張 琰,喬超雄,王天琪,曹佳豐,王鵬飛,石 磊
·研究速報·
螻蛄前足爪趾三維幾何構(gòu)形的減阻機(jī)理
張 琰1,2,喬超雄1,2,王天琪1,2,曹佳豐1,2,王鵬飛1,2,石 磊3
(1. 天津市輕工與食品工程機(jī)械裝備集成設(shè)計與在線監(jiān)控重點實驗室,天津 300222;2. 天津科技大學(xué)機(jī)械工程學(xué)院,天津 300222;3. 天津市利民調(diào)料有限公司,天津 300308)
觸土部件的阻力直接影響耕作機(jī)械和工程機(jī)械的作業(yè)效率,該研究利用工程仿生設(shè)計方法,基于螻蛄前足爪趾優(yōu)異的地下掘進(jìn)能力,提取前足爪趾的三維幾何構(gòu)形特征用于仿生試件設(shè)計,通過土槽切削阻力試驗和有限元模擬,分析螻蛄前足爪趾幾何構(gòu)形的減阻性能和機(jī)理。研究結(jié)果表明,前足爪趾的構(gòu)形特征對切削阻力有顯著影響(<0.05),仿生試件的切削阻力較楔狀體試件最高可降低56.96%,三維仿生構(gòu)形的減阻性能優(yōu)于一維和二維構(gòu)形。螻蛄前足爪趾構(gòu)形能使被切削土壤沿挖掘面順暢移動,避免了土壤在仿生試件尖部的堆積和對中后部的擠壓,實現(xiàn)切削阻力的減小。該基于螻蛄前足爪趾的工程仿生研究可為耕作和工程機(jī)械觸土部件的減阻設(shè)計提供理論基礎(chǔ)。
農(nóng)業(yè)機(jī)械;仿生;設(shè)計;優(yōu)化;減阻;切削阻力試驗;螻蛄
在耕作機(jī)械和工程機(jī)械作業(yè)中,其主要觸土部件(犁鏵、深松鏟、挖掘機(jī)斗齒等)的磨損、土壤黏附、觸土阻力過大等問題直接影響整機(jī)的效率[1]。在農(nóng)業(yè)機(jī)械向低排放、低污染、高能效、高效率方向發(fā)展的背景下,國內(nèi)外研究者在觸土部件的材料、表面形態(tài)、幾何構(gòu)形優(yōu)化和物理輔助技術(shù)等方面進(jìn)行了大量研究。在材料優(yōu)化方面,Keles等[2]研究了鈦添加量對鋼制挖掘機(jī)斗齒的力學(xué)性能和耐磨性的影響,發(fā)現(xiàn)當(dāng)鈦的添加量為0.15%(質(zhì)量百分比)時,斗齒有較好的耐磨性和力學(xué)性能;王少偉等[3]開展了齒形開溝刀的優(yōu)化研究,利用表面熱處理提高齒形開溝刀的耐磨性能。在表面形態(tài)優(yōu)化方面,Li等[4]采集穿山甲鱗片的表面形貌并將其用于仿生減黏馬鈴薯挖土鏟設(shè)計,與原型挖土鏟相比,仿生挖土鏟在田間測試時的減阻率為14.19%;賈洪雷等[5]針對普通開溝器在工作過程中土壤黏附嚴(yán)重和運行阻力大等問題,基于蚯蚓頭部體表形態(tài)設(shè)計了一種仿生波紋形開溝器,其減黏降阻效果優(yōu)于普通開溝器。在構(gòu)形優(yōu)化方面,通過優(yōu)化耕作機(jī)械觸土部件的構(gòu)形,可有效減小工作阻力,實現(xiàn)節(jié)能降耗[6]。鄭侃等[7]針對傳統(tǒng)深松鏟作業(yè)阻力大、能耗高等問題,通過構(gòu)形優(yōu)化設(shè)計了一種可以有效減阻并降耗的折線破土刃深松鏟,其阻力減少約11.52%;馬躍進(jìn)等[8]設(shè)計了一種凸圓刃深松鏟,田間試驗結(jié)果表明,凸圓刃式深松鏟耕作阻力比與國標(biāo)深松鏟平均降低了10.24%。劉曉鵬等[9]研究了具有不同導(dǎo)曲線類型開溝犁的阻力特性,與直線和指數(shù)線型相比,拋物線型最高可減阻31.58%。在物理輔助技術(shù)方面,研究者基于蚯蚓體表的電滲現(xiàn)象,提出了基于弱電場的仿生電滲技術(shù),可以有效降低觸土部件表面的土壤黏附[10-11];也有研究者將機(jī)械振動施加在觸土部件上,取得了很好的減黏脫附效果[12-13];周華等[14]設(shè)計了一種滑切型自激振動深松鏟,其相對于傳統(tǒng)弧形深松鏟,在各工作速度下可實現(xiàn)減阻15.45%~20.05%。
在材料優(yōu)化、表面形態(tài)優(yōu)化、幾何構(gòu)形優(yōu)化和物理輔助技術(shù)4種提高觸土部件工作效率的方法中,優(yōu)化觸土部件構(gòu)形的方法實現(xiàn)起來較為簡單,其不需要使用外界能源和輔助裝置,且減阻效果顯著,減阻率普遍大于10%。耕作機(jī)械和工程機(jī)械觸土部件的構(gòu)形多為三維結(jié)構(gòu),涉及大量相互關(guān)聯(lián)的幾何參數(shù),給構(gòu)形優(yōu)化工作帶來了困難。因此,大量研究者借助仿生學(xué)的方法優(yōu)化構(gòu)形,并取得了諸多創(chuàng)新性的成果[15-16]。例如,基于夏威夷貝表面形貌設(shè)計的仿生深松器,可有效降低土壤深松過程中的耕作阻力[17-18];基于螻蛄前足爪趾構(gòu)形設(shè)計的仿生挖掘機(jī)斗齒,其挖掘阻力最高減小了 12%[19];基于鴕鳥趾甲三維構(gòu)形設(shè)計的仿生鏟具有更優(yōu)的土體插入性能,其內(nèi)凹彎曲面可減少土顆粒的堆積,從而減小了阻力[20];基于鼴鼠多趾組合結(jié)構(gòu)和趾間輪廓曲線特征設(shè)計的仿生旋耕刀,可以降低整機(jī)功率16%以上[21]。上述針對觸土部件的仿生構(gòu)形研究一類是將仿生對象的主要構(gòu)形特征進(jìn)行二維投影,另一類則采用三維逆向的方式直接移植生物的三維構(gòu)形。但是其均沒有從機(jī)理上利用三維構(gòu)型特征對觸土部件進(jìn)行設(shè)計或優(yōu)化,性能上仍有很大的提升空間。
綜上,隨著耕作機(jī)械的作業(yè)速度不斷提升,對節(jié)能減排要求的不斷提高,以往研究中的仿生構(gòu)形設(shè)計方法難以滿足實際需求。本研究進(jìn)一步拓展了針對螻蛄前足爪趾的工程仿生研究,將爪趾構(gòu)形仿生由二維拓展到三維,采用土槽切削試驗和有限元模擬方法,分析仿生試件的切削減阻機(jī)理,以期為耕作機(jī)械和工程機(jī)械觸土部件的減阻設(shè)計提供理論基礎(chǔ),實現(xiàn)進(jìn)一步提高耕作機(jī)械等的工作效率的目的,并進(jìn)一步豐富仿生構(gòu)形設(shè)計方法。
螻蛄前足高度特化為挖掘足,其前端的脛節(jié)特化為多齒鏟狀結(jié)構(gòu),為主要挖掘部件(圖1a)。特化的脛節(jié)上連續(xù)排列有4個爪趾(爪趾1~爪趾4)和2個跗爪趾,其中4個爪趾是挖掘時的主要觸土部位,也是本研究的研究對象。使用三維掃描技術(shù)提取螻蛄前足爪趾(以爪趾1為例)的三維輪廓并用于逆向建模,其具體步驟為:1)使用三維掃描儀(ZWSJ3D,中沃世紀(jì)三維,深圳市中沃世紀(jì)自動化技術(shù)有限公司)獲得爪趾1三維輪廓的點云信息并生成三維逆向模型(圖1b)。2)以爪趾基部截面中心為原點建立坐標(biāo)系,為前足爪趾1基部截面的中心,為垂直于挖掘面(內(nèi)凹的曲面)的軸,為由爪趾基部指向尖部的軸,為垂直于和的軸。3)利用截面法提取前足爪趾1在縱截面平面和橫截面平面上的截面構(gòu)形,利用投影法提取前足爪趾1構(gòu)形在平面的投影構(gòu)形。
1.爪趾1 2. 爪趾2 3.爪趾3 4.爪趾4 5.脛節(jié) 6.跗爪趾
1.Claw toe 1 2. Claw toe 2 3. Claw toe 3 4.Claw toe 4 5.Tibia 6.Tarsus
注:為前足爪趾基部截面的中心,為垂直于挖掘面的軸,為由爪趾基部指向尖部的軸,為垂直于和的軸。
Note:is the center of the base section of the foreleg’s claw toe,is the axis perpendicular to the excavation surface,is the axis points from the base of the claw toe to the tip,is the axis perpendicular toandaxis.
圖1 螻蛄前足爪趾結(jié)構(gòu)及其三維逆向模型
Fig.1 Foreleg’s claw toe structure of mole cricket and its 3D inverse model
以螻蛄前足爪趾1為例,首先,本研究使用投影法獲取了螻蛄前足爪趾1在平面的投影面,為平面構(gòu)形,使用截面法分別獲取了螻蛄前足爪趾在平面和平面的截面,分別為平面構(gòu)形和平面構(gòu)形;其次,利用數(shù)據(jù)分析軟件MATLAB由螻蛄前足爪趾的投影面和截面構(gòu)形,提取出可反映螻蛄前足爪趾幾何構(gòu)形的特征曲線,并進(jìn)行多項式擬合與平滑處理,得到平面、平面和平面的特征曲線多項式表達(dá)式,分別如式(1)~式(3)所示.
=76+65+54+43+32+21+1(1)
=76+65+54+43+32+21+1(2)
=76+65+54+43+32+21+1(3)
式中系數(shù)1~7取值如表1所示。由表1可知,螻蛄前足爪趾1在平面、平面和平面多項式擬合后特征曲線的決定系數(shù)(coefficient of determination,2)均大于0.97,誤差平方和(Sum of the Squared Errors,SSE)很小,表明前足爪趾1的特征曲線與其輪廓特征的擬合度較好。
表1 螻蛄前足爪趾1特征曲線的多項式系數(shù)及其擬合結(jié)果
注:z和z為平面的特征曲線,y和y為平面的特征曲線,y為平面的特征曲線。
Note:zandzare the characteristic curves in plane,yandyare the characteristic curves in plane, andyis the characteristic curve in plane.
根據(jù)式(1)~式(3)多項式繪制出的螻蛄前足爪趾1的特征曲線如圖2所示。將平面的特征曲線z=()、軸和軸圍成的面定義為A(圖2a),將平面的特征曲線z=()、軸和軸圍成的面定義為B(圖2a);將平面的特征曲線y=()、y=()和軸圍成的面定義為S(圖2b);平面的特征曲線y=()近似為與軸平行的直線,為直線與軸的交點,平面的特征曲線y=()與軸的交點為,將曲線y=()和軸圍成的面定義為C(圖2c),將曲線y=()與軸圍成的面定義為D(圖2c)。
通過正交試驗設(shè)計的方法,可以組合設(shè)計出具有不同三維構(gòu)形的仿生試件,尋求影響試件切削阻力的主次因素、各試驗因素的優(yōu)水平和試驗范圍內(nèi)的最優(yōu)組合。本研究以仿生試件的切削阻力作為試驗指標(biāo),設(shè)計了3因素4水平的正交試驗,編制好的正交試驗因素水平如表2所示。正交試驗的3個因素分別為平面構(gòu)形、平面構(gòu)形和平面構(gòu)形。正交試驗的4個水平包含螻蛄前足爪趾1的三維構(gòu)形、爪趾2和爪趾3的平面構(gòu)形和工程及農(nóng)業(yè)觸土部件經(jīng)常采用的楔狀體的三維構(gòu)形。其中,平面構(gòu)形因素的4個水平分別取面B鏡像形成的BB、楔狀體的等腰三角形(高36 mm和底邊22 mm)投影面T1、面A鏡像形成的對稱面AA、面A和面B形成的AB;因螻蛄前足不同爪趾的觸土面曲率不同,平面構(gòu)形的4個水平分別取楔狀體的直角三角形(直角邊36 mm和直角邊8 mm)縱截面T2、爪趾1的縱截面S1、爪趾2的縱截面S2和爪趾3的縱截面S3;平面構(gòu)形的4個水平分別取楔狀體的矩形(長×寬為22 mm×8 mm)橫截面R、面C鏡像形成的對稱面CC、面D鏡像形成的DD、面C和面D形成的CD。
表2 正交試驗的因素與水平對照表
注:根據(jù)圖2對A、B、S、C和D的定義,AA為面A鏡像形成的對稱面,AB為面A和面B組成的面,BB為面B鏡像形成的對稱面,T1為楔狀體的等腰三角形投影面,T2為楔狀體的直角三角形投影面,S1、S2、S3分別為爪趾1、爪趾2和爪趾3的縱截面,R為楔狀體的矩形投影面,CC為面C鏡像形成的對稱面,DD為面D鏡像形成的對稱面,CD為面C和面D組成的面。
Note: Based on the definition of A, B, S, C and D in Fig.2, AA is the area formed by the mirror image of plane A; AB is the area composed of plane A and plane B; BB is the area formed by the mirror image of plane B; T1 is the isosceles triangle projection area of the wedge; T2 is the right triangle projection area of the wedge; S1, S2, S3 are the longitudinal sections of the claw toe 1, the claw toe 2 and the claw toe 3, respectively; R is the rectangular projection area of the wedge; CC is the area formed by the mirror image of plane C; DD is the area formed by the mirror image of plane D; and CD is the area composed of plane C and plane D.
正交試驗設(shè)計[22]的仿生試件共有16種,此外,將楔狀體試件(T1-T2-R)作為對照試件。采用三維建模軟件SolidWorks2016建立由3個平面構(gòu)形因素組合構(gòu)形的仿生試件的三維模型,并利用3D打印方法獲得聚乳酸材質(zhì)的仿生試件,試件的投影長度均為36 mm,約為螻蛄實際爪趾1長度的15倍。制作的仿生試件如圖3所示。
采用自行搭建的土槽測試系統(tǒng)[23]對仿生試件的切削阻力進(jìn)行測試(圖4)。所用傳感器為JNNT-2型雙法蘭靜態(tài)扭矩傳感器(蚌埠中皖傳感器有限公司,中國),量程為0~50 N?m,精度為0.1 N?m。水平切削阻力與扭矩的對應(yīng)關(guān)系如式(4)所示:
=?(4)
式中為水平切削阻力,N;為測得的扭矩,N?m;為力臂,m。
考慮到不同仿生試件有不同的底面積,為避免試件底面與土壤摩擦對切削阻力造成的影響,切削阻力測試時,將不同仿生試件的后角均設(shè)為5°(圖5)。此外,測試前通過預(yù)試驗分別調(diào)整每個仿生試件的入土深度,盡可能使所有仿生試件的切土截面積相等,從而避免切削面積不同導(dǎo)致的誤差,本研究將初始切削深度設(shè)置為15 mm,每個仿生試件的實際切削深度在初始切削深度上下浮動。為了避免土壤黏附的影響,本研究將發(fā)泡酚醛塑料(俗稱“花泥”)在水中浸沒60 s,使其含水率達(dá)到飽和用以模擬土壤,其優(yōu)點是材料結(jié)構(gòu)均一,硬度和孔隙度與土壤相似。令切削速度為10 mm/s,切削時間20 s,對每個仿生試件進(jìn)行3次重復(fù)切削阻力試驗,結(jié)果以均值±標(biāo)準(zhǔn)差表示,取均值繪制切削阻力變化曲線,以切削阻力穩(wěn)定階段的值作為最終切削阻力結(jié)果。
采用顯式動力學(xué)分析軟件ANSYS LS-DYNA進(jìn)行仿生試件切削土壤過程的模擬。將在SolidWorks2016中建立的仿生試件模型和土壤模型導(dǎo)入有限元前處理軟件HyperMesh中,進(jìn)行有限元網(wǎng)格劃分、材料參數(shù)的設(shè)置、邊界約束條件的設(shè)置、仿生試件切削運動設(shè)置、仿生試件與土壤接觸條件、求解時間等的設(shè)置。其中,仿生試件模型采用Solid147實體單元,劃分為邊長1 mm的四面體網(wǎng)格;土壤模型采用Solid147實體單元,劃分為邊長1.2 mm的六面體網(wǎng)格;有限元模型所用的材料參數(shù)如表3所示。邊界約束條件設(shè)置為固定土壤模型的側(cè)面和底面;仿生試件模型的切削運動方向設(shè)置為沿土壤模型長度方向,切削速度設(shè)置為10 mm/s;仿生試件模型與土壤模型的接觸條件設(shè)置為點-面單向侵蝕接觸;求解時間設(shè)為10 s。將有限元模型及設(shè)置導(dǎo)入ANSYS LS-DYNA中進(jìn)行切削過程計算求解。
表3 有限元模型所用的材料參數(shù)
根據(jù)不同仿生試件切削阻力隨時間變化的曲線(圖6),仿生試件的切削過程可以分為2個階段,阻力增大階段和阻力平穩(wěn)階段。0~3 s為阻力增大階段,隨著仿生試件逐步切入模擬土壤,切削阻力逐漸增大;3 s以后進(jìn)入切削阻力平穩(wěn)階段,仿生試件的切削阻力基本穩(wěn)定。由圖6可知,切削阻力最大的仿生試件為仿生試件No.16(AB-S3-R),(38.80±0.89)N,其次為仿生試件No.1(BB-T2-R),(35.33±1.07)N,切削阻力最小的仿生試件為仿生試件No.12(AA-S3-CC),(19.09±0.52)N,其次為仿生試件No.4(BB-S3-CD),(21.81±1.56)N。
各因素下不同仿生試件的切削阻力及其正交試驗結(jié)果如表4所示。極差分析結(jié)果顯示,影響切削阻力的因素權(quán)重(值)由大到小依次為平面構(gòu)形、平面構(gòu)形和平面構(gòu)形;最優(yōu)設(shè)計組合為仿生試件No.12(AA-S3-CC)。與之對比,仿生試件No.16(AB-S3-R)的切削阻力最大,而用作對照試驗的楔狀體試件(T1-T2-R)的切削阻力為(44.35±0.71) N。該結(jié)果表明,具有三維幾何構(gòu)形的仿生試件No.12(AA-S3-CC)可以實現(xiàn)更低的切削阻力,與楔狀體試件相比,其切削阻力可降低56.96%。由重復(fù)試驗方差分析的檢驗結(jié)果可知,螻蛄爪趾平面構(gòu)形的值均高于臨界值(2.92),可認(rèn)為顯著性水平0.05,表明平面構(gòu)形、平面構(gòu)形和平面構(gòu)形3個因素均對切削阻力有顯著影響,其中平面構(gòu)形為主要影響因素。
根據(jù)土槽切削試驗測試結(jié)果,選擇平均切削阻力最小的仿生試件No.12和平均切削阻力最大的仿生試件No.16進(jìn)行有限元模擬結(jié)果的對比。切削阻力平穩(wěn)階段的仿生試件No.12和仿生試件No.16表面壓力云圖如圖7所示。
試件在切削過程中的受力主要為其與土壤的摩擦力和土壤被壓縮后對試件的反作用力,這兩種力的合力為試件所受的總壓力。由仿生試件No.12的表面壓力云圖(圖7a)可知,高壓力區(qū)在試件挖掘面的中部,表面壓力約為30 MPa,試件尖部所受的壓力較小,表面壓力為?2.79~4.67 MPa,表明與試件尖部接觸的土壤沒有被過度壓縮,在切削過程中土壤能沿著挖掘面順暢流動,有利于仿生試件的持續(xù)楔入。由仿生試件No.16的表面壓力云圖(圖7b),由試件尖部到試件根部表面壓力逐漸增大。仿生試件No.16尖部的表面壓力為4.32~44.54 MPa,大于仿生試件No.12在同位置的表面壓力,土壤在仿生試件No.16的尖部形成堆積,導(dǎo)致試件中后部受到更大的表面壓力。仿生試件No.16的挖掘面上零星分布的低壓力區(qū)表明被切削后的土壤在試件挖掘面上的流動不順暢,存在一定跳動。
表4 各因素下不同仿生試件的切削阻力及其正交試驗結(jié)果
注:對每個仿生試件進(jìn)行3次重復(fù)切削阻力試驗,切削阻力結(jié)果數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差表示。
Note: Cutting resistance test is repeated 3 times for each bionic specimen, and cutting resistance results are expressed as mean ± standard deviation.
有限元分析結(jié)果表明,應(yīng)用仿生幾何構(gòu)形能有效緩解土壤在觸土部件尖部的堆積,并使被切削后的土壤順暢地沿挖掘面流動,避免了土壤堆積對部件中部和后部的擠壓,從而減小了切削阻力。
生物觸土部件(爪趾、前足等)的外部構(gòu)形均為由多條特征曲線構(gòu)成的三維曲面,這是生物體高效挖掘與減阻功能實現(xiàn)的原因。目前,針對耕作機(jī)械和工程機(jī)械觸土部件的仿生優(yōu)化設(shè)計已取得了一系列的成果。郭俊等[24]將鼴鼠爪趾的二維曲線應(yīng)用于旋耕鋸齒刀設(shè)計,在秸稈覆蓋量為50%時扭矩與功耗優(yōu)于國標(biāo)旋耕刀。Zhang等[19]將螻蛄前足爪趾二維輪廓曲線用于挖掘機(jī)斗齒設(shè)計,使挖掘阻力最高減小12%。Zhang等[25]將家鼠爪趾的二維曲線應(yīng)用于深松鏟設(shè)計,使耕作阻力平均減小19%。Li等[26]將野豬頭部三維構(gòu)形逆向應(yīng)用于起壟犁設(shè)計,使耕作阻力減小7%~14%。分析發(fā)現(xiàn),在已有的相關(guān)研究中,一類是將仿生對象的主要構(gòu)形特征進(jìn)行二維投影,另一類是采用三維逆向的方式直接移植生物的三維構(gòu)形。隨著耕作機(jī)械的作業(yè)速度不斷提升,以及對節(jié)能減排要求的不斷提高,需要進(jìn)一步豐富仿生構(gòu)形設(shè)計方法。
本研究的切削試驗和有限元模擬結(jié)果表明,具有三維幾何構(gòu)形的仿生試件的減阻性能明顯優(yōu)于只有二維仿生構(gòu)形的試件。例如仿生試件No.12在平面、平面和平面上具有AA-S3-CC仿生構(gòu)形,其切削阻力為(19.09±0.52)N;而仿生試件No.1(BB-T2-R)、No.5(T1-T2-CC)和No.6(T1-S1-R)僅在一個平面上具有仿生構(gòu)形,其切削阻力分別為(35.33±1.07)、(30.77±0.97)和(29.10±0.35)N。該結(jié)果表明本研究采用的設(shè)計思路是可行的,豐富了仿生構(gòu)形設(shè)計方法,可為開溝器、深松鏟等以土壤切削為主的耕作機(jī)械觸土部件的設(shè)計提供仿生設(shè)計思路和方法。但本研究中以探討不同三維幾何構(gòu)形對切削阻力的影響為目的,僅以楔狀體為原形進(jìn)行了具有不同三維幾何構(gòu)形的仿生試件的設(shè)計和減阻機(jī)理研究,后續(xù)研究會進(jìn)一步將三維幾何構(gòu)形應(yīng)用于實際的耕作機(jī)械或工程機(jī)械的觸土部件減阻設(shè)計中。
本研究通過三維建模、切削阻力試驗和有限元模擬,研究了螻蛄前足爪趾三維幾何構(gòu)形對其切削阻力的影響,結(jié)論如下:
1)具有三維幾何構(gòu)形的仿生試件可以實現(xiàn)更低的切削阻力,其切削阻力低于只具有二維仿生構(gòu)形的試件,與楔狀體試件相比,切削阻力降低56.96%。
2)切削阻力試驗結(jié)果表明,螻蛄爪趾三維構(gòu)形特征均對切削阻力有顯著影響(<0.05),其中爪趾橫截面的構(gòu)形特征對切削阻力的減小起主要作用。
3)有限元模擬結(jié)果表明,螻蛄爪趾構(gòu)形能有效緩解土壤在仿生試件尖部的堆積,并使土壤沿挖掘面流動,避免了土壤堆積對仿生試件中部和后部的擠壓,從而減小了切削阻力。
[1] 賈洪雷,王萬鵬,陳志,等. 農(nóng)業(yè)機(jī)械觸土部件優(yōu)化研究現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2017,48(7):1-13.
Jia Honglei, Wang Wanpeng, Chen Zhi, et al. Research status and prospect of soil-engaging components optimization for agricultural machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 1-13. (in Chinese with English abstract)
[2] Keles A, Yildirim M. Improvement of mechanical properties by means of titanium alloying to steel teeth used in the excavator[J]. Engineering Science and Technology, an International Journal, 2020, 23(5): 1208-1213.
[3] 王少偉,李善軍,張衍林,等. 鼴鼠趾仿生及表面熱處理提高齒形開溝刀減阻耐磨性能[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(12):10-20.
Wang Shaowei, Li Shanjun, Zhang Yanlin, et al. Mole toe bionics and surface heat treatment improving resistance reduction and abrasion resistance performance of toothed ditching blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 10-20. (in Chinese with English abstract)
[4] Li J W, Jiang X H, Ma Y H, et al. Bionic design of a potato digging shovel with drag reduction based on the Discrete Element Method (DEM) in clay soil[J]. Applied Sciences, 2020, 10(20): 1-22.
[5] 賈洪雷,鄭健,趙佳樂,等. 仿蚯蚓運動多功能開溝器設(shè)計及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(12):70-79.
Jia Honglei, Zheng Jian, Zhao Jiale, et al. Design and parameter optimization of earthworm-like multi-function opener[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 70-79. (in Chinese with English abstract)
[6] 丁啟朔,葛雙洋,任駿,等. 水稻土深松阻力與土壤擾動效果研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2017,48(1):47-56,63.
Ding Qishuo, Ge Shuangyang, Ren Jun, et al. Characteristics of subsoiler traction and soil disturbance in paddy soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 47-56, 63. (in Chinese with English abstract)
[7] 鄭侃,何進(jìn),李洪文,等. 基于離散元深松土壤模型的折線破土刃深松鏟研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(9):62-72.
Zheng Kan, He Jin, Li Hongwen, et al. Research on polyline soil breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract)
[8] 馬躍進(jìn),王安,趙建國,等. 基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(3):16-23.
Ma Yuejin, Wang An, Zhao Jianguo, et al. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 16-23. (in Chinese with English abstract)
[9] 劉曉鵬,張青松,劉立超,等. 基于微分幾何與EDEM的船型開畦溝裝置觸土曲面優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2019,50(8):59-69.
Liu Xiaopeng, Zhang Qingsong, Liu Lichao, et al. Surface optimization of ship type ditching system based on differential geometry and EDEM simulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 59-69. (in Chinese with English abstract)
[10] Yu H Y, Han Z W, Zhang J Q, et al. Bionic design of tools in cutting: Reducing adhesion, abrasion or friction[J/OL]. Wear, 2021, 482-483, [2021-05-21], https://doi.org/10.1016/j.wear. 2021.203955.
[11] Massah J, Fard M R, Aghel H. An optimized bionic electro-osmotic soil-engaging implement for soil adhesion reduction[J]. Journal of Terramechanics, 2021, 95(5): 1-6.
[12] Ma W, Li J, Cai Q, et al. Influence of surface roughness on the adhesion force between the titanium plate and deep-sea sediment[J]. Marine Georesources and Geotechnology, 2020, 2: 1-9.
[13] Zenkov S A. Application of ultrasonic exposure for reducing material adhesion[J/OL]. Journal of Physics: Conference Series, 2019, 1399(4), [2019-12], https://iopscience.iop.org/ article/10.1088/1742-6596/1399/4/044004/pdf.
[14] 周華,張文良,楊全軍,等. 滑切型自激振動減阻深松裝置設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2019,50(5):78-78.
Zhou Hua, Zhang Wenliang, Yang Quanjun, et al. Design and experiment of sliding cutting self-excited vibration drag reduction subsoiling device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 71-78. (in Chinese with English abstract)
[15] Sun Z Q, Yang Z, Duan J L, et al. Design and application of multifunctional performance test platform for soil-engaging tillage components[J]. Inmateh Agricultural Engineering, 2020, 62(3): 351-360.
[16] Ani O A, Uzoejinwa B B, Ezeama A O, et al. Overview of soil-machine interaction studies in soil bins[J]. Soil and Tillage Research, 2018, 175: 13-27.
[17] Feng T T, Xu L F, Song Y P, et al. Design and analysis of bionic rib subsoiling shovel based on Hawaiian shell[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(3): 32048-32048.
[18] Xu L F, Feng T T, Song Y P, et al. Research on drag reduction mechanism of bionic rib subsoiling shovel based on discrete element method[J/OL]. IOP Conference Series: Earth and Environmental Science, 2019, 267(3), [2019-03-08], https://iopscience.iop.org/article/10.1088/1755-1315/267/3/ 032049/pdf.
[19] Zhang Z F, Zhang Y, Zhu Y Y, et al. Design of bionic bucket teeth and drag reduction analysis[J]. Advances in Intelligent Systems Research, 2017, 154: 670-674.
[20] Zhang R, Han D L, He Y, et al. Drag reduction and wear resistance mechanisms of a bionic shovel by discrete element method simulation[J]. Simulation, 2019, 95(3): 231-239.
[21] 楊玉婉,佟金,馬云海,等. 鼴鼠多趾結(jié)構(gòu)特征仿生旋耕刀設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(19):37-45.
Yang Yuwan, Tong Jin, Ma Yunhai, et al. Design and experiment of biomimetic rotary tillage blade based on multiple claws characteristics of mole rats[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19):37-45. (in Chinese with English abstract)
[22] 任露泉. 優(yōu)化試驗設(shè)計及其優(yōu)化[M]. 北京:科學(xué)出版社,2009.
[23] 張琰. 仿生觸土試件挖掘阻力測試系統(tǒng):CN201821985694.9[P]. 2019.
[24] 郭俊,張慶怡,Muhammad Sohail Memon,等. 仿鼴鼠足趾排列的旋耕-秸稈粉碎鋸齒刀片設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(6):43-50.
Guo Jun, Zhang Qingyi, Muhammad Sohail Memon, et al. Design and experiment of bionic mole's toe arrangement serrated blade for soil-rototilling and straw-shattering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6):43-50. (in Chinese with English abstract)
[25] Zhang J B, Yang C H, Ge Y Y, et al. Design and experiments of bionic subsoiler with ribbed structure[J]. International Agricultural Engineering Journal, 2019, 28(1): 147-152.
[26] Li J Q, Yan Y P, Chirende B, et al. Bionic design for reducing adhesive resistance of the ridger inspired by a boar’s head[J/OL]. Applied Bionics and Biomechanics, 2017, 2017, [2017-07-03], https://doi.org/10.1155/2017/8315972.
Drag reduction mechanism of the 3D geometry of foreleg’s claw toe of the mole cricket ()
Zhang Yan1,2, Qiao Chaoxiong1,2, Wang Tianqi1,2, Cao Jiafeng1,2, Wang Pengfei1,2, Shi Lei3
(1.-&,300222,; 2,&,300222,; 3..,.,300308,)
Biological plane geometry has been unable to meet the harsh requirements of bionic design in most soil contacting parts of tillage machinery in recent years, particularly on the operating speed, energy-saving, and emission reduction. In this study, a bionic investigation was performed on the toe of the foreleg claw in the mole cricket using the three-dimensional (3D) geometry. Projection and segmentation were also used to extract the 3D characteristic curves of claw toe in three orthogonal planes. The MATLAB platform was selected to determine the characteristic curves via the polynomial fitting and smoothing processing. An orthogonal experiment of bionic samples was carried out, where three plane configurations were taken as factors, while the different characteristics of configuration as levels. A total of 16 bionic specimens and 1 wedge-shaped comparison specimen were constructed by SolidWorks software and then fabricated using 3D printing (polylactic acid material). A test system of soil groove was utilized to evaluate the cutting resistance of each specimen, where the soil was assumed as the foamed phenolic plastics, the cutting speed was 10 mm/s, the cutting depth was 15 mm, and the cutting time was 20 s. The explicit dynamic Finite Element (FE) software ANSYS LS-DYNA was used to simulate the cutting process of the specimen, in order to determine the relationship between the 3D geometrical toes of the foreleg claw in the mole cricket and the drag reduction performance. It was found that the cutting process of the specimen was divided into the drag increase and stable phase. Furthermore, the drag reduction performance of specimens with 3D biological geometries was significantly better than that with one- and two-dimension, as well as the wedge shape. All configurations in the three planes also presented a significant impact on drag reduction. Correspondingly, the main influencing factor of drag reduction was the cross-sectional configuration perpendicular to the growth direction of claw toes. More importantly, the cutting resistance of the specimen was reduced up to 56.96% with 3D biological geometries. The FE analysis results showed that the 3D geometrical toes of the foreleg claw in the mole cricket effectively alleviated the accumulation of soil on the tip of the specimen. As such, the soil moved smoothly along the excavation surface, thereby avoiding the accumulation of pressure on the middle and back of specimens. This process was the reason for the reduction of cutting resistance. Furthermore, an optimal configuration of soil-contacting components was also achieved to reduce the cutting resistance, while effectively improving the working efficiency of machinery without the use of external energy and auxiliary devices. Nevertheless, the actual configuration was a 3D structure of soil-contacting parts in farming and engineering machinery, where many interrelated geometric parameters were involved during optimization. Consequently, the biological geometry can widely be expected to optimize soil-contacting parts, whether to project the main configuration of bionic objects in two dimensions, or to directly transplant the 3D biological geometry with 3D reverse. The characteristic curves of 3D biological geometry were also coupled to design bionic specimens. The feasible idea can also provide an insightful promising bionic design on soil cutting parts of tillage machinery, such as openers and subsoilers.
agricultural machinery; bionics; design; optimization; drag reduction; cutting resistance test; mole cricket
張琰,喬超雄,王天琪,等. 螻蛄前足爪趾三維幾何構(gòu)形的減阻機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(19):309-315.doi:10.11975/j.issn.1002-6819.2021.19.036 http://www.tcsae.org
Zhang Yan, Qiao Chaoxiong, Wang Tianqi, et al. Drag reduction mechanism of the 3D geometry of foreleg’s claw toe of the mole cricket ()[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 309-315. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.036 http://www.tcsae.org
2020-08-27
2021-09-15
國家自然科學(xué)基金項目(51405341);天津市自然科學(xué)基金(15JCYBJC19300);天津市重點實驗室開放基金(2019LIMFE05)
張琰,博士,副教授,研究方向為仿生機(jī)械設(shè)計原理。Email:y.zhang@tust.edu.cn
10.11975/j.issn.1002-6819.2021.19.036
S220.1
A
1002-6819(2021)-19-0309-07