• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      礦物浮選動力學(xué)模型及影響因素研究進(jìn)展

      2021-12-18 09:10:52強(qiáng)
      金屬礦山 2021年11期
      關(guān)鍵詞:結(jié)果表明常數(shù)氣泡

      馬 強(qiáng) 李 育 彪 李 萬 青 向 焱 李 詩 浩

      (武漢理工大學(xué)資源與環(huán)境工程學(xué)院,湖北 武漢 430070)

      泡沫浮選是一種以目的礦物附著于氣泡為基礎(chǔ)的物理化學(xué)分離過程[1]。由于目的組分礦物的累計(jì)回收率隨浮選時間的增加而增加,本質(zhì)上可將浮選過程看作一個時間-回收率過程[2-5]。浮選動力學(xué)可用來描述回收率隨時間變化的過程,并通過分析礦物浮選速率的變化規(guī)律來研究各因素對浮選過程的影響。

      眾多學(xué)者對浮選動力學(xué)模型及其改良開展了相關(guān)研究工作,使其更加適用于浮選體系。如確定浮選動力學(xué)反應(yīng)級數(shù)n;通過劃分浮選組分強(qiáng)化動力學(xué)模型的適應(yīng)性;探究引入?yún)?shù)對浮選速率常數(shù)k的影響規(guī)律;賦予不同k值來劃分浮選組分等。以上研究推動了浮選動力學(xué)模型的快速發(fā)展,但學(xué)者們更多地研究浮選過程中各因素對浮選動力學(xué)的影響,即通過浮選動力學(xué)來量化各因素對浮選的影響,從而對現(xiàn)有工藝進(jìn)行優(yōu)化[2-8]。

      為了總結(jié)浮選動力學(xué)的研究進(jìn)展,本文概述了浮選動力學(xué)基本模型、發(fā)展歷程及研究現(xiàn)狀,并著重對其影響因素開展了討論。

      1 浮選動力學(xué)基本模型及發(fā)展歷程

      1.1 浮選動力學(xué)基本模型

      浮選數(shù)學(xué)模型的構(gòu)建往往決定于模型的用途,一般可分為經(jīng)驗(yàn)?zāi)P?、概率模型及動力學(xué)模型[2-3,9-10],其中,經(jīng)驗(yàn)?zāi)P偷慕ο鄳?yīng)條件要求過于具體,一般通過嘗試及錯誤反饋進(jìn)行優(yōu)化;概率模型在某些條件約束下可簡化為動力學(xué)模型[3];而動力學(xué)模型主要來源于浮選動力學(xué)理論。20世紀(jì)30年代,ZUNIGA等[11]最先提出浮選動力學(xué)模型,把浮選過程近似看作一個速率過程,認(rèn)為氣泡與礦物顆粒的碰撞、吸附和化學(xué)反應(yīng)中基本物質(zhì)單元(分子、原子及離子)的作用方式一致,浮選過程中槽內(nèi)目的礦物與浮選時間呈指數(shù)關(guān)系。因此,可將一級化學(xué)反應(yīng)動力學(xué)模型作為浮選動力學(xué)模型。一級化學(xué)反應(yīng)動力學(xué)模型為

      式中:c0代表目的組分初始濃度,mg/L;c代表t時刻的目的組分濃度,mg/L;k代表反應(yīng)速率常數(shù)。

      進(jìn)一步推導(dǎo)可得經(jīng)典一級浮選動力學(xué)模型

      式中:ε∞代表最大回收率,%;ε代表t時刻可浮礦物回收率,%;k代表浮選速率常數(shù)。

      1.2 浮選動力學(xué)模型發(fā)展歷程

      經(jīng)典一級動力學(xué)模型的建立極大地促進(jìn)了浮選動力學(xué)的發(fā)展,但實(shí)際應(yīng)用中,有學(xué)者把所得結(jié)果按lg(1/(1-R))-t畫圖,發(fā)現(xiàn)某些試驗(yàn)點(diǎn)明顯呈非線性分布,與一級動力學(xué)模型不符[12]。于是,人們試圖將一級動力學(xué)模型擴(kuò)展為n級動力學(xué)模型來解釋這種非線性浮選過程。1950 年,ARBITER[13]首次提出浮選速率正比于目的礦物濃度的2次方。由此,浮選動力學(xué)研究傾向于級數(shù)n的確定。后來,在二級浮選動力學(xué)模型基礎(chǔ)上,PLAKSIN和KRASIN提出了更符合實(shí)際的n級浮選動力學(xué)模型,即

      式(3)中,n為反應(yīng)級數(shù)(0

      在實(shí)際應(yīng)用中,礦漿各組分并不是一個整體,礦漿中存在體積不均勻性。1962年,ARBITER及HARRIS[14]最先提出浮選過程中的兩相模型。之后,很多研究對浮選的不均一性進(jìn)行了深入研究,在兩相基礎(chǔ)上提出了三相、四相模型[12]。盡管多相浮選動力學(xué)模型對所浮礦物的不均一性進(jìn)行了較好描述,但浮選回收率與時間并非線性相關(guān),即k值不恒定。1963年,今泉常正[15]最先提出同種礦物具有不同k值分布,首次對ε-t呈非線性關(guān)系進(jìn)行了解釋。隨后,人們的研究側(cè)重于浮選速率常數(shù)k值的確定。1965年,WOODBURN[16]提出浮選速率常數(shù)k值服從Γ函數(shù)分布

      包括均勻分布、快慢浮兩點(diǎn)分布、多項(xiàng)式分布,即F(k)=a+bk+ck2+dk3均屬于k值分布;后來有學(xué)者提出k值服從β函數(shù)分布

      這可歸類于k值隨時間變化。

      在此研究基礎(chǔ)上,許多學(xué)者根據(jù)浮選流程、礦石性質(zhì)推導(dǎo)出了不同的浮選動力學(xué)模型,包括經(jīng)典一級動力學(xué)[11]、一級矩形分布[17]、二級動力學(xué)[13]、二級矩形分布[18]、陳子鳴[19]、劉逸超[20]、許長連[21]、哥利科夫[19]及吳亦瑞三重逼近[22]等模型。

      2 浮選動力學(xué)模型研究現(xiàn)狀

      2.1 n=1的浮選動力學(xué)模型

      浮選動力學(xué)模型中,以經(jīng)典一級動力學(xué)模型n應(yīng)用最為廣泛。為使其更加適用于實(shí)際浮選,眾多學(xué)者開展了k值分布密度函數(shù)、k值的組成及變化規(guī)律等方面的研究工作,進(jìn)一步提高了擬合精度。如于洋等[23]對黑鎢礦、白鎢礦及螢石的浮選分離過程進(jìn)行了浮選動力學(xué)研究,發(fā)現(xiàn)浮選速率常數(shù)k值持續(xù)變化,檸檬酸為抑制劑能顯著擴(kuò)大三者的浮選速率差異,在經(jīng)典一級動力學(xué)模型基礎(chǔ)上得到優(yōu)化后的分速模型

      式中,f和s分別代表快浮和慢?。沪拧薮碜罡呋厥章?,%;ε代表累計(jì)回收率,%。修正后的模型精度得到了顯著提高。AI等[24]為了研究細(xì)粒黑鎢礦的浮選特性及其浮選動力學(xué),在經(jīng)典一級模型基礎(chǔ)上提出了新模型,即

      式中:ε1∞及k1分別為易浮黑鎢礦的最大回收率及浮選速率常數(shù),ε2∞和k2分別為難浮黑鎢礦的最大回收率及浮選速率常數(shù)。通過與經(jīng)典一級模型、修正一級模型、矩形分布一級模型及二級模型對比,可知新模型對細(xì)粒黑鎢礦具有最好的擬合效果。

      在實(shí)際礦物浮選過程中,一方面可通過浮選動力學(xué)模型從微觀層面闡述目的礦物浮選特性,另一方面又可以根據(jù)浮選動力學(xué)結(jié)果評價浮選藥劑作用效果。金會心等[25]在研究富稀土磷礦的浮選動力學(xué)變化規(guī)律時引入了時間滯后因子θ,對經(jīng)典一級動力學(xué)模型進(jìn)行修正,從而推導(dǎo)出富稀土磷礦反浮選動力學(xué)速率模型,即

      對該模型結(jié)果進(jìn)行方差分析,可知捕收劑WF-01用量對修正速率常數(shù)kmod影響最大,抑制劑H3PO4用量對選擇性指數(shù)SI影響最大。

      為了更直觀對比并優(yōu)化不同模型,CHEN等[26]對長焰煤氣泡浮選與油泡浮選動力學(xué)進(jìn)行了研究,并對6種動力學(xué)模型同時進(jìn)行了優(yōu)化。結(jié)果表明:采用油泡浮選相較氣泡浮選更容易在前中期提高精煤產(chǎn)率,相比于其他模型,經(jīng)典一級動力學(xué)模型能較好地描述氣泡浮選,但6種模型對油泡浮選結(jié)果擬合偏差都較大。為了更好地描述油泡浮選,在浮選動力學(xué)模型中減去時間常數(shù)t,即可平衡油氣泡浮選延遲,提升了擬合精度。6種改進(jìn)的模型中,經(jīng)典一級模型最適合描述油泡浮選過程。

      為了擴(kuò)展經(jīng)典一級動力學(xué)模型的通用性及可行性,使之能在廣泛條件下描述浮選過程,KLIM?PELR[17]提出了一級矩形分布浮選動力學(xué)模型。BAYAT等[27]在研究粒度分布對土耳其閃鋅礦浮選行為的影響時,發(fā)現(xiàn)d80=0.125 mm進(jìn)料粒度下的浮選行為與一級矩形分布模型相吻合,適應(yīng)性最好。

      目前,一級浮選動力學(xué)模型的研究主要集中在提高模型的適用性及擬合精度,通過劃分不同浮選組分、引入不同參數(shù)等手段不斷對模型進(jìn)行優(yōu)化,使其更符合實(shí)際浮選規(guī)律,擴(kuò)大模型適應(yīng)面。盡管針對一級動力學(xué)模型的優(yōu)化已經(jīng)開展了不少研究工作,但模型所適應(yīng)的礦石類別仍具有一定局限性,相關(guān)系統(tǒng)性研究工作還有待加強(qiáng)。

      2.2 n>1的浮選動力學(xué)模型

      當(dāng)浮選動力學(xué)模型中的級數(shù)n取2或3時,可分別得到二、三級浮選動力學(xué)模型。相較于一級浮選動力學(xué)模型,多級浮選動力學(xué)模型考慮到礦物類型、礦漿密度、礦漿pH、藥劑添加量及充氣量等的影響,能夠更好地描述浮選過程。LIAO等[28]以低階煤為目的礦物,采用氣泡浮選和油泡浮選對其浮選特性及浮選動力學(xué)進(jìn)行了研究,擬合結(jié)果表明低階煤在2種浮選法中均可用二級浮選動力學(xué)模型描述。為了更廣泛地表示浮選速率常數(shù)k的分布,KLIMPEL[18]提出了二級矩形分布浮選動力學(xué)模型,SALEHA[29]的研究結(jié)果表明二級矩形分布浮選動力學(xué)模型能較好地描述鐵礦石浮選結(jié)果。

      為使所得浮選數(shù)據(jù)按lg(1/(1-R))-t作圖呈線性分布,VOLKOYAZ[30]提出了三級浮選動力學(xué)模型。在實(shí)際應(yīng)用中,針對礦物顆粒被捕獲時上升速度不同,采用三級浮選動力學(xué)模型可對慢浮礦物浮選特性進(jìn)行描述。羅成等[31]以窄粒級煤泥為浮選對象,進(jìn)行了反應(yīng)級數(shù)n的研究。結(jié)果表明:浮選初期,當(dāng)n分別取1、2、3時,浮選動力學(xué)模型均與實(shí)際浮選數(shù)據(jù)吻合。浮選后期,只有一級動力學(xué)模型與實(shí)際吻合,二、三級浮選動力學(xué)模型擬合值均偏小。這歸因于一級浮選動力學(xué)收斂速度更快,隨著反應(yīng)級數(shù)n取值增大,模型收斂速度越慢,而煤泥上浮速度較快,使二、三級浮選動力學(xué)不能很好描述煤泥浮選過程。因此,二、三級浮選動力學(xué)模型更適用于慢浮礦物。

      為增強(qiáng)浮選動力學(xué)模型對實(shí)際浮選過程的適應(yīng)性,BROZEK[32]提出了非整數(shù)級浮選動力學(xué)模型,即

      BU等[33]對某煤泥特定粒級(-188μm和-100μm)進(jìn)行了擬合,發(fā)現(xiàn)非整數(shù)級浮選動力學(xué)模型能更好地描述浮選過程。

      針對浮選動力學(xué)模型的研究表明,現(xiàn)階段浮選動力學(xué)模型的發(fā)展建立在經(jīng)典一級浮選動力學(xué)模型基礎(chǔ)上,大致分為兩個方向:①針對實(shí)際礦石性質(zhì)引入不同參數(shù),或?qū)Ω∵x組分進(jìn)行細(xì)分,得到不同組分的浮選速率常數(shù);②通過試驗(yàn)驗(yàn)證以確定模型反應(yīng)級數(shù)n,得到與之對應(yīng)的最佳取值,提高模型擬合精度。

      3 浮選動力學(xué)模型的影響因素

      浮選動力學(xué)模型在經(jīng)典一級動力學(xué)模型的基礎(chǔ)上得到了較大發(fā)展,增強(qiáng)了浮選動力學(xué)模型對復(fù)雜礦物的適應(yīng)性。但是浮選過程復(fù)雜,包括礦粒和氣泡的相互接觸、疏水礦粒在氣泡上粘附形成礦化氣泡、礦化氣泡進(jìn)入泡沫層及精礦泡沫層的排出[34]。在這些浮選過程中,礦物顆粒自身性質(zhì)(如礦物晶體結(jié)構(gòu)、顆粒大小及形狀)、浮選工藝參數(shù)(如浮選藥劑種類及用量)及浮選機(jī)結(jié)構(gòu)參數(shù)等均可對其產(chǎn)生影響[2,4,6,9,35-36],總結(jié)各個因素對浮選動力學(xué)模型的影響對優(yōu)化模型的適應(yīng)性具有重要意義。

      3.1 礦物顆粒自身性質(zhì)的影響

      礦物晶體結(jié)構(gòu)對浮選特性有很大影響,如晶胞原子缺失、晶型轉(zhuǎn)變及晶格膨脹均會影響礦物的晶體結(jié)構(gòu),從而導(dǎo)致晶胞周期性勢場、電子分布以及能帶結(jié)構(gòu)的改變[37],并最終影響礦物浮游性能[38-39]。SALMANI等[40]研究了晶體溶解對浮選動力學(xué)的影響,結(jié)果表明,溶解會導(dǎo)致脈石礦物表面晶格定位離子減少,伴生脈石礦物浮選速率常數(shù)顯著減小。

      同樣,礦物粒度對浮選動力學(xué)各參數(shù)影響顯著,ABKHOSHK[41]在間歇浮選槽中運(yùn)用非線性方程對浮選速率常數(shù)與煤粒度的關(guān)系進(jìn)行了量化,方差分析結(jié)果表明,相比最大理論回收率,粒度對浮選速率常數(shù)影響更大;模糊模型計(jì)算結(jié)果顯示,粒度大小、浮選時間及累計(jì)回收率的3D模型可對不同粒度煤的累計(jì)回收率進(jìn)行預(yù)測。ZHANG等[2]研究了粒度對褐煤反浮選動力學(xué)的影響,運(yùn)用1stOpt軟件對試驗(yàn)結(jié)果進(jìn)行6種模型擬合并預(yù)測浮選速率常數(shù)、最大灰分回收率與粒度的關(guān)系。結(jié)果表明:除經(jīng)典一級動力學(xué)模型外,其他模型均能很好地?cái)M合不同粒級的試驗(yàn)數(shù)據(jù)。當(dāng)粒級為150~250μm時浮選速度常數(shù)最大,這可能是由于浮選中碰撞、附著及分離等關(guān)鍵步驟決定,由于顆粒較高的脫附率,在此過程中細(xì)粒級礦物與氣泡碰撞概率較低、粗粒級礦物浮選速率低。通過反浮選效率指數(shù)對褐煤的反浮選效果與粒度的關(guān)系作了進(jìn)一步評價,發(fā)現(xiàn)在給定時間內(nèi),與所研究的窄粒級組分相比,褐煤粒級為-425μm時反浮選動力學(xué)參數(shù)最佳。YALCIN等[42]對黃鐵礦型金礦浮選動力學(xué)進(jìn)行了研究,結(jié)果表明:金對應(yīng)浮選速率常數(shù)與粒度呈負(fù)相關(guān);相比一級模型,采用二級模型時,浮選速率常數(shù)對磨礦粒度有著更高的依賴性,相關(guān)系數(shù)均大于0.998。

      礦物顆粒延伸率、圓度及形狀特征影響其與氣泡的相互作用,進(jìn)而影響礦物浮選分離效率[43-44]。DEHGHANIF等[45]研究了顆粒形狀對磁鐵礦單礦物浮選動力學(xué)的影響,發(fā)現(xiàn)具有較高延伸率和較低圓度的顆粒具有較大的浮選動力學(xué)常數(shù)。此外,有石英顆粒存在時,磁鐵礦顆粒形狀對浮選影響更大,浮選動力學(xué)常數(shù)也比單獨(dú)浮選磁鐵礦時高。MA等[46]采用6種浮選動力學(xué)模型研究了焦煤顆粒形狀對浮選動力學(xué)的影響,結(jié)果同樣表明:由于顆粒與氣泡之間的作用面積增大,顆粒延伸率與可浮性呈正相關(guān),且焦煤浮選符合一級矩形分布浮選動力學(xué)模型。RAHIMI等[47]研究了不同研磨方法對石英顆粒形狀及浮選的影響,結(jié)果表明:石英顆粒形狀顯著影響浮選速率常數(shù),較高延伸率及低圓度顆粒具有較高可浮性。

      3.2 浮選工藝參數(shù)的影響

      浮選過程中除了礦物本身性質(zhì)的影響,浮選藥劑也起極其重要的影響[48]。NATARAJAN等[49]研究了N-芳香異羥肟酸不同取代基對加拿大某鎳礦浮選動力學(xué)的影響。結(jié)果表明,相比黃藥,N-苯基-N-(2,6二甲基苯基)羥胺浮選鎳黃鐵礦時具有更好選擇性及較高的一級浮選動力學(xué)速率常數(shù)。KLIMPEL[50]研究了烴鏈長度對各種硫烴捕收劑性能的影響。結(jié)果表明:與傳統(tǒng)水溶性捕收劑相比,硫烴捕收劑可降低藥劑成本,增大浮選速率常數(shù),提高對硫化鐵的選擇性。ZHU等[5]通過咪唑離子液體(1-烷基-3-甲基咪唑氯化物)配制微乳液浮選煤泥,所得煤泥的可燃體回收率及凈灰分含量與正十二烷浮選效果類似,不但節(jié)省捕收劑約43%,且無需起泡劑,是煤泥浮選的高效捕收劑,浮選過程符合一級矩陣分布模型。張晉霞等[51]對石英、藍(lán)晶石和黑云母在pH=6.5時的浮選動力學(xué)進(jìn)行了研究。結(jié)果表明,抑制劑淀粉可擴(kuò)大3種礦物浮選速率差異,模型擬合發(fā)現(xiàn)經(jīng)典一級動力學(xué)模型與實(shí)際數(shù)據(jù)相吻合。

      3.3 浮選設(shè)備的影響

      常用的浮選機(jī)有機(jī)械式浮選機(jī)、浮選柱及反應(yīng)器、分離器式浮選機(jī)[52-53],其類別、葉輪傾角及轉(zhuǎn)速、充氣量等都會影響氣泡與礦粒的相互作用,進(jìn)而影響浮選動力學(xué)。

      GAO等[54]研究了操作參數(shù)對BF-40浮選機(jī)浮選動力學(xué)的影響,對比分析3種不同葉輪轉(zhuǎn)速和浸入深度,發(fā)現(xiàn)主軸轉(zhuǎn)速為151 r/min、葉輪浸入深度1 195 mm時,BF-40型機(jī)械攪拌浮選機(jī)能獲得最佳浮選動力學(xué)參數(shù)。

      KOH等[55]通過CFD方法研究了Denver自充氣式浮選機(jī)葉輪轉(zhuǎn)速對氣流的影響,并進(jìn)行了浮選動力學(xué)模擬。研究發(fā)現(xiàn):空氣通過葉輪的旋轉(zhuǎn)作用進(jìn)入礦漿,空氣流速由葉輪產(chǎn)生的吸入壓力及進(jìn)氣閥到葉輪輸送軸上的摩擦損失共同決定。浮選動力學(xué)模擬表明:重力作用對顆粒附著影響顯著,可通過控制葉輪轉(zhuǎn)速調(diào)節(jié)氣泡上升速度達(dá)到提高浮選速率的目的。KOH等[56]進(jìn)一步通過CFD計(jì)算模型模擬自充氣式浮選機(jī)槽內(nèi)多尺寸氣泡與顆粒的附著速率。結(jié)果表明:氣泡分布對顆粒浮選速率影響顯著,全尺寸氣泡分布的浮選速率高于單尺寸氣泡的浮選速率,更有利于優(yōu)化浮選槽設(shè)計(jì),提升浮選槽工作效率。韓偉[57]針對JFC-150型浮選機(jī)內(nèi)流特性,研究了浮選機(jī)充氣量、礦漿含氣量及氣泡礦化概率等對浮選動力學(xué)參數(shù)的影響。結(jié)果表明:較高的葉輪轉(zhuǎn)速和較大的充氣壓力會增強(qiáng)分離區(qū)及輸運(yùn)區(qū)的湍流強(qiáng)度,從而增大顆粒懸浮能力及脫附作用力,最佳葉輪轉(zhuǎn)速為110~130 r/min、充氣壓力為50~60 kPa。

      LI等[58]研究了充氣式旋流浮選柱充氣量對不同粒徑組分浮選特性的影響,并在此基礎(chǔ)上提出了一種新的浮選動力學(xué)模型。結(jié)果表明:充氣量的增加能顯著提高粗、細(xì)煤泥浮選回收率,特別是粗煤泥的分選。對于0.25~0.50 mm的粗粒級,新模型中煤泥R2值(相關(guān)系數(shù))接近1,SSE(誤差平方和)接近0,表明該粒級浮選與新模型吻合。

      張曉燕[59]采用類似于浮選柱的自制攪拌式浮選槽研究了葉輪轉(zhuǎn)速對煤泥浮選動力學(xué)的影響。結(jié)果表明:提高葉輪轉(zhuǎn)速可提高精煤產(chǎn)率及可燃體回收率。由模型擬合可知煤泥浮選符合一級動力學(xué)模型,過高轉(zhuǎn)速會降低k值。因此,葉輪轉(zhuǎn)速不宜過高。葉輪低轉(zhuǎn)速時,不同密度細(xì)煤泥對應(yīng)的k值差異較大,對于高、低密度級煤泥,葉輪轉(zhuǎn)速分別為600 r/min、800 r/min時可獲得最佳浮選動力學(xué)常數(shù)。

      FILIPPOV等[60]對在反應(yīng)器、分離器中黃銅礦、石英混合礦浮選動力學(xué)進(jìn)行了研究。結(jié)果表明:采用反應(yīng)器、分離器有助于黃銅粗精礦浮選回收率的提高,增大其浮選速率,這是因?yàn)榉磻?yīng)器/分離器存在不同的區(qū)域,可將氣流分散到氣泡中,增強(qiáng)氣泡與顆粒的附著。

      除了上述浮選設(shè)備外,有學(xué)者研究了新型振蕩網(wǎng)格浮選槽(OGC)對浮選動力學(xué)的影響。CHANGUNDA等[61]以甲基化石英為研究對象,對OGC能量輸入引起浮選動力學(xué)的變化進(jìn)行了研究。結(jié)果表明,浮選速率常數(shù)隨功率強(qiáng)度的增加呈近似線性關(guān)系,可能是由于輸入的能量在湍流環(huán)境中較好地促進(jìn)顆粒-氣泡接觸。田全志等[62]以低階煤為研究對象,對能量輸入引起的可浮性進(jìn)行了研究。結(jié)果表明:低能量輸入不利于增加氣泡與礦粒的碰撞吸附概率,高能量輸入易夾帶高灰細(xì)泥。因此,輸入中等能量能夠促進(jìn)低階煤浮選,符合一級矩陣模型,而高能量輸入時則符合經(jīng)典一級模型。

      3.4 其他因素的影響

      除了礦物粒徑和形狀、藥劑、浮選設(shè)備等參數(shù)影響浮選動力學(xué)外,礦漿濃度、泡沫滯留時間、超聲波處理及研磨介質(zhì)種類等都可對礦物浮選動力學(xué)產(chǎn)生影響。

      繆亞兵等[63]研究了螢石礦漿質(zhì)量濃度對浮選動力學(xué)的影響。結(jié)果表明:增大螢石礦漿濃度能夠增大浮選速率常數(shù)。鄭雪華[64]研究了浮選過程中泡沫滯留時間對浮選速率常數(shù)k值的影響。結(jié)果表明:浮選速率常數(shù)k隨泡沫滯留時間呈指數(shù)式減小。

      MAO等[65]研究了高灰分褐煤浮選特性,包括超聲礦漿層、泡沫層對褐煤浮選動力學(xué)的影響。結(jié)果表明:常規(guī)浮選及超聲礦漿層、泡沫層浮選對應(yīng)浮選動力學(xué)速率常數(shù)k分別為2.313 3、0.837 3和4.211 4,且泡沫層超聲處理時可浮性差的褐煤浮選符合二級矩形分布模型。因此,在泡沫層超聲能夠顯著增大浮選速率常數(shù)k,為褐煤超聲浮選提供指導(dǎo)依據(jù)。

      為了解釋磨礦介質(zhì)種類對礦物浮選動力學(xué)的影響,ZHANG等[66]研究了不同磨礦介質(zhì)對黃鐵礦浮選動力學(xué)的影響。結(jié)果表明:陶瓷球研磨黃鐵礦時,分散在黃鐵礦表面的鐵氧絡(luò)合物較少,可明顯增加黃鐵礦浮選累計(jì)回收率。模型擬合結(jié)果表明:以陶瓷球?yàn)檠心ソ橘|(zhì)時,浮選過程符合一級動力學(xué),而以鑄鐵球?yàn)檠心ソ橘|(zhì)時,一級、二級動力學(xué)模型均與結(jié)果相吻合。由此可知,不同磨礦介質(zhì)造成鐵氧絡(luò)合物含量差異,影響黃鐵礦浮選動力學(xué),其中采用陶瓷球作為研磨介質(zhì)能較好地提高黃鐵礦浮選效率。

      總結(jié)可知,不同因素往往可通過3個方面影響礦物浮選動力學(xué):①改變礦物晶體結(jié)構(gòu);②影響礦物顆粒與氣泡間的粘附概率;③改變礦物表面親、疏水性。

      4 結(jié)論與展望

      礦物浮選動力學(xué)的影響因素涉及礦物晶體結(jié)構(gòu)、形狀和表觀形貌、藥劑種類、浮選設(shè)備及實(shí)驗(yàn)過程中各種參數(shù)的變化。為了優(yōu)化浮選工藝流程、改造工藝設(shè)備并提升浮選過程中智能化控制,研究工作者開展了大量的科學(xué)研究。當(dāng)前浮選動力學(xué)主要從模型參數(shù)的引入或浮選組分的劃分、n值的確定兩大方向發(fā)展。但是,浮選動力學(xué)模型發(fā)展存在兩方面的不足,其一為現(xiàn)階段浮選動力學(xué)模型更適用于一元礦物的浮選過程,對多元礦物分選難以很好地進(jìn)行描述;其二,在實(shí)際浮選中,影響礦物浮選動力學(xué)模型的因素不是單獨(dú)存在,而現(xiàn)階段浮選動力學(xué)模型的建立與優(yōu)化并不能統(tǒng)籌以上各因素。

      鑒于此,為了不斷優(yōu)化浮選動力學(xué)模型來更好地描述浮選過程,通過計(jì)算機(jī)強(qiáng)大的分析處理能力,運(yùn)用理論計(jì)算對影響浮選動力學(xué)的各因素進(jìn)行評估,并結(jié)合工藝礦物學(xué)、浮選機(jī)內(nèi)礦漿的流體運(yùn)動規(guī)律來加強(qiáng)浮選動力學(xué)模型對不同礦物、不同因素下浮選過程的適應(yīng)性,是未來需要重點(diǎn)關(guān)注的研究方向。此外,基于浮選動力學(xué)分析對浮選設(shè)備進(jìn)行優(yōu)化,有利于提高礦物浮選分離效率,具有重要現(xiàn)實(shí)及科學(xué)意義。

      猜你喜歡
      結(jié)果表明常數(shù)氣泡
      檸檬氣泡水
      欣漾(2024年2期)2024-04-27 15:19:49
      SIAU詩杭便攜式氣泡水杯
      新潮電子(2021年7期)2021-08-14 15:53:12
      浮法玻璃氣泡的預(yù)防和控制對策
      關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級數(shù)的系數(shù)
      冰凍氣泡
      幾個常數(shù)項(xiàng)級數(shù)的和
      萬有引力常數(shù)的測量
      紫外分光光度法測定曲札芪苷的解離常數(shù)
      體育鍛煉也重要
      闊世瑪與世瑪用于不同冬小麥品種的安全性試驗(yàn)
      绵竹市| 星子县| 襄城县| 农安县| 新巴尔虎左旗| 宝丰县| 竹山县| 南雄市| 肇庆市| 汾西县| 乌拉特中旗| 凤阳县| 霞浦县| 西丰县| 苗栗县| 无为县| 大宁县| 嘉兴市| 曲周县| 延庆县| 贞丰县| 香河县| 南和县| 武威市| 浦北县| 闽清县| 晋城| 东辽县| 西城区| 简阳市| 如皋市| 柘荣县| 申扎县| 诸暨市| 门头沟区| 彰化市| 克什克腾旗| 都昌县| 隆子县| 扎赉特旗| 江油市|