(xué)生的創(chuàng)新意識同樣是一項重大的教學(xué)目標(biāo),這將為學(xué)生的長期發(fā)展和健康成長作出積極貢獻(xiàn),在探究式學(xué)習(xí)過程中,學(xué)生將會擺脫常規(guī)學(xué)習(xí)方式的約束,這就使得學(xué)生的思維模式產(chǎn)生了重大轉(zhuǎn)變,如逆向思維、發(fā)散性思維等,都將成為學(xué)生能夠快速運用的思維能力.在探究性學(xué)習(xí)幫助下,學(xué)生的課堂地位將得到有效轉(zhuǎn)變,學(xué)生在課堂教學(xué)中不僅能夠接受數(shù)學(xué)知識相關(guān)教育,更能夠形成獨特的思維方式,學(xué)生的創(chuàng)新意識將在各種思維能力的幫助下不斷形成.而從宏觀層面來看,初中學(xué)生形成一定的創(chuàng)新意識,對于國家發(fā)展、民族進(jìn)步都具有特殊意義.基于這一原因,在初中數(shù)學(xué)教學(xué)中,教師應(yīng)當(dāng)不斷深化對學(xué)生創(chuàng)新意識的培養(yǎng),在具體教學(xué)過程中,教師要多設(shè)置一些能夠利用不同解題方法解決的數(shù)學(xué)問題,讓學(xué)生充分展開思考,從不同角度看待同樣的數(shù)學(xué)問題,以此來培養(yǎng)學(xué)生觀察能力和分析能力.教師要對學(xué)生創(chuàng)新式的解題方法予以鼓勵,讓學(xué)生有更大的興趣去尋找不同的解題方法,這對于學(xué)生創(chuàng)新意識的培養(yǎng)具有顯著作用.
在初中數(shù)學(xué)課堂中開展探究式教學(xué),教師應(yīng)當(dāng)著眼于學(xué)生探究能力的培養(yǎng),通常情況下,團(tuán)隊合作的形式更能夠激發(fā)學(xué)生的個人思維.因此在數(shù)學(xué)課堂中開展探究性教學(xué)時,教師可以充分利用小組合作的形式,將學(xué)生分為不同學(xué)習(xí)小組,讓學(xué)生在共同合作研究下,解決一些具有典型性和代表性的數(shù)學(xué)題目.教師應(yīng)當(dāng)積極探索,尋找小組合作學(xué)習(xí)方式與探究性學(xué)習(xí)方式的有機結(jié)合的方法,讓學(xué)生能夠在小組合作的形式下,不斷發(fā)展個人的合作能力.教師可以為每一個數(shù)學(xué)學(xué)習(xí)小組指派一名負(fù)責(zé)人,并對具體的學(xué)習(xí)任務(wù)進(jìn)行合理分配,讓學(xué)生能夠在通力配合,積極協(xié)作的前提下解答相關(guān)數(shù)學(xué)問題.而在合作完成之后,教師可以要求各組成員針對答案進(jìn)行反復(fù)檢查,在互相幫助、積極探討的情況下發(fā)現(xiàn)解題過程中存在的問題.在各小組討論完畢之后,教師可以邀請每組的代表成員上臺講解,通過不同組別之間解題思路的分享,學(xué)生的數(shù)學(xué)能力將得到充分拓展,這種教學(xué)形式同樣能達(dá)到舉一反三的學(xué)習(xí)目的.在合作式學(xué)習(xí)幫助下,學(xué)生將不斷進(jìn)行合作和交流活動,這對于學(xué)生的合作意識形成和友誼進(jìn)步具有積極意義,也是符合新課程改革之下的教育理念.
開展初中數(shù)學(xué)教學(xué)過程中,培養(yǎng)學(xué)生猜想探究能力時,需避免學(xué)習(xí)任務(wù)在設(shè)置時過于模式化,防止學(xué)生對猜想喪失興趣,避免學(xué)生在處于學(xué)習(xí)初級階段時便將自身猜想探究意識削弱,促進(jìn)學(xué)生在猜想探究能力方面的發(fā)展.對于數(shù)學(xué)知識來講,探究核心便是猜想,因此在實際教學(xué)中,教師應(yīng)對教學(xué)目標(biāo)、教學(xué)任務(wù)形成清晰、全面地認(rèn)識和了解,根據(jù)學(xué)生探究能力科學(xué)設(shè)定學(xué)習(xí)任務(wù),保證任務(wù)的趣味性、開放性、情境性,促進(jìn)學(xué)生認(rèn)知水平不斷提升.如在學(xué)習(xí)《全等三角形》這部分知識時,設(shè)計任務(wù)過程中,就應(yīng)與教學(xué)目標(biāo)結(jié)合在一起:首先,使學(xué)生了解全等三角形基本性質(zhì);其次,使學(xué)生了解全等三角形概念;最后,對學(xué)生探究能力進(jìn)行培養(yǎng),然后結(jié)合學(xué)生實際學(xué)習(xí)情況以及的具體探究水平展開提問.設(shè)計問題時,教師可以向?qū)W生提出,要想制作一個一模一樣的三角形,需滿足怎樣的條件?學(xué)生在探究和猜想過程中可能會試圖改變?nèi)切蔚倪呴L、面積、角度等等,在改變過程中,能夠?qū)θ热切沃R產(chǎn)生更為清晰全面地認(rèn)識.在設(shè)計任務(wù)時,應(yīng)保證難度適中,體現(xiàn)出知識面的廣泛性,并展示出知識的聯(lián)系性,積極為學(xué)生構(gòu)建良好學(xué)習(xí)環(huán)境,進(jìn)而增強學(xué)生學(xué)習(xí)興趣與熱情,提高學(xué)生在學(xué)習(xí)時的主動性與積極性,使猜想探究能力得到有效培養(yǎng),實現(xiàn)核心素養(yǎng)的不斷發(fā)展.
初中階段,學(xué)生的學(xué)習(xí)能力、思維能力方面都獲得了一定程度發(fā)展,體現(xiàn)了由低到高和由簡到繁的發(fā)展?fàn)顟B(tài),培養(yǎng)學(xué)生猜想探究能力時,為學(xué)生布置學(xué)習(xí)任務(wù)或者是提出探究問題時,需為學(xué)生留下足夠時間進(jìn)行探究,不能將答案直接給出,為了保證在猜想探究時的方向性,可以將關(guān)鍵詞給出,然后讓學(xué)生結(jié)合關(guān)鍵詞對思路進(jìn)行整理,合理展開猜想、分析與探究,并在探究過程中感受到樂趣.如在學(xué)習(xí)《勾股定理》這部分知識時,教師可以先向?qū)W生講授勾股定理定義,通過運用證明勾股定理的方式培養(yǎng)學(xué)生猜想探究能力.學(xué)生展開猜想探究時,可以運用多種渠道和多種方式查找和勾股定理相關(guān)的內(nèi)容,在對勾股定理相關(guān)知識形成全面了解之后,結(jié)合勾股定理具體性質(zhì)做出假設(shè),然后根據(jù)假設(shè)內(nèi)容進(jìn)行論證.學(xué)生在探究過程中,教師應(yīng)該對學(xué)生實際情況進(jìn)行觀察,在發(fā)現(xiàn)學(xué)生問題時,可以不立即指出,而是通過隱性形式對學(xué)生進(jìn)行引導(dǎo),使學(xué)生在探究時能夠自主發(fā)現(xiàn)問題,進(jìn)而在發(fā)現(xiàn)問題之后對自身學(xué)習(xí)手段和學(xué)習(xí)方法進(jìn)行調(diào)整,使學(xué)生能對問題展開合理猜想與科學(xué)探究.通過這種為學(xué)生留出足夠探究時間的方式,能夠使學(xué)生根據(jù)學(xué)習(xí)任務(wù),聯(lián)系學(xué)習(xí)過的知識,針對知識進(jìn)行有效論證與梳理,實現(xiàn)對重難點學(xué)習(xí)內(nèi)容的突破.同時在過程中,教師應(yīng)避免學(xué)生未能進(jìn)行自主探究便對其進(jìn)行提示的問題出現(xiàn).
學(xué)生在發(fā)展猜想探究能力過程中,不僅需進(jìn)行獨立思考,也應(yīng)在猜想探究時與其他學(xué)生之間進(jìn)行溝通與交流,并且實現(xiàn)自我反思.就猜想探究能力來講,需在批判、質(zhì)疑、思考、交流中進(jìn)行反思與調(diào)整,并在肯定與否定中獲得發(fā)展.初中數(shù)學(xué)教學(xué)中,培養(yǎng)學(xué)生猜想探究能力時,需鼓勵學(xué)生進(jìn)行獨立思考,并且與他人進(jìn)行交流合作,進(jìn)而結(jié)合思考以及交流結(jié)果實現(xiàn)自我反思.如進(jìn)行《平行線的性質(zhì)》教學(xué)過程中,教師需結(jié)合教學(xué)目標(biāo)設(shè)置學(xué)習(xí)任務(wù),在學(xué)習(xí)過程中學(xué)生可能會受到學(xué)習(xí)任務(wù)大以及基礎(chǔ)比較薄弱的影響,進(jìn)而在獨立思考時出現(xiàn)困難.因此教師可以讓學(xué)生進(jìn)行一段時間獨立思考之后,根據(jù)的學(xué)生學(xué)習(xí)能力以及學(xué)習(xí)意愿將他們劃分為小組形式,積極開展小組探究.學(xué)生開展小組討論探究之后,教師應(yīng)關(guān)注學(xué)生學(xué)習(xí)質(zhì)量以及學(xué)習(xí)進(jìn)度,同時給予相應(yīng)指導(dǎo),進(jìn)而使小組中的每個學(xué)生都能將自身想法與觀點表達(dá)出來,并且避免學(xué)生在探究時出現(xiàn)與主題偏離的問題.開展小組交流與討論過程中,學(xué)生之間會展開反思、質(zhì)疑、批判以及調(diào)整,最后將平行線的性質(zhì)得出.除此之外,猜疑探究過程中學(xué)習(xí)能力較強的學(xué)生可能在分析平行線性的同時得出平行線定理.通過這種鼓勵學(xué)生進(jìn)行思考,啟發(fā)學(xué)生進(jìn)行合作交流的方式,能夠使學(xué)生在學(xué)習(xí)中結(jié)合已有知識對他人觀點與猜想并展開批判和質(zhì)疑,實現(xiàn)思維的發(fā)散,不斷對自身思路進(jìn)行調(diào)整,進(jìn)而形成良好猜想探究能力,實現(xiàn)課堂學(xué)習(xí)氛圍的有效構(gòu)建.
學(xué)生屬于學(xué)習(xí)活動中的主體,在進(jìn)行數(shù)學(xué)學(xué)習(xí)過程中,有意義學(xué)習(xí)需建立在原有認(rèn)知結(jié)構(gòu)基礎(chǔ)上,在形成良好認(rèn)知結(jié)構(gòu)基礎(chǔ)后,才能實現(xiàn)知識的有效積累與遷移.同時良好認(rèn)知能力也是學(xué)生展開合理猜想和科學(xué)探究的依據(jù).因此教師在開展教學(xué)活動過程中,應(yīng)幫助學(xué)生構(gòu)建知識網(wǎng)絡(luò),使學(xué)生建立知識與知識之間的聯(lián)系,在此情況下,不僅能夠加深學(xué)生對知識的認(rèn)識與理解,也能促進(jìn)學(xué)生認(rèn)知結(jié)構(gòu)上的優(yōu)化,實現(xiàn)對聯(lián)想經(jīng)驗的積累.在開展數(shù)學(xué)教學(xué)活動時,聯(lián)系知識常見方式為樹狀圖、圖解法、思維導(dǎo)圖等,使知識之間的關(guān)系清晰、全面地展示出來.在進(jìn)行數(shù)學(xué)猜想探究過程中,教師可以運用思維導(dǎo)圖引導(dǎo)學(xué)生展開合理聯(lián)想與想象,針對已經(jīng)學(xué)習(xí)過的知識進(jìn)行拓展.例如在學(xué)習(xí)《直棱柱》過程中,教師可以引導(dǎo)學(xué)生對這部分知識進(jìn)行拓展,除了學(xué)習(xí)教材中已有的知識之外,還可以對直棱柱其他計算方法進(jìn)行探究,并且對計算方法展開合理猜想與論證.通過這種能促進(jìn)學(xué)生認(rèn)識結(jié)構(gòu)發(fā)展的方式,使學(xué)生在學(xué)習(xí)過程中聯(lián)系已有認(rèn)知并形成全新認(rèn)知,進(jìn)而實現(xiàn)猜想探究能力的不斷發(fā)展.
就初中數(shù)學(xué)知識來講,知識點比較多,同時也比較復(fù)雜,學(xué)生學(xué)習(xí)時可能會接觸到較多新知識.學(xué)生在學(xué)習(xí)新知識過程中,將要學(xué)習(xí)的知識會處于未知狀態(tài),在實際教學(xué)中教師可以充分運用這一點,對學(xué)生進(jìn)行引導(dǎo),使學(xué)生進(jìn)行猜想與探究.如學(xué)習(xí)《等腰三角形》知識時,教師可以先將等腰三角形畫出,然后讓學(xué)生針對等腰三角形特點進(jìn)行觀察,使學(xué)生了解等腰三角形角和角之間的聯(lián)系.學(xué)生在思考時,會結(jié)合已經(jīng)學(xué)習(xí)過的知識,然后結(jié)合圖形,對等腰三角形具體定義展開探究,然后在定義基礎(chǔ)上將提出關(guān)于內(nèi)角猜想.并且在此過程中,教師對學(xué)生進(jìn)行引導(dǎo),為學(xué)生理解和學(xué)習(xí)知識提供便利,更好掌握知識重點,促進(jìn)學(xué)生良好習(xí)慣形成,促進(jìn)其思維能力的不斷發(fā)展.除此之外,教師可以將猜想與習(xí)題聯(lián)系在一起.例如在學(xué)習(xí)方程問題時,學(xué)生難以一時間獲得思路與答案,因此可以展開合理猜想與探究,以A、B兩個車站相距240千米,一公共汽車從A站開出,每小時行駛48千米,一小轎車從B站開出,每小時行駛72千米.小轎車從B站開出1小時后,客車從A站開出,兩車相向而行,幾小時后兩車相遇為例,解決這一問題,學(xué)生猜想過程中需運用抽象思維,探究時可以運用圖例方式,進(jìn)而保證猜想合理性,并對其進(jìn)行科學(xué)探究,實現(xiàn)猜想探究能力的不斷提升.
總之,進(jìn)行初中數(shù)學(xué)教學(xué)過程中,學(xué)生要想實現(xiàn)猜想能力與探究能力發(fā)展,就需保證教師進(jìn)行教學(xué)設(shè)計時的科學(xué)性與合理性,恰當(dāng)布置學(xué)習(xí)任務(wù),給予學(xué)生足夠猜想探究的時間與空間,并引導(dǎo)學(xué)生進(jìn)行積極思考.踐行新課程標(biāo)準(zhǔn)中的教學(xué)要求,促進(jìn)學(xué)生探究能力的不斷發(fā)展.具體實施時,教師應(yīng)充分了解學(xué)生實際情況,發(fā)現(xiàn)教學(xué)中存在的問題,根據(jù)問題提出對應(yīng)解決措施,優(yōu)化數(shù)學(xué)教學(xué)整體效果,使學(xué)生獲得更全面的發(fā)展.