滕舒慧 周夢婕 于冰清 楊文婷
中圖分類號 R944;R285 文獻(xiàn)標(biāo)志碼 A 文章編號 1001-0408(2021)23-2934-07
DOI 10.6039/j.issn.1001-0408.2021.23.21
摘 要 目的:總結(jié)中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型的研究進(jìn)展,以期為抗腦膠質(zhì)瘤的新劑型開發(fā)提供參考。方法:以 “腦膠質(zhì)瘤”“機(jī)制”“中藥活性成分”“劑型”“glioma”“mechanism”“active components of traditional Chinese medicine”? “dosage form”等為關(guān)鍵詞在中國知網(wǎng)、維普網(wǎng)、萬方數(shù)據(jù)庫、Web of Science中組合檢索2010年1月-2021年4月發(fā)表的相關(guān)文獻(xiàn),對中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型進(jìn)行歸納總結(jié)。結(jié)果與結(jié)論:中藥活性成分(如木犀草素、沒食子酸、黃芩苷元、槲皮素、山柰素等)可通過誘導(dǎo)自噬、調(diào)控細(xì)胞周期、抑制腫瘤相關(guān)細(xì)胞因子活性等作用機(jī)制,發(fā)揮抗腦膠質(zhì)瘤的作用。目前中藥活性成分已被設(shè)計成多種靶向制劑,如基于生物特異性的靶向制劑(包括納米粒靶向制劑、微乳制劑、水凝膠制劑、以內(nèi)源性細(xì)胞為載體的靶向制劑等)、基于腫瘤微環(huán)境的靶向制劑(包括靶向腫瘤細(xì)胞內(nèi)活性氧升高效應(yīng)的制劑、靶向腫瘤內(nèi)環(huán)境谷胱甘肽過表達(dá)的制劑、靶向腫瘤弱酸性環(huán)境的制劑等)等,提高了藥物的滯留時間以及生物利用度,增強(qiáng)了藥物的靶向性,延遲了藥物的多藥耐藥,進(jìn)而提高了藥物療效。目前中藥活性成分抗腦膠質(zhì)瘤的劑型研究多是基于紫杉醇、山柰素等常規(guī)藥物成分,較為單一,后續(xù)應(yīng)開發(fā)更多中藥活性成分抗腦膠質(zhì)瘤的新劑型。
關(guān)鍵詞 中藥活性成分;劑型;腦膠質(zhì)瘤;靶向遞藥
腦膠質(zhì)瘤是原發(fā)性腦腫瘤中發(fā)病率最高且預(yù)后最差的腫瘤,手術(shù)難以完全切除,且患者復(fù)發(fā)率高、生存期短[1]?,F(xiàn)階段,臨床上治療腦膠質(zhì)瘤以手術(shù)切除為主,并結(jié)合化學(xué)療法、靶向治療及免疫治療等措施延長患者的生存時間,但由于術(shù)后復(fù)發(fā)率、致殘率和病死率高,以及化療藥物靶向性不明顯或難以透過血腦屏障或生物有效利用度較低,難以在病灶部位形成有效的藥物濃度,且長期用藥易產(chǎn)生多藥耐藥等問題,從而使腦膠質(zhì)瘤的治療難以取得理想效果[2-3]。
近年來,中藥活性成分在抗腦膠質(zhì)瘤方向取得了較大的突破,其可通過調(diào)整多種生物機(jī)制來抑制腦膠質(zhì)瘤的發(fā)生[4]。盡管中藥活性成分對腦膠質(zhì)瘤的治療作用良好,但是仍存在生物利用度低、副作用大等現(xiàn)狀[5]。因此,為了起到有效的治療作用,研究人員結(jié)合腦膠質(zhì)瘤的機(jī)制以及中藥活性成分的特點,設(shè)計了多種劑型藥物進(jìn)行靶向遞藥,以針對腦膠質(zhì)瘤發(fā)病部位進(jìn)行治療。
基于此,筆者以 “腦膠質(zhì)瘤”“機(jī)制”“中藥活性成分”“劑型”“glioma” “mechanism”“active components of traditional Chinese medicine” “dosage form”等為關(guān)鍵詞在中國知網(wǎng)、維普網(wǎng)、萬方數(shù)據(jù)庫、Web of Science中組合檢索2010年1月-2021年4月發(fā)表的相關(guān)文獻(xiàn),對中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制及相應(yīng)新劑型進(jìn)行歸納總結(jié),以期為抗腦膠質(zhì)瘤的新劑型開發(fā)提供參考。
1 中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制
中藥中存在多種抗腦膠質(zhì)瘤的活性成分,大多為黃酮類、醌類、三萜類、甾體類、生物堿類,少數(shù)為苯丙素類、多糖類,主要可通過誘導(dǎo)自噬、調(diào)控細(xì)胞周期、抑制腫瘤相關(guān)細(xì)胞因子活性等發(fā)揮作用?;诖?,筆者對不同中藥活性成分抗腦膠質(zhì)瘤的作用機(jī)制進(jìn)行詳細(xì)介紹。
1.1 誘導(dǎo)自噬
自噬是一種普遍存在于各種細(xì)胞的生理活動,可將損傷的蛋白質(zhì)以及細(xì)胞器包入細(xì)胞產(chǎn)生囊泡,然后與溶酶體結(jié)合并將包入的物質(zhì)降解,是一種細(xì)胞的自我保護(hù)機(jī)制[6]。研究發(fā)現(xiàn),木犀草素、丹參酮ⅡA、姜黃素、異甘草素以及雷公藤甲素可以通過作用于凋亡信號通路,調(diào)控蛋白激酶B(Akt)、LC3-Ⅰ/LC3-Ⅱ等相關(guān)信號通路以增強(qiáng)膠質(zhì)瘤細(xì)胞的自噬活動,從而抑制膠質(zhì)瘤細(xì)胞的生長與增殖[7-11]。木犀草素和黃芩苷元還可通過磷酸化腺苷一磷酸活化蛋白激酶(AMPK)來誘導(dǎo)自噬,從而抑制細(xì)胞的增殖,促進(jìn)細(xì)胞的凋亡,進(jìn)而發(fā)揮抗腦膠質(zhì)瘤的作用[7,12]。
1.2 調(diào)控細(xì)胞周期
細(xì)胞有絲分裂是細(xì)胞不斷更新的過程,包含分裂間期以及分裂期兩個階段;分裂間期又分為DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2)[13]。研究發(fā)現(xiàn),楊梅素可通過升高活性氧水平使線粒體發(fā)生損傷,導(dǎo)致細(xì)胞復(fù)制停滯于G2/M期,從而影響細(xì)胞的周期性復(fù)制[14]。沒食子酸、蛇床子素、芹菜素、蘆丁、紫杉醇、白藜蘆醇、柴胡皂苷D、番木鱉堿、粉防己堿、槐定堿、青藤堿、甘草查爾酮A、苦參堿、喜樹堿和烏索酸等可通過下調(diào)細(xì)胞周期蛋白、細(xì)胞周期蛋白依賴激酶(CDKs)、胱天蛋白酶(caspases)以及腫瘤抑制基因(p53)等的表達(dá),使多數(shù)細(xì)胞停滯于G2期,從而抑制細(xì)胞的增殖與遷移,進(jìn)而發(fā)揮抗腦膠質(zhì)瘤的作用[15-29]。
1.3 抑制腫瘤相關(guān)細(xì)胞因子活性
細(xì)胞因子是由一些免疫細(xì)胞和某些非免疫細(xì)胞被刺激后所產(chǎn)生的一類具備生物活性的小分子蛋白質(zhì),常見的有白細(xì)胞介素(ILs)、缺氧誘導(dǎo)因子1(HIF-1)、腫瘤壞死因子(TNF)、趨化因子(CXCR4)以及生長因子[如表皮生長因子(EGF)、轉(zhuǎn)化生長因子β(TGF-β)、血管內(nèi)皮生長因子(VEGF)]等[13]。研究發(fā)現(xiàn),黃芩苷元、人參皂苷Rg3、蟾毒靈、槐定堿、雷公藤甲素、淫羊藿苷可通過下調(diào)TNF、核因子κB(NF-κB)表達(dá),抑制腦膠質(zhì)瘤的生長[30-34]。
生長因子受體是腫瘤生長時過表達(dá)的一種受體,其在受到生長因子的刺激時會促進(jìn)腫瘤相關(guān)新血管的生成以及腫瘤的生長。研究發(fā)現(xiàn),黃芩苷元、長春新堿、和厚樸酚、大黃素、當(dāng)歸多糖、雷公藤紅素可通過阻斷生長因子與其相關(guān)受體的結(jié)合,抑制腫瘤相關(guān)新血管的生成,從而發(fā)揮抑制腦膠質(zhì)瘤生長的作用[35-40]。
腫瘤生長過程中常伴隨炎癥因子過表達(dá)的現(xiàn)象,這也為腫瘤的生長與轉(zhuǎn)移提供了內(nèi)環(huán)境[41]。和厚樸酚可通過抑制ILs類炎癥因子,發(fā)揮抗腦膠質(zhì)瘤的作用[42]。橙皮素可通過抑制HIF-α,發(fā)揮抗腦膠質(zhì)瘤的作用[43]。
腫瘤的轉(zhuǎn)移是惡性腫瘤的一個標(biāo)志性演變,趨化因子的大量表達(dá)與腫瘤的轉(zhuǎn)移息息相關(guān),而其中CXCR4、CXCL12是目前最常見的趨化因子[44-45]。研究發(fā)現(xiàn),川芎嗪可以通過抑制CXCR4,進(jìn)而抑制腦膠質(zhì)瘤的生長與轉(zhuǎn)移[46]。
1.4 其他
腫瘤的發(fā)生、轉(zhuǎn)移與一氧化氮(NO)、活性氧、谷胱甘肽(GSH)以及基質(zhì)金屬蛋白酶(MMPs)、環(huán)氧合酶2(COX-2)、雌激素受體β(ESRβ)、CD44抗原(CD44)等的表達(dá)密切相關(guān)[47-48]。研究發(fā)現(xiàn),葛根素、柚皮苷可通過抑制腫瘤細(xì)胞MMPs的過表達(dá)來抑制腦膠質(zhì)瘤細(xì)胞的轉(zhuǎn)移和侵襲[49-50]。小檗堿、山柰素、槲皮素可通過抑制活性氧的產(chǎn)生[51-53],異甘草素和番木鱉堿可通過抑制COX-2的表達(dá)[22,54],甘草素可通過抑制ESRβ的過表達(dá)[55],從而發(fā)揮抑制腦膠質(zhì)瘤細(xì)胞增殖的作用。銀杏內(nèi)酯A可通過促進(jìn)NO的產(chǎn)生,發(fā)揮抑制腦膠質(zhì)瘤細(xì)胞增殖的作用[56]。透明質(zhì)酸可通過靶向作用于CD44,減少內(nèi)源性透明質(zhì)酸與CD44的結(jié)合,從而減弱腦膠質(zhì)瘤細(xì)胞間的信號傳遞,進(jìn)而抑制腦膠質(zhì)瘤的發(fā)展[57]。
腫瘤細(xì)胞間信號傳遞強(qiáng)烈且迅速,通常以第二信使為紐帶,因此阻斷細(xì)胞間的信號傳遞對抗腦膠質(zhì)瘤具有一定作用。Yulyana等[58]研究發(fā)現(xiàn),甘草次酸可通過抑制細(xì)胞間縫隙連接,阻斷細(xì)胞間信號的傳遞,從而抑制腦膠質(zhì)瘤細(xì)胞的增殖。
2 中藥活性成分抗腦膠質(zhì)瘤的新劑型
2.1 基于生物特異性的靶向制劑
腫瘤的發(fā)生、生長、轉(zhuǎn)移伴隨著一定的形態(tài)改變以及一些特定蛋白的差異性表達(dá),如P-糖蛋白(P-gp)、CD44、5-脂氧合酶(ALOX5)、MMP2、骨橋蛋白(SPP1)、透明質(zhì)酸酶(HYAL2)、含鐵硫結(jié)構(gòu)域蛋白(CISD1)等的過表達(dá)[59-60],而這些特定蛋白以及其獨特的生理特性是抗腫瘤靶向劑型研究的關(guān)鍵。針對以上生物特異性,研究人員設(shè)計了多種靶向納米制劑(圖1)。筆者從常見的納米粒、微乳、水凝膠、細(xì)胞制劑等4個方面進(jìn)行分類闡述。
2.1.1 納米粒靶向制劑 Hu等[61]研究并制備了一種抗腦膠質(zhì)瘤的新型低水溶性靶向聚合物脂質(zhì)體。細(xì)胞實驗顯示,此聚合物脂質(zhì)體可將槲皮素和替莫唑胺遞送至人神經(jīng)膠質(zhì)瘤U87細(xì)胞內(nèi);進(jìn)一步的大鼠實驗顯示,槲皮素和替莫唑胺可在大鼠腦內(nèi)顯著積累,從而使藥物在血漿中的濃度升高。Zhang等[36]設(shè)計了可被轉(zhuǎn)鐵蛋白受體(TF-R)識別的七肽配體(T7)脂質(zhì)體、可被VEGF受體2(VEGFR2)識別的(D)A7R脂質(zhì)體,以及T7與(D)A7R雙肽修飾的脂質(zhì)體,并以這3種脂質(zhì)體分別負(fù)載阿霉素和長春新堿,然后遞送至小鼠體內(nèi)。結(jié)果顯示,雙肽修飾后的脂質(zhì)體比單配體修飾的脂質(zhì)體或者游離藥物具有更好的腦膠質(zhì)瘤靶向性。Hayward等[62]研究發(fā)現(xiàn),透明質(zhì)酸能較好地靶向至在腦膠質(zhì)瘤細(xì)胞中過表達(dá)的蛋白CD44上;基于此,該研究者設(shè)計并合成了表面修飾有透明質(zhì)酸并負(fù)載阿霉素的脂質(zhì)體,結(jié)果發(fā)現(xiàn)該脂質(zhì)體可通過作用于CD44受體在腦膠質(zhì)瘤細(xì)胞中的介導(dǎo)位點進(jìn)行藥物傳遞。相關(guān)研究還發(fā)現(xiàn),通過抑制P-gp的表達(dá)可抑制腫瘤的生長,并延緩患者出現(xiàn)多藥耐藥性[63-64]。Priya等[65]以聚乙烯亞胺、巰基琥珀酸為偶聯(lián)劑,合成了具備良好緩沖能力和氧化還原敏感性的普魯蘭多糖納米粒,可靶向遞送阿霉素至大鼠腦膠質(zhì)瘤C6細(xì)胞;動物實驗結(jié)果顯示,該制劑可靶向抑制P-gp的過表達(dá),從而抑制大鼠腦膠質(zhì)瘤細(xì)胞的增殖。
一些具備揮發(fā)特性的芳香類中藥小分子物質(zhì)(如麝香酮、冰片),雖自身抗腦膠質(zhì)瘤效果不明顯,但因其具備芳香透皮特性而對血腦屏障具有較強(qiáng)的穿透性,因此在藥物劑型研究中常用其作為“引導(dǎo)”,將其修飾到載體上或者同時與藥物負(fù)載于新劑型上,使得載體能夠更大程度地透過血腦屏障,達(dá)到病灶部位[66]。Kang等[67]將麝香酮與小鼠單克隆抗體RI7217共同修飾于脂質(zhì)體表面,同時負(fù)載紫杉醇,制成新型紫杉醇脂質(zhì)體,進(jìn)行抗腦膠質(zhì)瘤劑型的研究。結(jié)果發(fā)現(xiàn),經(jīng)過修飾的新型紫杉醇脂質(zhì)體穿透細(xì)胞和血腦屏障的能力更強(qiáng),延長了藥物滯留時間,且靶向性更強(qiáng),延長了腦膠質(zhì)瘤模型小鼠的存活時間。Lv等[68]利用膠質(zhì)瘤細(xì)胞上硫酸肝素過表達(dá)的特點,將冰片與硫酸肝素配體CGKRK肽修飾于DSPE- PEG2000表面而制成新型納米粒,并負(fù)載紫杉醇前體藥物進(jìn)行小鼠體內(nèi)給藥。結(jié)果發(fā)現(xiàn),該納米粒相較于游離藥物在小鼠腦部的積累量更高,且可延長小鼠的中位生存時間至39 d,表明基于冰片特性設(shè)計的新型納米??筛玫匾种颇X膠質(zhì)瘤生長。
Jing等[15]將沒食子酸負(fù)載至經(jīng)檸檬酸鈉還原的納米金顆粒上,結(jié)果該制劑可顯著抑制腦膠質(zhì)瘤細(xì)胞的生長。Mohanty等[69]基于白藜蘆醇的抗氧化性能,將其修飾至納米金上并負(fù)載阿霉素,結(jié)果發(fā)現(xiàn)該制劑可抑制腦膠質(zhì)瘤細(xì)胞的增殖。
2.1.2 微乳制劑 微乳是指粒徑為0.01~0.1 μm的乳劑,常采用W/O或者O/W的方式在不同的分散相中形成微乳顆粒[70]。Colombo等[52]采用高壓均質(zhì)法制備了山柰素微乳,并經(jīng)大鼠鼻腔給藥后發(fā)現(xiàn),該微乳進(jìn)入大鼠腦組織內(nèi)的藥物量比游離藥物高出5倍;此外,與游離山柰素相比,山柰素微乳能更好地誘導(dǎo)大鼠腦膠質(zhì)瘤C6細(xì)胞死亡。Kumar等[71]制備了姜黃素微乳,其對人U87MG膠質(zhì)瘤細(xì)胞株的半數(shù)抑制濃度(IC50)為16.41? ? μmol/L,遠(yuǎn)低于單獨使用姜黃素的IC50(24.23 μmol/L)。
2.1.3 水凝膠載體制劑 水凝膠具有極為親水的三維結(jié)構(gòu),可在水中迅速溶脹并在溶脹狀態(tài)下保持大量體積的水而不溶解[72]。水凝膠材料多為親水高分子物質(zhì),如多糖(纖維素、透明質(zhì)酸、海藻酸等)、多肽(膠原、聚L-賴氨酸等),因而具備極高的生物相容性[73]。其中,水凝膠材料應(yīng)用最廣泛的是透明質(zhì)酸,其可靶向至在腦膠質(zhì)瘤細(xì)胞中過表達(dá)的蛋白CD44上,從而將所載藥物靶向腦膠質(zhì)瘤,進(jìn)而抑制其生長與轉(zhuǎn)移[57]。Zhang等[74]將經(jīng)修飾的乳鐵蛋白和透明質(zhì)酸以二硫鍵交聯(lián)劑交聯(lián),形成納米水凝膠并負(fù)載阿霉素,進(jìn)行抗腦膠質(zhì)瘤藥物遞送研究。結(jié)果發(fā)現(xiàn),該納米水凝膠遞送的阿霉素在大鼠腦部的蓄積量是單用阿霉素的12.37倍,由此推測其抗腦膠質(zhì)瘤的效果更好。
Schiapparelli等[28]基于多肽C16-Gly-Val-Val-Gln- Gln-His-Lys-OH(C16-HK)的結(jié)構(gòu),在C末端修飾2個羧基,使其在磷酸鹽緩沖鹽液(pH 7.0)中形成自支撐水凝膠,再與被二硫鍵修飾的喜樹堿結(jié)合。結(jié)果發(fā)現(xiàn),該水凝膠可在腦膠質(zhì)瘤模型小鼠的患病部位穩(wěn)定長效地釋放喜樹堿,從而延長小鼠的生存期。Babaei等[75]將聚(ε-己內(nèi)酯-丙交酯)-b-聚(乙二醇)-b-聚(ε-己內(nèi)酯-丙交酯)(PCLA-PEG-PCLA)加入載姜黃素的聚乙二醇-b-聚丙交酯(mPEG-PLA)中形成一種可降解的水凝膠,結(jié)果發(fā)現(xiàn)該水凝膠可增強(qiáng)姜黃素對腦膠質(zhì)瘤的抑制作用。
2.1.4 以內(nèi)源性細(xì)胞為載體的靶向制劑 細(xì)胞介導(dǎo)的藥物遞送以生物內(nèi)源性細(xì)胞為載體,借助其較好的生物相容性來達(dá)到藥物遞送的目的,該類細(xì)胞制劑常常以免疫細(xì)胞、單核吞噬細(xì)胞(包括單核細(xì)胞、巨噬細(xì)胞、樹突細(xì)胞等)、淋巴細(xì)胞、中性粒細(xì)胞和干細(xì)胞等為藥物載體[76]。
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的常駐巨噬細(xì)胞,可以被腦膠質(zhì)瘤吸收。Du等[77]利用薄膜水化法制備了紫杉醇脂質(zhì)體(PTX-LP),再與小膠質(zhì)細(xì)胞(BV2)共培養(yǎng),得到富含紫杉醇脂質(zhì)體的小膠質(zhì)細(xì)胞(PTX-LP/BV2);進(jìn)一步在小鼠體內(nèi)的研究發(fā)現(xiàn),與單純地注射PTX-LP相比,PTX-LP/BV2在小鼠腦內(nèi)可更多地累積,且能更好地抑制腦膠質(zhì)瘤的生長。
外泌體是指包含了復(fù)雜RNA和蛋白質(zhì)的小膜泡,廣泛存在于體液中,因其具有低毒性、低免疫原性和生物相容性而受到廣泛關(guān)注[78]?;诖耍琂ia等[79]利用電穿孔法將超順磁氧化鐵納米粒與姜黃素導(dǎo)入外泌體膜中,形成負(fù)載納米粒和姜黃素的外泌體制劑,并研究其對腦膠質(zhì)瘤模型小鼠的作用。結(jié)果發(fā)現(xiàn),該外泌體制劑可顯著延長腦膠質(zhì)瘤模型小鼠的生存期。
Xue等[80]制備了以中性粒細(xì)胞為載體的紫杉醇陽離子脂質(zhì)體(PTX-LP/NEs),并將其注射在小鼠體內(nèi)。結(jié)果顯示,該脂質(zhì)體可以有效抑制小鼠惡性腦膠質(zhì)瘤的復(fù)發(fā)性生長,且顯著提高了小鼠的生存率。
2.2 基于腫瘤微環(huán)境的靶向制劑
腫瘤在發(fā)生、生長和轉(zhuǎn)移過程中始終與內(nèi)環(huán)境保持一定的穩(wěn)態(tài),這種穩(wěn)態(tài)為腫瘤的生長提供了最佳的生長環(huán)境,例如腫瘤周邊表現(xiàn)出活性氧升高、GSH表達(dá)量升高、環(huán)境pH呈弱酸性等微環(huán)境的改變[47]。這也為腫瘤靶向制劑的研發(fā)提供了一定的啟示?;诖?,下文對根據(jù)腫瘤微環(huán)境的相關(guān)特征所設(shè)計的靶向劑型進(jìn)行概述。
2.2.1 靶向腫瘤細(xì)胞內(nèi)活性氧升高效應(yīng)的制劑 Dong等[81]以硼酯為紐帶,兩端分別外接聚乙二醇、紫杉醇形成具備兩親性的長鏈物質(zhì),進(jìn)而自組裝形成膠束。進(jìn)一步的體外研究結(jié)果顯示,該膠束在人膠質(zhì)瘤細(xì)胞內(nèi)活性氧水平較高時可快速分解,進(jìn)而釋放出紫杉醇,從而抑制該細(xì)胞的增殖。Wu等[82]設(shè)計了一種可響應(yīng)活性氧升高的紫杉醇納米粒,其可借助超聲準(zhǔn)確釋放出紫杉醇,從而使藥物在小鼠腦膠質(zhì)瘤的病灶區(qū)有效蓄積,達(dá)到了更好的治療效果。
2.2.2 靶向腫瘤內(nèi)環(huán)境GSH過表達(dá)的制劑 Xiang等[83]制備了負(fù)載姜黃素的GSH響應(yīng)型膠束,結(jié)果發(fā)現(xiàn)該膠束可靶向治療腦膠質(zhì)瘤,且比單獨使用姜黃素的效果更好。Tian等[84]設(shè)計了低分子量(50 kDa)、中分子量(200~500 kDa)以及高分子量(1 000~2 000 kDa)的透明質(zhì)酸膠束,并分別負(fù)載姜黃素,然后將載藥透明質(zhì)酸膠束作用于小鼠神經(jīng)膠質(zhì)瘤G422細(xì)胞。結(jié)果發(fā)現(xiàn),低、中分子量的載藥透明質(zhì)酸膠束具備更好的GSH響應(yīng)效果。
2.2.3 靶向腫瘤弱酸性環(huán)境的制劑 翟美芳[85]采用酸堿度梯度法制備了硫酸長春新堿鐵蛋白納米粒,進(jìn)一步經(jīng)體外藥物釋放研究發(fā)現(xiàn),該納米粒在pH7.4環(huán)境中的釋放速度顯著低于在pH5.0環(huán)境中;且在釋放36 h時,該納米粒在pH5.0環(huán)境中的累積釋放量約為在pH7.4環(huán)境中的5倍,表明該納米??墒顾幬镌谀[瘤部位釋放,且能夠顯著提高藥物的滯留濃度,從而發(fā)揮更好的抗腦膠質(zhì)瘤作用。
3 結(jié)語
中藥活性成分在抗腦膠質(zhì)瘤治療方面具有重要作用,可通過誘導(dǎo)自噬、調(diào)控細(xì)胞周期、抑制腫瘤相關(guān)細(xì)胞因子活性等作用機(jī)制,發(fā)揮抗腦膠質(zhì)瘤的作用。為了達(dá)到更好的治療效果,研究人員基于腫瘤發(fā)生、發(fā)展的特點,設(shè)計了多種靶向制劑,如基于生物特異性的靶向制劑(包括納米粒靶向制劑、微乳制劑、水凝膠制劑、以內(nèi)源性細(xì)胞為載體的靶向制劑等)、基于腫瘤微環(huán)境的靶向制劑(包括靶向腫瘤細(xì)胞內(nèi)活性氧升高效應(yīng)的制劑、靶向腫瘤內(nèi)環(huán)境GSH過表達(dá)的制劑、靶向腫瘤弱酸性環(huán)境的制劑等),從而提高了藥物的滯留時間以及生物利用度,增強(qiáng)了藥物的靶向性,延遲了藥物的多藥耐藥,進(jìn)而提高了藥物療效。但是,目前中藥活性成分抗腦膠質(zhì)瘤的劑型研究,多是基于紫杉醇、山柰素等常規(guī)藥物成分,較為單一,因此后續(xù)應(yīng)開發(fā)更多中藥活性成分抗腦膠質(zhì)瘤的新劑型。
經(jīng)筆者歸納后發(fā)現(xiàn),當(dāng)前中藥活性成分抗腦膠質(zhì)瘤劑型的研究熱點是納米制劑。該制劑可改善藥物半衰期短、穩(wěn)定性差等實際臨床應(yīng)用中的問題,且可在不破壞血腦屏障的情況下,穿透血腦屏障使藥物進(jìn)入病灶發(fā)揮治療作用,從而提高中藥活性成分的生物利用度[86]。因此,中藥活性成分靶向制劑尤其是納米制劑的開發(fā),是治療腦膠質(zhì)瘤的有效途徑之一。
參考文獻(xiàn)
[ 1 ] 劉福生,金貴善.腦膠質(zhì)瘤基礎(chǔ)與臨床研究[M].北京:人民衛(wèi)生出版社,2016:43.
[ 2 ] FURNARI F B,F(xiàn)ENTON T,BACHOO R M,et al. Malignant astrocyticglioma:genetics,biology,and paths to treatment[J]. Genes Dev,2007,21(21):2683-2710.
[ 3 ] WEN P Y,KESARI S. Malignant gliomas in adults[J]. NEJM,2008,359(5):492-507.
[ 4 ] 白若冰,荔志云,任海軍.中醫(yī)中藥在腦膠質(zhì)瘤治療中的作用研究[J].西部中醫(yī)藥,2018,31(1):134-137.
[ 5 ] LUIZ M T,DELELLO DI FILIPPO L,TOFANI L B,et al. Highlights in targeted nanoparticles as a delivery strategy for gliomatreatment[J]. Int J Pharm,2021,604:120758.
[ 6 ] 宋強(qiáng),王志宏.醫(yī)學(xué)生物學(xué)[M]. 4版.上海:上海科學(xué)技術(shù)出版社,2019:25-30.
[ 7 ] YOU Y,WANG R,SHAO N,et al. Luteolin suppresses tumor proliferation through inducing apoptosis and autophagy via MAPK activation in glioma[J]. Onco Targets Ther,2019,12:2383-2395.
[ 8 ] DING L,WANG S,WANG W,et al. Tanshinone ⅡA affects autophagy and apoptosis of glioma cells by inhibi- ting phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway[J]. Pharmacology,2017,99(3/4):188-195.
[ 9 ] SHINOJIMA N,YOKOYAMA T,KONDO Y,et al. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy[J]. Autophagy,2007,3(6):635-637.
[10] WU C,CHEN H,WANG C,et al. Isoliquiritigenin indu- ces apoptosis and autophagy and inhibits endometrial cancer growth in mice[J]. Oncotarget,2016,7(45):73432- 73447.
[11] LIU X,ZHAO P,WANG X,et al. Triptolide induces glioma cell autophagy and apoptosis via upregulating the ROS/JNK and downregulating the Akt/mTOR signaling pathways[J]. Front Oncol,2019,9:387.
[12] LIU B,DING L,ZHANG L,et al. Baicalein induces autophagy and apoptosis through AMPK pathway in human glioma cells[J]. Am J Chin Med,2019,47(6):1405-1418.
[13] 崔行,朱懷榮,侯建軍,等.醫(yī)用分子細(xì)胞生物學(xué)[M].北京:人民衛(wèi)生出版社,2000:40-45.
[14] LI H G,CHEN J X,XIONG J H,et al. Myricetin exhibits anti-glioma potential by inducing mitochondrial-mediated apoptosis,cell cycle arrest,inhibition of cell migration and ROS generation[J].? J BUON,2016,21(1):182-190.
[15] JING Z,LI M H,WANG H Y,et al. Gallic acid-gold nanoparticles enhance radiation-induced cell death of human glioma U251 cells[J]. IUBMB Life,2021,73(2):398-407.
[16] ZHU X,SONG X,XIE K,et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma[J]. Int J Mol Med,2017,40(4):1143-1151.
[17] WANG D,WANG Z,DAI X,et al. Apigenin and temozolomide synergistically inhibit glioma growth through the PI3K/Akt pathway[J/OL]. Cancer Biother Radio Pharm,2021[2021-08-12]. https://pubmed.ncbi.nlm.nih.gov/ 33471569/.DOI:10.1089/cbr.2020.4283.
[18] SANTOS B L,SILVA A R,PITANGA B P S,et al. Anti- proliferative,proapoptotic and morphogenic effects of the flavonoid rutin on human glioblastoma cells[J]. Food Chem,2011,127(2):404-411.
[19] 史記,張燁,孫佩欣,等.紫杉醇聯(lián)合紫草素對U87腦膠質(zhì)瘤細(xì)胞的作用及機(jī)制初探[J].現(xiàn)代腫瘤醫(yī)學(xué),2020,28(5):691-698.
[20] CLARK P A,BHATTACHARYA S,ELMAYAN A,et al. Resveratrol targeting of Akt and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration[J]. J Neurosurg,2017,126(5):1448-1460.
[21] LI Y,CAI T,ZHANG W,et al. Effects of saikosaponin D on apoptosis in human U87 glioblastoma cells[J]. Mol Med Rep,2017,16(2):1459-1464.
[22] WANG R,MENG W,WANG Y,et al. Inhibition of glioblastoma cell growth in vitro and in vivo by brucine,a component of Chinese medicine[J]. Oncol Res,2015,22(5/6):275-281.
[23] CHEN J,HWANG J,CHIU W,et al. Tetrandrine and caffeine modulated cell cycle and increased glioma cell death via caspase-dependent and caspase-independent apoptosis pathways[J]. Nutr Cancer,2014,66(4):700-706.
[24] WANG W,SUN Z,CHEN H,et al. Role and mechanism of sophoridine on proliferation inhibition in human glioma U87MG cell line[J]. Int J Clin Exp Med,2015,8(1):464-471.
[25] HE X,MAIRNAITI M,JIAO Y,et al. Sinomenine indu- ces G1-phase cell cycle arrest and apoptosis in malignant glioma cells via downregulation of sirtuin 1 and induction of p53 acetylation[J]. Technol Cancer Res Treat,2018,17:1533034618770305.
[26] LU W J,WU G J,CHEN R J,et al. Licochalcone A attenuates glioma cell growth in vitro and in vivo through cell cycle arrest[J]. Food Funct,2018,9(8):4500-4507.
[27] HAN S,GONG H,WANG Y,et al. The preparation of matrine liposome and its antiglioma activity study[J]. J Chem,2014,1:1-5.
[28] SCHIAPPARELLI P,ZHANG P,LARA-VELAZQUEZ M,et al. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model[J]. J Control Release,2020,319:311-321.
[29] BERGAMIN L S,F(xiàn)IGUEIRO F,DIETRICH F,et al. Interference of ursolic acid treatment with glioma growth:an in vitro and in vivo study[J]. Eur J Pharmacol,2017,811:268-275.
[30] JIANG G,ZHANG L,WANG J,et al. Baicalein induces the apoptosis of U251 glioblastoma cell lines via the NF-? κB-p65-mediated mechanism[J]. Anim Cells Syst,2016,20(5):296-302.
[31] ZHU Y,LIANG J,GAO C,et al. Multifunctional ginseno- side Rg3-based liposomes for glioma targeting therapy[J]. J Control Release,2021,330:641-657.
[32] LINGHU H R,LUO H,GANG L. Bufalin induces glioma cell death by apoptosis or necroptosis[J]. Onco Targets Ther,2020,13:4767-4778.
[33] 蔡風(fēng)景,徐朝陽,陳峻嚴(yán),等.雷公藤甲素對C6膠質(zhì)瘤細(xì)胞凋亡及TNF-α、NF-κB和caspase-3表達(dá)的影響[J].中藥藥理與臨床,2013,29(6):14-17.
[34] YANG L,WANG Y,GUO H,et al. Synergistic anti-cancer effects of icariin and temozolomide in glioblastoma[J]. Cell Biochem Biophys,2015,71(3):1379-1385.
[35] 岳霖霖.黃芩素通過EGFR-Akt信號通路抑制由hEGF誘導(dǎo)的神經(jīng)膠質(zhì)瘤細(xì)胞的增殖和遷移[D].青島:青島大學(xué),2017.
[36] ZHANG Y,ZHAI M,CHEN Z,et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma[J]. Drug? ? ?Deliv,2017,24(1):1045-1055.
[37] FAN Y,XUE W,SCHACHNER M,et al. Honokiol eliminates glioma/glioblastoma stem cell-like cells via JAK- STAT3 signaling and inhibits tumor progression by targe- ting epidermal growth factor receptor[J]. Cancers (Basel),2019,11(1):22.
[38] KIM J,LEE J,JUNG J,et al. Emodin suppresses maintenance of stemness by augmenting proteosomal degradation of epidermal growth factor receptor/epidermal growth factor receptor variant Ⅲ in gliomastem cells[J].? Stem Cells Dev,2015,24(3):284-295.
[39] ZHANG W F,YAN Y,XIN L,et al. Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo[J]. Phytomedicine,2017,33:21-27.
[40] ZHU Y,LIU X,ZHAO P,et al. Celastrol suppresses gliomavasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J]. Front Pharmacol,2020,11:25.
[41] HUAKAN Z,WU L,YAN G,et al. Inflammation and tumor progression:signaling pathways and targeted intervention[J]. Signal Transduct Target Ther,2021,6(1):263.
[42] CRANE C,PANNER A,PIEPER R O,et al. Honokiol-mediated inhibition of PI3K/mTOR pathway a potential stra- tegy to overcome immunoresistance in glioma,breast,and prostate carcinoma without impacting T cell function[J]. J Immunother,2009,32(6):585-592.
[43] ZHANG X,ZHANG N,MENG X,et al. Hesperetin inhi- bits the proliferation of cerebrally implanted C6 glioma and involves suppression of HIF-1 alpha/VEGF pathway in rats[J]. Bio Res,2017,28(3):1205-1211.
[44] MOUSESSIAN A S,SILVA C,OBA-SHINJO S M,et al. CXCR7,CXCR4 and their ligands expression profile in traumatic brain injury[J]. World Neurosurg,2020,147:e16-e24.
[45] SHI Y,RIESE D J,SHEN J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer[J]. Front Pharmacol,2020,11:574667.
[46] CHEN Z,PAN X,GEORGAKILAS A G,et al. Tetrame- thylpyrazine (TMP) protects cerebral neurocytes and? ? ?inhibits glioma by down regulating chemokine receptor? ? ?CXCR4 expression[J]. Cancer Lett,2013,336(2):281- 289.
[47] 呂程亮,張帆,魏煒,等.基于腫瘤微環(huán)境構(gòu)建納米藥物的研究進(jìn)展[J].生物加工過程,2020,18(6):799-805.
[48] WARD J A,HUANG L,GUO H M,et al. Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells[J]. Am J Pathol,2003,162(5):1403-1409.
[49] 岳雙柱,袁國艷,金保哲,等.葛根素對膠質(zhì)瘤細(xì)胞遷移侵襲能力影響研究[J].中國免疫學(xué)雜志,2013,29(3):309-311.
[50] AROUI S,AOUEY B,CHTOUROU Y,et al. Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-p38-JNK signaling pathway in human glioblastoma[J]. Chem Biol Interact,2016,244:195-203.
[51] PALMA T V,LENZ L S,BOTTARI N B,et al. Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity
[J]. Mol Biol Rep,2020,47(6):4393-4400.
[52] COLOMBO M,F(xiàn)IGUEIRó F,AMANDA D F D,et al. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro[J]. Int J Pharm,2018,543(1/2):214-223.
[53] CHEN T,JENG J,LIN C,et al. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells[J]. Toxicology,2006,223(1/2):113-126.
[54] WANG C,CHEN Y,WANG Y,et al. Inhibition of COX- 2,mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1[J]. J Exp Clin Cancer Res,2019,38(1):371.
[55] LIU X,WANG L,CHEN J,et al. Estrogen receptor beta agonist enhances temozolomide sensitivity of glioma cells by inhibiting PI3K/AKT/mTOR pathway[J]. Mol Med Rep,2015,11(2):1516-1522.
[56] ZHAO H W,LI X Y. Ginkgolide A,B,and huperzine A inhibit nitric oxide production from rat C6 and human BT325 glioma cells[J]. Zhongguo Yao Li Xue Bao,1999,20(10):941-943.
[57] LESLEY J,ENGLISH N,CHARLES C,et al. The role of the CD44 cytoplasmic and transmembrane domains in constitutive and inducible hyaluronan binding[J]. Eur J Immunol,2015,30(1):245-253.
[58] YULYANA Y,ENDAYA B B,NG W H,et al. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma[J].Stem Cells Dev,2013,22(13):1870-1882.
[59] LIU Y,XU Z,JIN T,et al. Ferroptosis in low-grade glioma:a new marker for diagnosis and prognosis[J]. Med Sci Monit,2020,26:e921947.
[60] XIAO Y,CUI G,REN X,et al. A novel four-gene signature associated with immune checkpoint for predicting prognosis in lower-grade glioma[J]. Front Oncol,2020,10:605737.
[61] HU J,WANG J,WANG G,et al. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide:analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells[J]. Int J Mol Med,2016,37(3):690-702.
[62] HAYWARD S L,WILSON C L,KIDAMBI S. Hyaluro- nic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells[J]. Oncotarget,2016,7(23):34158-34171.
[63] FALLACARA A L,ZAMPERINI C,PODOLSKI-RENI A,et al. A new strategy for glioblastoma treatment:in vitro and in vivo preclinical characterization of Si306,a pyrazolo
[3,4-d]pyrimidine dual Src/P-glycoprotein inhibitor[J].
Cancers,2019,11(6):848.
[64] WU Y H,YAO Y,YUN Y L,et al. MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression[J]. Biosci Rep,2019,39(9):BSR20190421.
[65] PRIYA S S,REKHA M R. Redox sensitive cationic pullulan for efficient gene transfection and drug retention in C6 glioma cells[J]. Int J Pharm,2017,530(1/2):401-414.
[66] 王南卜,張芹欣,寧百樂,等. 4種開竅藥促進(jìn)替莫唑胺進(jìn)入U251細(xì)胞及減低耐藥性的對比研究[J].中華中醫(yī)藥雜志,2017,32(5):2206-2209.
[67] KANG S,DUAN W,ZHANG S,et al. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma[J]. Theranostics,2020,10(10):4308-4322.
[68] LV L,LI X,QIAN W,et al. Enhanced anti-glioma efficacy by borneol combined with CGKRK-modified paclitaxel self-assembled redox-sensitive nanoparticles[J]. Front Pharmacol,2020,11:558.
[69] MOHANTY R K,THENNARASU S,MANDAL A B. Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity[J]. Colloids Surf B Biointerfaces,2013,114:138-143.
[70] 趙振國.膠束催化與微乳催化[M].北京:化學(xué)工業(yè)出版社,2006:86-90.
[71] KUMAR A,AHUJA A,ALI J,et al. Curcumin-loaded li- pid nanocarrier for improving bioavailability,stability and cytotoxicity against malignant glioma cells[J]. Drug Deli- very,2014,23(1):214-229.
[72] 梁飛.新型水凝膠的結(jié)構(gòu)和性能研究[M].長春:吉林科學(xué)技術(shù)出版社,2020:45-47.
[73] 李子怡,顧麗莉,佟振浩,等.水凝膠功能改性研究與應(yīng)用進(jìn)展[J].高分子通報,2019,8:7-13.
[74] ZHANG M,ASGHAR S,TIAN C,et al. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for targeting glioma
[J]. Carbohydr Polym,2021,253(4):117194.
[75] BABAEI M,DAVOUDI J,DEHGHAN R,et al. Thermosensitive composite hydrogel incorporated with curcumin- loaded nanopolymersomes for prolonged and localized treatment of glioma[J]. J Drug Deliv Sci Tec,2020,59:6.
[76] BATRAKOVA E V,KABANOV A V. Cell-mediated drug delivery to the brain[J]. J Drug Deliv Sci Tec,2013,23(5):419-433.
[77] DU Y,YANG Z,SUN Q,et al. Engineered microglia potentiate the action of drugs against glioma through extracellular vesicles and tunneling nanotubes[J]. Adv Healthc Mater,2021,10(9):e2002200.
[78] 談胤求,陳謙學(xué).外泌體在腦膠質(zhì)瘤中的研究進(jìn)展[J].疑難病雜志,2021,20(7):731-735.
[79] JIA G,HAN Y,AN Y,et al. NRP-1 targeted and cargo- loaded exosomes facilitate simultaneous imaging and? therapy of glioma in vitro and in vivo[J]. Biomaterials,2018,178:302-316.
[80] XUE J,ZHAO Z,ZHANG L,et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol,2017,12(7):692-700.
[81] DONG C,ZHOU Q,XIANG J,et al. Self-assembly of oxidation-responsive polyethylene glycol-paclitaxel prodrug for cancer chemotherapy[J]. J Control Release,2020,321:529-539.
[82] WU P Y,DONG W,GUO X Y,et al. ROS-responsive blended nanoparticles:cascade-amplifying synergistic effects of sonochemotherapy with on-demand boosted drug release during SDT process[J]. Adv Healthc Mater,2019,8(18):e1900720.
[83] XIANG Y,DUAN X,F(xiàn)ENG L,et al. tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas[J].Chem Eng J,2019,374:392-404.
[84] TIAN C,ASGHAR S,XU Y,et al. The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid-curcumin conjugates and in vitro evaluation in glioma cells[J]. Colloids Surf B Biointerfaces,2018,165:45-55.
[85] 翟美芳.硫酸長春新堿鐵蛋白納米粒的制備及治療腦膠質(zhì)瘤研究[D].佳木斯:佳木斯大學(xué),2018.
[86] 高彩芳,夏加璇,朱穎,等.納米技術(shù)在改善中藥有效成分成藥性中的應(yīng)用[J].中草藥,2018,49(12):2754-2762.
(收稿日期:2021-05-19 修回日期:2021-10-13)
(編輯:唐曉蓮)