袁雷 楊濤 張國(guó)儒 郭河瑤 唐亞萍 楊生保
摘? ? 要:辣椒是人們?nèi)粘I钪兄匾氖卟撕驼{(diào)味品,在全球范圍內(nèi)均有種植。辣椒素類物質(zhì)是辣椒果實(shí)中“辣味”的來源,經(jīng)研究發(fā)現(xiàn)其具有殺蟲、鎮(zhèn)痛、抗癌和減肥等作用。綜合概括了辣椒的起源、種植現(xiàn)狀和辣椒素類物質(zhì)的合成途徑及其合成中參與的酶類和相關(guān)調(diào)控基因等研究進(jìn)展,指出了目前辣椒素類物質(zhì)相關(guān)研究的不足,并展望了未來的研究方向,以期為辣椒育種工作者育成高含量辣椒素的優(yōu)質(zhì)辣椒新品種提供重要參考。
關(guān)鍵詞:辣椒;辣椒素;生物合成;基因調(diào)控
中圖分類號(hào):S641.3 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-2871(2021)11-001-09
Research progress of capsaicin in pepper fruit
YUAN Lei1,2, YANG Tao1, ZHANG Guoru1, GUO Heyao1,2, TANG Yaping1, YANG Shengbao1
(1. Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China; 2. Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization/College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China)
Abstract: Pepper is an important vegetable and condiment in people's daily life Capsaicinoids, as the source of “hot taste” in pepper fruit, have been found to have insecticidal, analgesic, anticancer and weight reducing effects. Here we comprehensively analyzed the origin of pepper, the current planting situation of pepper, the synthesis pathway of capsaicinoids, the enzymes and related regulatory genes involved in capsaicinoids synthesis, analyzed the deficiencies of capsaicinoids related research, and prospect the future research. It is expected to provide an important reference for pepper breeding with high content of capsaicin.
Key words: Pepper; Capsaicin; Biosynthesis; Gene regulation
辣椒屬于茄科(Solanaceae)一年生或多年生二倍體作物,包含多個(gè)種,現(xiàn)有5個(gè)栽培種,是重要的蔬菜作物之一[1-2]。2019年全球鮮食辣椒和加工辣椒總種植面積約為371.9萬hm2,總產(chǎn)量約為4 228.3萬t;我國(guó)2019年辣椒種植面積約為84.7萬hm2,總產(chǎn)量達(dá)1 933.3萬t,居全球首位,且有繼續(xù)增加的趨勢(shì)(FAO)。近年來,隨著對(duì)辣椒研究的不斷深入,人們發(fā)現(xiàn)了辣椒中的一類特殊物質(zhì)——辣椒素,又名辣椒堿,不但能夠刺激味覺、制作催淚彈等,還具有殺蟲、鎮(zhèn)痛等作用[3-5]。由于辣椒素用途廣泛,市場(chǎng)對(duì)辣椒素的需求也不斷增加[6-7]。因此,了解辣椒素的生物合成途徑以及其基因調(diào)控機(jī)制,對(duì)于選育高含量辣椒素新品種以及人工調(diào)控辣椒素的生物合成具有重要的意義。
1 辣椒的起源及辣椒種植現(xiàn)狀
1.1 辣椒的起源及栽培種差異
辣椒屬于茄科(Solanaceae)茄亞族(Solaninae Dunal)辣椒屬(Capsicum)二倍體植物,一年生或多年生常異花授粉作物,與馬鈴薯、茄子、番茄、煙草和矮牽牛是近親,包括多個(gè)種,其中有5個(gè)栽培種,分別為一年生辣椒(Capsicum annuum)、下垂辣椒(Capsicum baccatum)、灌木辣椒(Capsicum frutescens)、中國(guó)辣椒(Capsicum chinense)和柔毛辣椒(Capsicum pubescens)[1-2]。主要栽培種有3個(gè)起源中心,主要分布在美洲,分別為墨西哥和危地馬拉、亞馬孫河流域、秘魯和玻利維亞[8-9]。15世紀(jì)初,著名航海家哥倫布將辣椒由美洲傳入歐洲,并于16世紀(jì)中葉遍布?xì)W洲大地,16世紀(jì)后期傳入中國(guó)[10]。不同栽培種辣椒表現(xiàn)出不同的植物學(xué)性狀(部分見表1)。辣椒果實(shí)中含有種類豐富的類胡蘿卜素,尤其是在成熟果實(shí)中,類胡蘿卜素含量很高,被作為研究類胡蘿卜素的模式作物。辣椒果實(shí)中類胡蘿卜素種類和含量的差異也使得辣椒果實(shí)呈現(xiàn)多種顏色,如綠色、橙色、黃色和紅色等[11-12](圖1)。在不同栽培種中,辣椒的辣度也有很大差異,有辣度較低的甜椒,其辣度一般小于500 SHU(Scoville Heat Units),如西班牙甜椒等;辣度較高的有超過35萬SHU的中國(guó)涮涮辣等[13-14]。迄今為止,世界上最辣的辣椒均屬于中國(guó)辣椒(Capsicum chinense),最辣的辣度甚至超過了400萬SHU[15]。
1.2 辣椒種植現(xiàn)狀
辣椒是全球重要的蔬菜作物之一,因?yàn)槔苯烦勺鳛槭卟耸秤猛猓€是重要的調(diào)味品,并且辣椒還含有類胡蘿卜素、蛋白質(zhì)、維生素C等多種營(yíng)養(yǎng)物質(zhì),使得對(duì)辣椒的消費(fèi)需求不斷增加[2]。據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)統(tǒng)計(jì),我國(guó)2019年種植面積超過84.7萬hm2,已成為全球辣椒出口第一大國(guó)。而新疆是我國(guó)制干用辣椒主要產(chǎn)區(qū)之一,如表2所示,2010—2017年新疆辣椒種植面積基本穩(wěn)定在7~8萬 hm2,年產(chǎn)量在184.54萬~344.16萬t,整體呈先升高再穩(wěn)定后升高的發(fā)展趨勢(shì)。據(jù)統(tǒng)計(jì),新疆制干椒椒年產(chǎn)量15萬~20萬t,辣椒產(chǎn)業(yè)已成為新疆發(fā)展“紅色產(chǎn)業(yè)”的重要支柱作物,新疆產(chǎn)區(qū)所產(chǎn)的制干辣椒色素含量高,晾曬成本低。目前,新疆辣椒的種植基本實(shí)現(xiàn)了標(biāo)準(zhǔn)化、機(jī)械化、規(guī)?;同F(xiàn)代化[16-17]。
2 辣椒中的辣味來源及辣椒堿的應(yīng)用
2.1 辣椒中辣味的產(chǎn)生
辣椒含有多種代謝物,如類胡蘿卜素、黃酮苷和維生素等,其中最獨(dú)特的為辣椒堿類復(fù)合物。辣椒中的“辣味”,其實(shí)是食用辣椒時(shí)辣椒中的辣椒堿類物質(zhì)與疼痛感受系統(tǒng)中的辣椒素受體(TRPV1)相結(jié)合,產(chǎn)生灼熱感和疼痛感,進(jìn)而產(chǎn)生辛辣感[2,18-19]。辣椒堿類物質(zhì)是一類簡(jiǎn)單的植物堿類分子,它產(chǎn)生于辣椒胎座腺體中,是由苯丙烷代謝途徑和脂肪酸側(cè)鏈產(chǎn)生的香蘭素胺經(jīng)縮合反應(yīng)而成,其包含多種代謝物,諸如主要的氨基酸、苯丙烷酯類、苯環(huán)類和脂肪酸等[11,20]。紅辣椒中主要的辣椒堿復(fù)合物是辣椒素、二氫辣椒素、降二氫辣椒素、高二氫辣椒素和高辣椒素等,其部分辣椒堿類物質(zhì)結(jié)構(gòu)如表3所示[21]?,F(xiàn)已從辣椒中分離出了30多種辣椒堿類物質(zhì)[22]。辣椒素同系物的分子式均為H3CO(HO)-C6H3-CH2-NH-CO-R,區(qū)別主要在于R基團(tuán)的不同,即其脂肪酸側(cè)鏈的長(zhǎng)度和飽和度存在差異,主要是碳鏈C9到C11長(zhǎng)度的變化[23]。表3為5種主要辣椒堿類物質(zhì)的結(jié)構(gòu)及特性,可以看出辣椒堿類復(fù)合物共有的特點(diǎn)是擁有2個(gè)主要的基團(tuán),芳香基團(tuán)和?;鶃啺罚浞謩e來自于苯丙烷類代謝和氨基酸的分解及隨后的脂肪酸延伸[24-28]。辣椒素和二氫辣椒素約占總辣椒堿復(fù)合物的90%,其中辣椒素約占66%,二氫辣椒素約占22%,其差異僅是一個(gè)?;娘柡投?,但對(duì)辣椒總堿有同樣的效力,當(dāng)這2個(gè)成分的長(zhǎng)度或脂肪酸側(cè)鏈發(fā)生變化時(shí),將降低辣椒總堿的效能[11,20,23]。
2.2 辣椒素的合成
辣椒素的合成大約起始于花后20 d,并在此后的果實(shí)發(fā)育過程中持續(xù)形成[29]。辣椒素主要產(chǎn)生于果實(shí)胎座表皮的腺體細(xì)胞中,后被轉(zhuǎn)運(yùn)至質(zhì)外體,主要貯藏于胎座細(xì)胞液泡中,少量轉(zhuǎn)運(yùn)至其他組織或器官,諸如果肉、莖和葉片中[30-33]。辣椒素的合成,先合成苯丙氨酸、苯乙烯、p-對(duì)香豆酸、咖啡酸和阿魏酸等系列前體物質(zhì),進(jìn)而形成香草醛和香蘭素胺,然后進(jìn)一步參與到苯丙烷合成途徑中,生成香草基胺(vanillylamine)[24]。同時(shí),纈氨酸通過支鏈脂肪酸合成路徑,加入2個(gè)碳原子,引起?;纳扉L(zhǎng)等,最終形成硫代酸酯-CoA(8-methylnonenoic-CoA),香草基胺和硫代酸酯-CoA最終可以在辣椒素合成酶(CS)的作用下合成辣椒素[34-35]。在辣椒素的合成過程中FAS(植物Ⅱ型脂肪酸合酶-復(fù)合多酶)中的β-酮脂酰合酶將酮脂酰輔酶A(KAS)和丙二酰載體蛋白(ACL)縮合,釋放CO2[24,36]。反應(yīng)循環(huán)持續(xù),最后通過硫酯酶(FAT)釋放脂肪酸,F(xiàn)AT參與調(diào)節(jié)反應(yīng)鏈的長(zhǎng)度[23]。氨基酸側(cè)鏈降解路徑導(dǎo)致了甲基側(cè)鏈酯類的生成,其為辣椒堿類物質(zhì)?;鶊F(tuán)的前體物,甲基側(cè)鏈脂肪酸基團(tuán)總量與果肉組織中辣椒堿類物質(zhì)含量呈顯著的相關(guān)性,與胎座中的辣椒堿類物質(zhì)含量呈一定的相關(guān)性[37]。筆者通過對(duì)Mazourek等[11]、Kim等[38]和Qin等[39]的研究進(jìn)行總結(jié),得出了辣椒素的生物合成模型(圖2)。
2.3 辣椒素的化學(xué)性質(zhì)及其應(yīng)用
辣椒素(反式-8-甲基-N-香草基-6-壬烯酰胺,trans-8-methyl-N-vanillyl-6-nonenamide),分子式:C18H27NO3,為無色、無味的晶體狀生物堿[21,40]。辣椒素的相對(duì)分子質(zhì)量為305.4,熔點(diǎn)65 ℃,在1.33 Pa下的沸點(diǎn)為210~220 ℃,升華溫度為115 ℃,微溶于二硫化碳、熱水,易溶于酒精、乙醚、苯和氯仿,所以從化學(xué)角度講,辣椒素是脂溶性酚類化合物[23]。由于雙鍵阻止了辣椒素內(nèi)部旋轉(zhuǎn),其擁有順式/反式異構(gòu)體,但多以反式異構(gòu)體形式存在,因?yàn)轫樖叫问较拢?CH(CH3)2會(huì)和雙鍵另一邊的長(zhǎng)鏈靠攏,并造成相互輕微的排斥,從而變得不如反式異構(gòu)體形式穩(wěn)定[21]。通過構(gòu)效關(guān)聯(lián)(SAR)分析,辣椒素有3個(gè)基團(tuán)組成,即一個(gè)芳香環(huán)、一個(gè)酰胺基團(tuán)和一個(gè)疏水的側(cè)鏈[5]。研究表明,辣椒素瞬時(shí)受體電位(TRPV1)的熱敏亞基使食用者有灼熱感[41]。當(dāng)TRPV1與辣椒素結(jié)合時(shí),細(xì)胞內(nèi)鈣離子增加,并誘發(fā)了P物質(zhì)(傷害性刺激下細(xì)胞產(chǎn)生的一種信號(hào)分子)和降鈣素基因相關(guān)肽(CGRP,一種含37個(gè)氨基酸的神經(jīng)肽)的釋放,辣椒素與感覺神經(jīng)元結(jié)合使食用者產(chǎn)生了痛感、發(fā)熱和局部區(qū)域的灼熱感。由于辣椒素的這些特性,使得其有多種臨床應(yīng)用,比如止痛、防癌、減肥,有助于降低心血管疾病和胃腸疾病發(fā)生率,甚至有助于生發(fā),但過多的攝入辣椒素會(huì)有引發(fā)胃癌的風(fēng)險(xiǎn)[5]。除此之外,辣椒素還可以殺蟲、制作催淚瓦斯和食品添加劑等[3-4]。
3 辣椒基因組研究及辣椒素調(diào)控
3.1 辣椒基因組測(cè)序
2014年1月韓國(guó)首爾大學(xué)牽頭完成的辣椒基因組測(cè)序首先發(fā)布在Nature Genetics上[2]。同年3月,中國(guó)四川農(nóng)業(yè)大學(xué)和遵義市農(nóng)業(yè)科學(xué)研究院等單位聯(lián)合完成的遵辣1號(hào)測(cè)序結(jié)果公布于Proceedings of the National Academy of the Sciences of the United States of America上[39]。辣椒基因組大小約為3.48 Gb,其基因組序列約是番茄的4倍,其中81%的辣椒基因組序列由轉(zhuǎn)座子組成[2,39]。目前,辣椒共計(jì)預(yù)測(cè)了34 903個(gè)蛋白編碼序列,而辣椒的近親番茄預(yù)測(cè)了34 727個(gè)蛋白編碼序列[2,42]。辣椒栽培種間基因組差異為0.35%~0.39%,而與野生種的差異為1.85%,辣椒和番茄有17 397個(gè)直系同源基因[1]。伴隨著CM334、Zunla-1、C. baccatum PBC81和C. chinense PI 159236等辣椒種序列和泛基因組的測(cè)定和組裝完成,這些研究結(jié)果為更加深入解析辣椒素生物合成途徑提供了重要平臺(tái),并將加快重要農(nóng)藝性狀的進(jìn)一步解析和改良[2,39,43-44]。
3.2 辣椒堿合成通路中的酶類及相關(guān)基因
前人已對(duì)眾多參與辣椒堿合成的酶進(jìn)行了研究報(bào)道,比如與苯丙烷調(diào)節(jié)合成辣椒堿相關(guān)的苯丙氨酸裂解酶- phenylalanine ammonia lyase(PAL)、肉桂酸-4-羥化酶- cinnamate 4-hydroxylase(C4H)、咖啡酰莽草酸/奎寧酸-3-羥化酶- coumarate 3-hydroxylase(C3H)、咖啡酸轉(zhuǎn)甲氧基酶- caffeic acid Omethyltransferase(COMT)、4-香豆酰Co A連接酶-4-coumaroyl-CoA ligase(4CL)、羥基肉桂酰轉(zhuǎn)移酶-hydroxycinnamoyl transferase(HCT)、咖啡酰氧基輔酶A氧位甲基轉(zhuǎn)移酶- caffeoyl- CoA O-methyltransferase(CCoAOMT代替了COMT)、羥基肉桂酰基-CoA水合酶/裂解酶-hydroxyl cinnamoyl-CoA hydratase/lyase(HCHL),以及脂肪酸側(cè)鏈合成路徑的異丁酰基輔酶A-isobutyryl-CoA、乙酰輔酶A -acetyl-CoA、異戊?;o酶A-isovaleryl-CoA、anteisovaleryl-CoA、丙酰輔酶A-propinyl-CoA等。此外,最近新增了通過轉(zhuǎn)錄組測(cè)序鑒定的3個(gè)酶,分別為蘇氨酸脫胺酶-Thrde-aminase(TD)、二羥酸脫氫酶-Dihydroxyacid dehydratase(DHAD)和預(yù)苯酸轉(zhuǎn)氨酶-Prephenate aminotransferase(PAT)[11,18,45-48]。TD和DHAD主要參與纈氨酸、亮氨酸和異亮氨酸的合成,以及泛酸和輔酶A的合成,PAT屬于轉(zhuǎn)移酶家族的轉(zhuǎn)氨酶,將含氮基團(tuán)轉(zhuǎn)移[48]。ACL轉(zhuǎn)錄本在胎座和未成熟果實(shí)的細(xì)胞壁中非常豐富,果實(shí)細(xì)胞壁中的積累量大約是胎座中的一半,PAT轉(zhuǎn)錄本主要積累在果實(shí)胎座中,其他組織中較少,主要在果實(shí)成熟前期積累,轉(zhuǎn)錄本積累量隨著果實(shí)成熟而降低[23]。胎座組織特異的β-酮酯酰-ACP合成酶(KAS)與辛辣有關(guān),對(duì)KAS的沉默表達(dá)結(jié)果表明,該酶在脂肪酸合成途徑中起關(guān)鍵作用,進(jìn)一步證實(shí)了KAS在辣椒辛辣變化方面起著重要作用[49-50]。肉桂酰輔酶A還原酶(CCR)將酯類香豆酰、阿魏?;徒孀吁]o酶A還原成相應(yīng)的醛類,因此,CCR是木質(zhì)素合成和苯丙烷代謝途徑的重要控制節(jié)點(diǎn),在辣椒素合成水平方面扮演重要角色[51]。通過轉(zhuǎn)錄組測(cè)序共計(jì)鑒定了Mazourek’s通路中的53個(gè)基因的71個(gè)轉(zhuǎn)錄本,進(jìn)一步分析表明,21個(gè)基因參與了纈氨酸、亮氨酸和異亮氨酸合成,30個(gè)基因參與了脂肪酸合成,109個(gè)基因參與了苯丙烷的合成,56個(gè)基因參與了苯丙氨酸代謝,32個(gè)基因參與了苯丙氨酸、酪氨酸和色氨酸合成,其中同一個(gè)基因可能參與多個(gè)代謝途徑[48]。但目前只對(duì)其中少量基因的具體作用有了解,大部分基因的具體作用還有待研究。
3.3 辣椒素合成主要調(diào)控基因的解析
辣椒堿類物質(zhì)主要在胎座上皮細(xì)胞的液泡中積累[27,52]。辣味類型中的辛辣程度是數(shù)量性狀遺傳且會(huì)受到環(huán)境的顯著影響[53]。但辣味的有無,主要是由1個(gè)位于辣椒2號(hào)染色體的重要顯性位點(diǎn)控制的,被命名為C位點(diǎn),C位點(diǎn)的單個(gè)顯性基因控制辣椒中辣味的有無[54-56]。此后,研究發(fā)現(xiàn)在C. annuum辣椒中失去的辛辣味是由于Pun1發(fā)生了2.5 kb的刪除,而C. chinense、C. frutescens和C. chacoense中辛辣味的丟失是種間特異的獨(dú)立事件[25,45]。隨后的研究發(fā)現(xiàn),在缺失辣味的辣椒中,CS基因啟動(dòng)子至第一外顯子區(qū)域內(nèi)出現(xiàn)了大范圍的刪除[57]。在果實(shí)胎座發(fā)育過程中,CS基因僅在辣味材料中表達(dá),在缺失辣味的材料中表達(dá)量很低,辣椒堿合成通路中多個(gè)基因在辣味和缺乏辣味的材料中表達(dá)量基本相似,除了BCAT、COMT和FatA基因在花后6 d的表達(dá)量有變化外,在CS缺失導(dǎo)致的辣味缺失辣椒材料中,辣椒堿合成通路中的其他基因表達(dá)并沒有發(fā)生明顯變化[2]。
新的研究表明,有51個(gè)基因家族參與了辣椒的辣椒堿合成,除了ACL-D4和ACL-D5,大部分的基因隨著辣椒堿的逐漸積累表現(xiàn)出了組織和發(fā)育階段的特異性表達(dá)[39]。但CCoAOMT-D9、AT3-D1和AT3-D2僅在辣椒堿合成的果實(shí)發(fā)育階段顯著表達(dá),在辣椒中鑒定了4個(gè)串聯(lián)拷貝AT3(Pun1)基因,其編碼一個(gè)?;D(zhuǎn)移酶,并在特定品種中調(diào)控辛辣程度,缺失辣味的辣椒中由于Pun1(C位點(diǎn))的大片段刪除,AT3-D1的表達(dá)量檢測(cè)不到或非常少,由于AT3-D2的表達(dá),在缺失辣味的辣椒中尚可以檢測(cè)到微量的辣椒素和二氫辣椒堿,辣椒中呈現(xiàn)的辛辣多樣性可能是C位點(diǎn)AT3-D2 (Capang02g002091)和AT3-D1 (Capang02g002092)的劑量補(bǔ)償效應(yīng)所致[39]。隨后的研究又發(fā)現(xiàn),MYB31在辣椒果實(shí)中的轉(zhuǎn)錄水平與辣椒素含量存在直接關(guān)系[58]。這些結(jié)果均表明,辣椒素的有無是一個(gè)簡(jiǎn)單的單基因控制事件,但辣椒素的生物合成和積累卻是一個(gè)十分復(fù)雜的生物過程。
3.4 miRNA可能參與辣椒素合成的調(diào)控
通過對(duì)全基因組的miRNA分析,在辣椒中鑒定了37個(gè)miRNA家族中的177類miRNA。鑒定了6527個(gè)長(zhǎng)的非編碼RNA(Inc-RNA)和64個(gè)家族的176個(gè)miRNA(micro-RNA),其中保守的miRNA為141個(gè),辣椒特異的miRNA為35個(gè),并預(yù)測(cè)了1014個(gè)靶基因。一半的miRNA家族通過靶向信使RNA編碼的轉(zhuǎn)錄因子(TFs)進(jìn)行轉(zhuǎn)錄后調(diào)控[59]。此外,miRNA中的Can-miR5303和α-CT(Capana09g001602)的靶基因是二氫硫辛酰胺脫氫酶基因(Capana12g000245),其是辣椒堿合成通路中的一部分。因此,miRNA可能參與辣椒堿的合成調(diào)控。通過基因表達(dá)譜分析,果實(shí)組織特異表達(dá)的基因有853個(gè)。辣椒基因組中有80個(gè)基因家族的2153個(gè)轉(zhuǎn)錄因子和轉(zhuǎn)錄調(diào)節(jié)因子,占總基因數(shù)的6.25%[1,39,59]。目前,可以利用不同的群體定位控制辣椒素含量的遺傳因子,這些研究共定位了110個(gè)QTL,包括pun1、pun11、pun12等[55-56,60-63]。pun1編碼AT3(BAHD?;D(zhuǎn)移酶家族中的一個(gè)?;D(zhuǎn)移酶),在辣椒素生物合成途徑最后一步發(fā)揮著決定性作用,而大多數(shù)非辣味的辣椒中則含有非功能型的pun1等位基因,如pun11、pun12、pun13、pun14[30,45,64-65]。此外,pun1對(duì)辣椒素酯類物質(zhì)合成也起著調(diào)節(jié)作用[66]。pAMT在苯丙氨酸途徑中催化香蘭素生成香蘭堿,含有非功能性pAMT等位基因的辣椒會(huì)合成辣椒素酯類物質(zhì),而不是辛辣的辣椒素[67-69]。目前,研究發(fā)現(xiàn)存在9種非功能pAMT等位變異,大多數(shù)發(fā)生于C. chinense種[67-72]。在野生辣椒C. chacoense的7D染色體上存在的pun12位點(diǎn)也能夠調(diào)節(jié)辣度,而pun12等位基因可能是控制辣椒素酯基因(capsiate)的同源基因[64]。在C. chinense辣椒中發(fā)現(xiàn),參與脂肪酸生物合成的基因CaKR1也能夠調(diào)控辣度水平[63]。pun13編碼1個(gè)茄科特異的MYB轉(zhuǎn)錄因子MYB31,該基因表達(dá)對(duì)辣椒素生物合成途徑的相關(guān)基因起著正向調(diào)節(jié)的作用,如Ca4H、Compt、Kas、pAMT和pun1[58,73-74]。同時(shí),也發(fā)現(xiàn)pun13存在至少2種等位基因變異[58,74]。
4 討論與展望
辣椒作為既可直接食用又可用作調(diào)味,還可用于提取功能物質(zhì)的蔬菜作物,近些年來在全球的種植面積呈現(xiàn)劇增趨勢(shì)。在我國(guó),其種植面積和產(chǎn)量也逐年增加,已成為我國(guó)蔬菜作物之首,創(chuàng)造了巨大的經(jīng)濟(jì)價(jià)值[1]。因此,對(duì)于辣椒的相關(guān)研究也越來越受關(guān)注,尤其是對(duì)于辣椒果實(shí)中獨(dú)特辣味物質(zhì)的相關(guān)研究在近些年已經(jīng)成為多個(gè)領(lǐng)域的研究熱點(diǎn)。前人的研究結(jié)果均表明,辣椒素類物質(zhì)的合成部位在辣椒果實(shí)胎座中,合成后的辣椒素只有少量被運(yùn)往果肉、種子和葉片等部位[30-33]。但也有研究表明,個(gè)別辣椒品種的果肉中也能檢測(cè)到辣椒素生物合成結(jié)構(gòu)基因的表達(dá),這表明辣椒素類物質(zhì)的合成部位可能不止一個(gè)[2]。辣椒素的合成主要經(jīng)過苯丙氨酸參與的苯丙烷途徑和纈氨酸參與的支鏈脂肪酸途徑[34-35]。已有眾多的研究報(bào)道了參與這2個(gè)途徑的多種酶,如參與苯丙烷途徑的咖啡酸轉(zhuǎn)甲氧基酶(CA0MT)、對(duì)香豆酸3-羥基化酶(CA3H)、苯丙氨酸解氨酶(PAL)等,參與支鏈脂肪酸途徑的酶β-酮酰基合成酶(KAS)、脂肪酸硫酯酶(FAT)、?;d體蛋白(ACL)等[34]。并且研究也已發(fā)現(xiàn)大量基因參與到了辣椒堿的合成途徑中[48]。但對(duì)于一些關(guān)鍵酶的基因及其修飾作用還不完全清楚,有待進(jìn)一步研究[23]。辣味的有無是由單一基因pun1控制的,并且認(rèn)為pun1基因?qū)ζ渌睦蔽痘蚓哂酗@性上位作用[75] 。后續(xù)研究表明,在辣味缺失的辣椒中Pun1存在多個(gè)等位基因,如pun11、pun12、pun13、pun14[65] 。雖然辣椒素的有無受一個(gè)單基因控制,但是辣椒素的積累和合成受到多個(gè)基因調(diào)控以及環(huán)境因素的影響[39,56,60] 。目前,對(duì)于辣椒素生物合成途徑中的部分基因尚未克隆,其功能也尚不清楚,并且缺乏其合成過程中轉(zhuǎn)錄因子以及miRNA的相關(guān)研究。將來應(yīng)加強(qiáng)辣椒素類物質(zhì)的結(jié)構(gòu)基因克隆、轉(zhuǎn)錄因子調(diào)控研究以及辣椒素類物質(zhì)的積累機(jī)制等方面的研究,從而早日實(shí)現(xiàn)人工調(diào)控辣椒素類物質(zhì)的生物合成。
參考文獻(xiàn)
[1] 鄒學(xué)校.中國(guó)辣椒[M].北京:中國(guó)農(nóng)業(yè)出版社,2002:1-41.
[2]? ? SEUNGILL K,MINKYU P,SEON Y,et al.Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species[J].Nature Genetics,2014,46(3):270-278.
[3]? ? WILSON W R.Wax and capsaicin based pesticide[J].Journal of Cleaner Production,1996,4(1):61.
[4]? ? REILLY C A,CROUCH D J,YOST G S,et al.Determination of capsaicin,dihydrocapsaicin,and nonivamide in self-defense we-apons by liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A,2005,912:259-267.
[5]? ? ARORA R,GILL N S,CHAUHAN G,et al.An overview about versatile molecule capsaicin[J].International Journal of Pharmaceutical Sciences and Drug Research,2011,3(4):280-286.
[6]? ? KHYADAGI K S.Multilevel appraisal,quality parameters and suitability of promising chilli cultivars(Capsicum annuum L.)for conventional products[M].Karnataka:University of Agricultural Sciences,2009.
[7]? ? HOWARD L R,TALCOT S T,BRENES C H,et al.Changes in phytochemical and antioxidant activity of selected pepper cultivars(Capsicum species)as in?uenced by maturity[J].Journal of Agriculture and Food Chemistry,2000,48(5):1713-1720.
[8]? ? PARAN I,BENCHAIM A,KANG B C,et al.Capsicums[M]//KOLE C.Vegetables.Springer Berlin Heidelberg,2007:209-
226.
[9]? ? PICERSGILL B.Domestication of plants in the Americas:Insights from Mendelian and molecular genetics[J].Annals of Botany,2007,100(5):925-940.
[10]? 唐勝球,董小英,鄒曉庭.辣椒素研究及其應(yīng)用[J].江西飼料,2003(1):13-16.
[11]? MAZOUREK M,PUJAR A,BOROVSKY Y,et al.A dynamic interface for capsaicinoid systems biology[J].Plant Physiology,2009,150(4):1806-1821.
[12]? SUNHWA H,JUNGBONG K,JONGAUG P,et al.A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours:deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper[J].Journal of Experimental Botany,2007,58(12):3135-3144.
[13]? 雷建軍,朱張生,孫彬妹,等.辣椒素類物質(zhì)生物合成及其分子生物學(xué)機(jī)理研究進(jìn)展[J].園藝學(xué)報(bào),2018,45(9):1739-1749.
[14]? 張婧,頡建明,郁繼華,等.辣椒素類物質(zhì)的生物合成影響因素及其生理功能研究進(jìn)展[J].園藝學(xué)報(bào),2019,46(9):1797-1812.
[15]? 張正海,曹亞從,于海龍,等.辣椒果實(shí)主要品質(zhì)性狀遺傳和代謝物組成研究進(jìn)展[J].園藝學(xué)報(bào),2019,46(9):1825-1841.
[16]? 王永平,張紹剛,何嘉,等.國(guó)內(nèi)外辣椒產(chǎn)業(yè)發(fā)展現(xiàn)狀及趨勢(shì)[J].現(xiàn)代農(nóng)業(yè)科學(xué),2009,16(6):267-270.
[17]? 宋文勝,王誠(chéng)軍,李建華,等.新疆主要制干辣椒品種及其適應(yīng)性[J].農(nóng)村科技,2003(4):31-31.
[18]? FUJIWAKE H,SUZUKI T,IWAI K.Intracellular distribution of enzymes and intermediates involved in biosynthesis of capsaicin and its analogues in Capsicum fruits[J].Agricultural and Biological Chemistry,1982,46:2685-2689.
[19]? WAHYUNI Y,BALLESTER A R,SUDARMONOWATI E,et al.Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions:Variation in health-related compounds and implications for breeding[J].Phytochemistry,2011,72(11/12):1358-1370.
[20]? UMESH K R,ALDO A,VENKATA L A,et al.Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L.collections[J].PLOS ONE,2014,9(1):e86393.
[21]? REYES-ESCOGIDO M D L,GONZALEZ-MONDRAGON E G,VAZQUEZ-TZOMPANTZI E. Chemical and pharmacological aspects of capsaicin[J]. Molecules,2011,16(2):1253-1270.
[22]? BOSLAND P W,WALLKER S J.Measuring chile pepper heat[M]. New Mexico: New Mexico State University,2010.
[23]? ALURU M R,MAZOUREK M,LANDRY L G,et al.Differential expression of fatty acid synthase genes,Acl,F(xiàn)at and Kas,in Capsicum fruit[J].Journal of Experimental Botany,2003,54(388):1655-1664.
[24]? BENNETT D J,KIRBY G W.Constitution and biosynthesis of capsaicin[J].Journal of the Chemical Society C:Organic,1968:442-446.
[25]? LEETE E,LOUDEN M C.Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens[J].Journal of the American Chemical Society,1968,90(24):6837-6841.
[26]? KOPP B,JURENITSCH J.Biosynthesis of capsaicinoids in Capsicum annuum L.var.annuum[J].Planta Medica,1981,43(11):272-279.
[27]? SUZUKIi T,IWAI K.Constituents of red pepper spices:chemistry,biochemistry,pharmacology and food science of the pungent principle of Capsicum species[M]// BROSSIED A,The Alkaloids:Chemistry and Pharmacology,Academic Press,Orlando,F(xiàn)L,1984:227-299.
[28]? MARKAI S,MARCHAND P A,MABON F.et al.Natural deuterium distribution in branched-chain medium-length fatty acids is nonstatistical:a site-specific study by quantitative 2H NMR spectroscopy of the fatty acids of capsaicinoids[J].Chembiochem:a European Journal of Chemical Biology,2002,3(2/3):21-28.
[29]? IWAI K,SUZUKI T,F(xiàn)UJIWAKE H.Formation and accumulation of pungent principle of hot pepper fruits,capsaicin and its analogues,in Capsicum annuun var. annuun cv. Karayatsubusa at different growth stages after flowering[J].Agricultural and Biological Chemistry,1979,43(12):2493-2498.
[30]? STEWART C J,KANG B C,LIU K D,et al.The Pun1 gene for pungency in pepper encodes a putative acyltransferase[J].The Plant Journal,2005,42(5):675-688.
[31]? BRODERICK C E,COOKE P.Fruit composition,tissues,and localization of antioxidants and capsaicinoids in Capsicum peppers by fluorescence microscopy[J].Acta Horticulturae,2009,841:85-90.
[32]? ESTRADA B,BERNAL M A,DIAZ J,et al.Fruit development in Capsicum annuum:changes in capsaicin,lignin,free phenolics,and perox-idase patterns[J].Journal of Agricultural and Food Chemistry,2001,48(4):1667-1688.
[33]? KIM J S,AHN J Y,LEE S J,et al.Phytochemicals and antioxidant activity of fruits and leaves of paprika (Capsicum annuum L. var. special)cultivated in Korea[J].Journal of Food Science,2011,76(2):193-198.
[34]? 劉熠,劉峰,鄒學(xué)校.辣椒素類物質(zhì)生物合成及相關(guān)調(diào)控基因研究進(jìn)展[J].湖南農(nóng)業(yè)科學(xué),2020(9):109-111.
[35]? 吳智明,程蛟文,唐鑫,等.辣椒素類物質(zhì)生物合成途徑及其相關(guān)基因研究進(jìn)展[J].中國(guó)蔬菜,2012(22):1-7.
[36]? HARWOOD J L.Recent advances in the biosynthesis of plant fatty acids[J].Biochimica et Biophysica Acta,1996,1301(1/2):7-56.
[37]? YUNI W,BALLESTER A R,YURY T,et al.Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity[J].Metabolomics,2013,9(1):130-144.
[38]? KIM S,PARK M,YEOM S I,et al.Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species[J].Nature Genetics,2014,46(3):270-278.
[39]? QIN C,YU C,SHEN Y,et al.Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domesticati on and specialization[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(14):5135-5140.
[40]? 常曉軻,張強(qiáng),韓婭楠,等.不同類型辣椒中辣椒素含量測(cè)定及辣度分析[J].中國(guó)瓜菜,2019,32(9):30-33.
[41]? PINGLE S C,MATTA J A,AHERN G P.Capsaicin receptor:TRPV1 a promiscuous TRP channel[J].Handbook of Experimental Pharmacology,2007(179):155-171.
[42]? SHUSEI S,SATOSHI T,HIDEKI H,et al.The tomato genome sequence provides insights into fleshy fruit evolution[J].Nature,2012,485(7400):635-641.
[43]? KIM S,PARK J,YEOM S I,et al.New reference genome sequences of hot pepper reveal the massive evolution of plant diseaseresistance genes by retroduplication[J].Genome Biology 2017,18(1):210.
[44]? OU L J,LI D,LV J H.Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses[J]. The New Phytologist,2018,220:360-363
[45]? STEWART C,MAZOUREK M,STELLARI G M,et al.Genetic control of pungency in C. chinense via the Pun1 locus[J].Journal of Experimental Botany,2007,58(5):979-991.
[46]? FUJIWAKE H,SUZUKI T,IWAI K.Capsaicinoids formation in the protoplast from the placenta of Capsicum fruits[J].Agricultural and Biological Chemistry,1982,46(10):2591-2592.
[47]? SUKRASNO N,YEOMAN M M.Phenylpropanoid metabolism during growth and development of Capsicum? frutescens fruits[J]. Phytochemistry,1993,32(4):839-844.
[48]? AZAGONZA C G,NUNEZ P H,OCHOA A N.Molecular biology of capsaicinoids biosynthesis in chili pepper (Capsicum spp.)[J].Plant Cell Reports,2011,30(5):695-706.
[49]? LIU S Q,LI W,WU Y M,et al.De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids[J].PLOS ONE,2013,8(1):341-345.
[50]? ABRAHAM-JUAREZ M D R,ROCHA-GRANADOS M D C,LOPEZ M G,et al.Virus-induced silencing of Comt,pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits[J].Planta,2008,227(3):681-695.
[51]? LACOMBE E,HAWKINS S,VAN DOORSSELAERE J,et al.Cinnamoyl CoA reductase,the first committed enzyme of the lignin branch biosynthetic pathway:cloning,expression and phylogenetic relationships[J].The Plant Journal,1997,11(3):429-441.
[52]? ZAMSKI E,SHOHAM O,PALEVITCH D,et al.Ultrastructure of capsaicinoid-secreting cells in pungent and non-pungent red pepper(Capsicum annuum L.) cultivars[J].Botanical Gazette,1987,148(1):1-6.
[53]? ZEWDIE Y,BOSLAND P W.Evaluation of genotype,environment and genotype-by-environment interaction for capsaicinoids in Capsicum annuum L.[J].Euphytica,2000a,111(3):185-190.
[54]? LEFEBVRE V,PALLOIX A,CARANTA C,et al.Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies[J].NRC Research Press Ottawa,Canada,1995,38(1):112-121.
[55]? BLUM E,LIU K,MAZOUREK M,et al.Molecular mapping of the C locus for presence of pungency in Capsicum[J].NRC Research Press Ottawa,2002,45(4):702-705.
[56]? BLUM E,MAZOUREK M,OCONNELL M,et al.Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum[J].Theoretical and Applied Genetics,2003,108(1):79-86.
[57]? CHARLES S J,BVOUNG C K,KEDE L,et al.The Pun1 gene for pungency in pepper encodes a putative acyltransferase[J].The Plant Journal,2005,42(5):675-688.
[58]? ZHU Z,SUN B,CAI W,et al.Natural variations in the MYB transcription factor MYB31 determine the evolution of extremely pungent peppers[J].New Phytologist,2019,223(2):922-938.
[59]? YANG S B,YANG T,TANG Y P,et al.Transcriptomic profile analysis of non-coding RNAs involved in Capsicum chinense Jacq. fruit ripening[J].Scientia Horticulturae,2020,264:543-544.
[60]? BEN-CHAIM A,BOROVSKY Y,F(xiàn)ALISE M,et al.QTL analysis for capsaicinoid content in Capsicum[J].Theoretical and Applied Genetics,2006,113(8):1481-1490.
[61]? LEE J,PARK S J,HONG S C,et al.QTL mapping for capsaicin and dihydrocapsaicin content in a population of Capsicum annuum ‘NB1’ × Capsicum chinense ‘Bhut Jolokia’[J].Plant Breeding,2016,135(3):376-383.
[62]? PARK M,LEE J H,HAN K,et al.A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq[J].Springer Berlin Heidelberg,2019,132(2):515-529.
[63]? KOEDA S,SATO K,SAITO H,et al.Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum[J].Theoretical and Applied Genetics,2019,132(1):65-80.
[64] STELLARI G M,MAZOUREK M,JAHN M M.Contrasting modes for loss of pungency between cultivated and wild species of Capsicum[J].Heredity,2010,104(5):460-471.
[65] KIRRI E,GOTO T,YASUBA K,et al.Non-pungency in a Japanese chili pepper landrace (Capsicum annuum) is caused by a novel loss-of-function Pun1 allele[J].The Horticulture Journal,2017,86(1):61-69.
[66] HAN K,JEONG H J,SUNG J,et al.Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper[J].Molecular Breeding,2013,31(3):537-548.
[67] LANG Y Q,KISAKA H,SUGIYAMA R,et al.Functional loss of pAMT results in biosynthesis of capsinoids,capsaicinoid analogs in Capsicum annuum cv. CH-19 Sweet[J].The Plant Journal,2009,59(6):953-961.
[68] TANAKA Y,HOSOKAWA M,MIWA T,et al.Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids,capsaicinoid analogues[J].Journal of Agricultural and Food Chemistry,2010,58(3):1761-1767.
[69] TANAKA Y,HOSOKAWA M,MIWA T,et al.Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids,nonpungent capsaicinoid analogues,in mildly pungent chili peppers (Capsicum chinense)[J].Journal of Agricultural and Food Chemistry,2010,58(22): 11762-11767.
[70] KOEDA S,SATO K,TOMI K,et al.Analysis of non-pungency,aroma,and origion of a Capsicum chinense cultivar from a Caribbean island[J].The Japanese Society for Horticultural Science,2014,83(3):244-251.
[71] PARK Y J,NISHIKAWA T,MINAMI M,et al.A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene[J].Molecular Genetics and Genomics,2015,290(6):2217-2224.
[72] TANAKA Y,F(xiàn)UKUTA S,KOEDA S,et al.Identification of a novel mutant pAMT allele responsible for lowpungency and capsinoid production in chili pepper:accession ‘No.4034’ (Capsicum chinense)[J].The Horticulture Journal,2018,87(2):222-228.
[73] TANAKA Y,SONAYAMA T,MURAGA Y,et al.Multiple loss-of-function putative aminotransferase alleles contribute to low pungency and capsinoid biosynthesis in Capsicum chinense[J]. Molecular Breeding,2015,35(6):142.
[74] ARCE-RODRIGUEZ M L,OCHOA-ALEJO N.An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis[J].Plant Physiology,2017,174(3):1359-1370.
[75] HAN K,JANG S,LEE J H ,et al.A MYB transcription factor is a candidate to control pungency in Capsicum annuum[J].Springer Berlin Heidelberg,2019,132(4):1235-1246.