尹可歡,羅曉敏,丁 翼,闕涵韻,譚 睿,李大鵬,龔普陽*,顧 健
余甘子及其活性成分肝保護(hù)作用及機(jī)制的研究進(jìn)展
尹可歡1,羅曉敏1,丁 翼1,闕涵韻1,譚 睿2,李大鵬3,龔普陽1*,顧 健1
1. 西南民族大學(xué)藥學(xué)院,四川 成都 610041 2. 西南交通大學(xué)生命科學(xué)與工程學(xué)院,四川 成都 610031 3. 四川大學(xué)華西藥學(xué)院,四川 成都 610041
余甘子來源于余甘子的干燥成熟果實(shí),是我國重要的藥食同源品種,具有抗炎、抗氧化、抗腫瘤和免疫調(diào)節(jié)等廣泛的生物活性。通過對(duì)余甘子提取物及其所含沒食子酸、鞣花酸及柯里拉京等活性成分的藥理作用進(jìn)行總結(jié),發(fā)現(xiàn)其對(duì)肝損傷、病毒性肝炎、非酒精性脂肪肝、肝纖維化及肝癌等具有治療作用,主要通過抑制脂質(zhì)過氧化、降低炎癥反應(yīng)、抗肝細(xì)胞凋亡、調(diào)節(jié)脂質(zhì)代謝、維持肝星狀細(xì)胞穩(wěn)態(tài)及促肝癌細(xì)胞凋亡等發(fā)揮肝保護(hù)作用。對(duì)余甘子及其單體活性成分治療肝臟疾病的藥理作用及其機(jī)制進(jìn)行歸納分析,以期為其在防治肝臟疾病中的深入研究以及開發(fā)應(yīng)用提供參考依據(jù)。
余甘子;沒食子酸;鞣花酸;柯里拉京;肝損傷;病毒性肝炎;非酒精性脂肪肝;肝纖維化;肝癌
余甘子是廣泛分布于熱帶和亞熱帶的大戟科葉下珠屬落葉小喬木余甘子L.的干燥成熟果實(shí)[1]。余甘子又名滇橄欖、庵摩勒、油甘子等,在我國擁有近兩千年的食用或藥用歷史,既是我國西南地區(qū)重要的經(jīng)濟(jì)作物,也是重要的中藥及多民族藥物資源[2]。現(xiàn)代植物化學(xué)與藥理學(xué)研究表明,余甘子含有酚酸類、維生素、氨基酸、黃酮類、多糖類、甾醇類等生物活性物質(zhì)[3],具有較好的抗炎、抗氧化、抗腫瘤、抗衰老、保肝和免疫調(diào)節(jié)等作用[4],是聯(lián)合國衛(wèi)生組織指定在全世界推廣種植的3種保健植物之一[5],同時(shí)也被原衛(wèi)生部列入“藥食同源”名單[6]。自1977年始,余甘子以藏族習(xí)用藥材先后收載于各版《中國藥典》,其味甘、酸、澀,性涼,具有清熱涼血、消食健胃及生津止咳等功效[7]。藏醫(yī)常以余甘子治療“血病”“赤巴病”及“培根病”,這與中醫(yī)中的血熱血瘀及現(xiàn)代醫(yī)學(xué)中的高血壓、肝膽疾病及消化系統(tǒng)疾病的臨床表現(xiàn)有很多相似之處[8]。近年來,余甘子及相關(guān)復(fù)方制劑對(duì)多種肝臟疾病具有良好的改善作用,且鮮見毒性相關(guān)報(bào)道,使之成為肝病領(lǐng)域的大健康產(chǎn)品及藥品開發(fā)的重要“藥食同源”品種之一[9]。本文通過總結(jié)國內(nèi)外學(xué)者關(guān)于余甘子的研究報(bào)道,對(duì)其提取物及單體成分的抗肝病藥理作用及相關(guān)機(jī)制進(jìn)行系統(tǒng)歸納分析,以期為余甘子中保肝新機(jī)制及新物質(zhì)的發(fā)現(xiàn)提供一定的理論基礎(chǔ),并為其臨床合理應(yīng)用及相關(guān)功能產(chǎn)品的開發(fā)提供參考依據(jù)。
研究表明,現(xiàn)已從余甘子中提取分離獲得百余種化合物,其中鞣質(zhì)類48個(gè),酚酸類34個(gè),黃烷醇及其衍生物8個(gè),黃酮類20個(gè),萜類8個(gè),α-糠醛等揮發(fā)性成分43個(gè)以及多糖、甾醇、蛋白質(zhì)、氨基酸、微量元素等多種活性物質(zhì)[10]。其中,酚酸、鞣質(zhì)等多酚類物質(zhì)被認(rèn)為是余甘子的主要活性成分。余甘子中沒食子酸、鞣花酸、柯里拉京及訶子酸等多種單體化合物已被證實(shí)具有顯著的體內(nèi)外肝保護(hù)活性,其化學(xué)結(jié)構(gòu)見圖1。
圖1 余甘子中保肝單體成分的化學(xué)結(jié)構(gòu)
已有大量研究基于多種誘因?qū)е碌母螕p傷體內(nèi)外生物學(xué)模型探討余甘子提取物及所含單體成分的保肝作用及機(jī)制。
余甘子水、醇提取物及多酚部位可對(duì)乙醇誘導(dǎo)的體內(nèi)、外肝損傷生物學(xué)模型具有改善作用,其機(jī)制可能與調(diào)節(jié)乙醇代謝酶活性、調(diào)控脂質(zhì)代謝、抗氧化、抗炎或抗凋亡等有關(guān)[11-14]。余甘子對(duì)抗結(jié)核藥物(異煙肼、利福平和吡嗪酰胺)和對(duì)乙酰氨基酚(acetaminophen,APAP)引起的藥源性肝損傷亦具有顯著改善作用,如其水提醇沉物可通過調(diào)控核因子E2相關(guān)因子2(nuclear factor NF-E2-related factor 2,Nrf2)/抗氧化反應(yīng)元件(antioxidant response element,ARE)信號(hào)通路,誘導(dǎo)下游靶基因、、的表達(dá),降低活性氧(reactive oxygen species,ROS)水平,進(jìn)而改善APAP引發(fā)的肝細(xì)胞損傷[15-17]。在環(huán)磷酰胺[18]、硫代乙酰胺(thioacetamide,TAA)[19]、-半乳糖胺(-galactosamine,-Gal-N)[20]、六氯環(huán)己烷(hexachlorocyclohexane,HCH)[21]、四氯化碳(carbon tetrachloride,CCl4)[22-24]等化學(xué)毒物誘導(dǎo)的肝損傷動(dòng)物模型中,余甘子可升高體內(nèi)超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)、還原型谷胱甘肽(reduced glutathione,GSH)、谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-Px)水平,降低丙二醛(malonaldehyde,MDA)水平[18-24],提示余甘子的抗氧化作用是發(fā)揮保肝的主要機(jī)制之一。除此之外,在鐵[25]、砷[26]、鎘[27]、赭曲霉毒素[28]等造成的重金屬或毒物性肝損傷模型中,余甘子也可以降低動(dòng)物血清中丙氨酸氨基轉(zhuǎn)移酶(alanine aminotransferase,ALT)及天門冬氨酸氨基轉(zhuǎn)移酶(aspartate aminotransferase,AST)含量,從而減少肝細(xì)胞受損,改善肝功能,其機(jī)制亦主要與調(diào)節(jié)氧化應(yīng)激平衡有關(guān)。
2.2.1 沒食子酸 沒食子酸是余甘子質(zhì)量控制的重要指標(biāo)性成分,具有抗菌、抗炎、抗氧化及抗癌等廣泛的生物活性。研究表明,沒食子酸可通過清除自由基、抑制MDA水平、激活抗氧化酶和下調(diào)促炎標(biāo)志物、增加肝再生基因的表達(dá)來改善CCl4誘導(dǎo)的肝損傷[29-30]。此外,沒食子酸也被證實(shí)對(duì)阿霉素[31]、APAP[32]、過氧化叔丁醇[33]、亞砷酸鈉[34]、甲氨蝶呤[35]、氟西汀[36]、乙醇[37]等因素誘導(dǎo)的肝損傷具有改善作用。在過氧化叔丁醇誘導(dǎo)的肝L02細(xì)胞模型中,沒食子酸通過干擾Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(kelch-like ECH-associated protein 1,Keap1)和Nrf2之間的蛋白-蛋白相互作用,誘導(dǎo)細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular-signal-regulated kinases,ERK)/Nrf2介導(dǎo)的抗氧化信號(hào)通路來減輕肝細(xì)胞損傷[33]。沒食子酸還可改善亞砷酸鈉引起的大鼠肝損傷,其機(jī)制可能與清除自由基和增加細(xì)胞內(nèi)抗氧化能力有關(guān)[34]。
2.2.2 鞣花酸 鞣花酸是一種天然多酚,存在于多種植物藥材中,在余甘子中質(zhì)量分?jǐn)?shù)為1.00%~3.81%[38],其對(duì)于酒精[39]、化學(xué)毒物[40]、重金屬[41-42]和藥物[43]等造成的肝損傷以及免疫性肝損傷[44]均有顯著的改善作用。鞣花酸可通過抑制核因子-κB(nuclear factor-κB,NF-κB)、B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)通路,調(diào)節(jié)Nrf2和半胱氨酸天冬氨酸蛋白酶(cystein-asparate protease,Caspase)-3通路,改善CCl4誘導(dǎo)的肝損傷[40]。對(duì)于右旋糖酐鐵誘導(dǎo)的小鼠肝損傷,鞣花酸可以清除自由基、抑制過量ROS的產(chǎn)生以及上調(diào)Caspase-3和多聚ADP核糖聚合酶(poly ADP-ribose polymerase,PARP)的表達(dá),顯示其對(duì)鐵過負(fù)荷誘導(dǎo)的肝損傷有保護(hù)功能[42]。在刀豆球蛋白A誘導(dǎo)的小鼠免疫性肝損傷中,鞣花酸可通過Toll樣受體(toll-like receptor,TLR)和絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)/NF-κB信號(hào)通路改善T細(xì)胞介導(dǎo)的肝炎[44]。
2.2.3 柯里拉京 柯里拉京是一種在余甘子中含量較高的水溶性鞣質(zhì),具有較強(qiáng)的抗炎、抗氧化、保肝和抗腫瘤等藥理活性[45]。據(jù)報(bào)道,在被敲除Nrf2的肝HepG2細(xì)胞模型中,柯里拉京被證實(shí)可通過增強(qiáng)腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)/糖原合酶激酶3β(glycogen synthase kinase 3β,GSK3β)-Nrf2信號(hào)通路減輕APAP導(dǎo)致的肝細(xì)胞損傷;柯里拉京可通過調(diào)控AMPK/GSK3β-Nrf2信號(hào)通路緩解被敲除Nrf2的小鼠急性肝功能衰竭[46]。對(duì)于α-異硫氰酸萘酯誘導(dǎo)的膽汁淤積型肝損傷,柯里拉京可升高SOD,降低MDA水平,減少NF-κB p65的表達(dá)[47]。此外,從余甘子中分離的沒食子酸十二酯也被證明能減輕CCl4誘導(dǎo)的急性肝損傷和慢性肝纖維化程度[30]。余甘子提取物及單體成分對(duì)肝損傷的保護(hù)作用及機(jī)制見表1。
上述研究表明升高機(jī)體抗氧化酶活性或水平,減少氧化應(yīng)激緩解肝臟炎癥反應(yīng)可能是其對(duì)不同誘因?qū)е赂螕p傷發(fā)揮保護(hù)作用的重要共性機(jī)制之一,一定程度上體現(xiàn)了余甘子中多成分協(xié)同保肝的功能特點(diǎn)。然而,余甘子中除酚酸類的其他類型成分是否亦有抗肝損傷作用仍需進(jìn)一步深入挖掘。
表1 余甘子提取物及單體成分對(duì)肝損傷的保護(hù)作用及機(jī)制
Table 1 Protective effects and mechanisms of extracts and monomer components of P. emblica on liver injury
余甘子提取物及單體成分誘導(dǎo)因素動(dòng)物模型/細(xì)胞系主要結(jié)果文獻(xiàn) 余甘子精粉(主要成分為多酚)乙醇小鼠ALT↓,AST↓,TG↓,ADH↑,CAT↑,CYP2E1 mRNA↓,F(xiàn)AS↓,ADRP↓,TNF-α↓,IL-6↓,Caspase-3↓,PPARα↑11 余甘子水提取物乙醇Wistar大鼠ALT↓,AST↓,ALP↓,MDA↓,線粒體蛋白羰基↓,NO↓,γ-GT↓,SOD↑,GSH-Px↑,GSH↑,SDH↑,細(xì)胞色素C氧化酶↑,NADH↑,細(xì)胞色素↑12 赭曲霉毒素Swiss小鼠DNA↑,RNA↑,總蛋白↑28 余甘子50%乙醇提取物乙醇大鼠原代肝細(xì)胞、Wistar大鼠ALT↓,AST↓,血清TG↓,肝組織TG↓,TNF-α↓,IL-1β↓13 抗結(jié)核藥Wistar大鼠ALT↓,AST↓,ALP↓,GSH↑,GSH-Px↑,LPO↓,CYP2E1↓16 余甘子多酚乙醇肝BRL-3A細(xì)胞株細(xì)胞存活率↑,MDA↓,SOD↑,ALT↓,AST↓,GSH↑,Nrf2 mRNA↑,HO-1 mRNA↓,Nrf2↑,HO-1蛋白↓14
續(xù)表1
余甘子提取物及單體成分誘導(dǎo)因素動(dòng)物模型/細(xì)胞系主要結(jié)果文獻(xiàn) 余甘子水提醇沉物APAPHepG2細(xì)胞、C57BL/6J小鼠細(xì)胞存活率↑,ALT↓,AST↓,GSH↑,MDA↓,Nrf2/ARE↑,mNQO-1↑,mG6pdx↑,mSOD2↑,ROS↓17 余甘子總水提物環(huán)磷酰胺Swiss小鼠GSH↑,GSH-Px↑,CAT↑18 水提醇沉上清液TAA昆明小鼠ALT↓,AST↓,ALP↓,肝糖元↑,肝指數(shù)↓19 D-Gal-N昆明小鼠ALT↓,AST↓,ALP↓,SOD↑,MDA↓,肝糖元↑,肝指數(shù)↓20 余甘子粉末飼料HCHWistar大鼠SOD↑,MDA↓,GSH↑,GSH-Px↑,葡萄糖-6-磷酸脫氫酶↑,GGT↓,氫過氧化物↓,CAT↑21 余甘子甲醇提取物CCl4SD大鼠ALT↓,GOT↓,SOD↑,GSH↑,GSH-Px↑22 余甘子水煎液CCl4ICR小鼠ALT↓,AST↓,ALP↓,SOD↑23 余甘子甲醇萃取物CCl4Wistar大鼠ALT↓,GOT↓,LDH↓,GSH↑,GST↓,GR↑,GSH-Px↑,LPO↓24 余甘子可水解單寧硫酸亞鐵大鼠MDA↓,ALT↓,AST↓,LDH↓25 余甘子水蒸餾提取物亞砷酸鈉Swiss小鼠GOT↓,ALT↓,ALP↑,LPO↓,SOD↑,CAT↑,GST↑26 余甘子鮮果汁CdCl2大鼠MDA↓,GOT↓,ALT↓,ALP↓,GGT↓,總巰基↓,MT↓,LPO↓27 沒食子酸CCl4Wistar大鼠ALT↓,AST↓,ALP↓,GGT↓,TP—,膽紅素↓,Alb↑,MDA↓,CAT↑,SOD↑,GSH↑,TNF-α↓,COX-2↓,IL-1β↓,IL-6↓29 CCl4Wistar大鼠TG↓,TC↑,Alb—,TP↓,ALT↓,AST↓,GGT↓,GSH↑,CAT↑,GSH-Px↑,GR↑,GST↑,p53基因↑30 阿霉素Wistar大鼠ALT↓,ALP↓,TB↓,GSH↑,MDA↓,NO↓,GSH-Px↑,非蛋白巰基↑,SOD↓,H2O2↓,GSH-Px↑,CAT↑31 APAPSwiss小鼠ALT↓,AST↓,ALP↓,LPO↓,SOD↑,CAT↑,GSH-Px↑,GR↑,GST↑,TRG↑,MDA↓,TNF-α↓32 過氧化叔丁醇L02細(xì)胞ROS↓,GSH↑,Nrf2↑,ERK1/2↑,GCLC↑,HO-1↑33 亞砷酸鈉Wistar大鼠ALT↓,AST↓,ALP↓,GSH-Px—,SOD↑,CAT↑,MDA↓,NO↓34 甲氨蝶呤Wistar大鼠ALT↓,AST↓,ALP↓,GSH↑,MDA↓,CAT↑,SOD↑,GSH-Px↑35 氟西汀Wistar大鼠GOT↓,ALT↓,血脂↓,BUN↓,F(xiàn)BS↓、Cr↓,PC↓,MDA↓,TNF-α↓,F(xiàn)RAP↑,CAT↑,SOD↑,維生素C↑36 乙醇L02細(xì)胞系A(chǔ)LT↓,AST↓,LDH↓,RIP1↓,RIP3↓,DAMP↓,Nrf2↑37 鞣花酸酒精昆明小鼠ALT↓,AST↓,SOD↑,TG↓,GSH↑,MDA↓39 CCl4Wistar大鼠MDA↓,CAT↑,Caspase-3↑,Bcl-2↓,Nrf2↑,NF-κB↓,凋亡指數(shù)↓40 亞砷酸鈉Wistar大鼠AST↓,ALT↓,ALP↓,NO↑,SOD↑,GSH↑,MDA↓,Cr↓,BUN↓41 右旋糖酐鐵Swiss小鼠AST↓,ALT↓,ALP↓,SOD↑,CAT↑,GST↑,GSH↑,膽紅素↓,GGT↓,LPO↓,PC↓,膠原含量↓42 氨甲喋呤Wistar大鼠AST↓,ALT↓,ALP↓,PC↓,MPO↓,MDA↓,NO↓,GSH↑,CAT↑,GSH-Px↑,SOD↑,GSH-Px↑43 刀豆球蛋白ABALB/c小鼠AST↓,ALT↓,TLR2 mRNA↓,TLR4 mRNA↓,p-JNK↓,p-ERK↓,p-p38↓,NF-κB↑,TNF-α↓,IL-6↓,IL-1β↓,iNOS↓44 柯里拉京APAPHepG2細(xì)胞被敲除Nrf2GCLC↑,GCLM↑,NQO-1↑,HO-1↑,Keap1-Nrf2/ARE↑,LKB1-AMPK/ACC-GSK3β↑46 APAPC57BL/6小鼠被敲除Nrf2ALT↓,AST↓,ROS↓,MDA↓,MPO↓,SOD↑,GSH/GSSG↑,JNK↓,AMPK/GSK3β-Nrf2↑46 α-異硫氰酸萘酯大鼠ALT—,AST—,NF-κB p65↓,MPO↓,MDA↓,SOD↑,NO↑47
“↑”表示上升,“↓”表示下降,“—”表示無顯著變化,下表同 TG-三酰甘油 ADH-乙醇脫氫酶 CYP2E1-細(xì)胞色素P450 2E1 FAS-脂肪酸合成酶 ADRP-脂肪分化相關(guān)蛋白 TNF-α-腫瘤壞死因子-α IL-6-白細(xì)胞介素-6 PPARα-過氧化酶體增殖激活受體α ALP-堿性磷酸酶 γ-GT-γ-谷?;D(zhuǎn)移酶 SDH-琥珀酸脫氫酶 NADH-煙酰胺腺嘌呤二核苷酸 HO-1-血紅素加氧酶-1 LPO-脂質(zhì)過氧化物 GGT-谷酰轉(zhuǎn)肽酶 GOT-谷氨酸轉(zhuǎn)移酶 LDH-乳酸脫氫酶 GST-谷胱甘肽--轉(zhuǎn)移酶 GR-谷胱甘肽還原酶 COX-2-環(huán)氧合酶-2 TC-總膽固醇 Alb-白蛋白 MT-金屬硫蛋白 TB-膽紅素 TRG-總谷光甘肽 GCLC-谷氨酸半胱氨酸連接酶催化修飾亞基 NO-一氧化氮 Cr-肌酐 BUN-血尿素氮 FBS-空腹血糖 PC-蛋白羰基 FRAP-血漿鐵還原能力 RIP1-受體相互作用蛋白1 DAMP-損傷相關(guān)分子模式 MPO-髓過氧化物酶 iNOS-誘導(dǎo)型一氧化氮合酶 GCLC-谷氨酸半胱氨酸連接催化酶 GCLM-谷氨酸半胱氨酸連接修飾酶 LKB1-肝激酶B1 ACC-乙酰輔酶A羧化酶
“↑” means rising, “↓” means falling, “—” means no significant change, same as the below tables TG-triglyceride ADH-alcohol dehydrogenase CYP2E1-cytochrome P450 2E1 FAS-fatty acid synthetase ADRP-adipose differentiation related proteins TNF-α-tumor necrosis factor-α IL-6-interleukin-6 PPARα-peroxidase body proliferation activates alpha receptors ALP-alkaline phosphatase γ-GT-γ-glutamyl transferase SDH-succinodehydrogenase NADH-nicotinamide adenine dinucleotide hydrate HO-1-heme oxygenase-1 LPO-lipid peroxidation GGT-gamma glutamyl transpeptidase GOT-glutamate-oxalate-transaminase LDH-lactin dehydrogenase GST-glutathione--transferase GR-glutathione reductase COX-2-cyclooxygenase-2 TC-totalcholesterol Alb-albumin MT-metallothionein TB-total bilirubin TRG-total glutathione GCLC-glutamate cysteine ligase catalytic modify subunit NO-nitric oxide Cr-creatinine BUN-blood urea nitrogen FBS-fasting blood sugar PC-protein carbonyl FRAP-ferric reducing ability of plasma RIP1-receptor-interacting protein 1 DAMP-damage-associated molecular patterns MPO-myeloperoxidase iNOS-inducible nitric oxide synthase GCLC-glutamate-cysteine ligase catalytic GCLM-glutamate-cysteine ligase modifier LKB1-liver kinase B1 ACC-acetyl-CoA carboxylase
現(xiàn)代臨床表明余甘子對(duì)乙型肝炎有治療作用,實(shí)驗(yàn)研究也證明其有抗乙型肝炎病毒(hepatitis B virus,HBV)活性。惠安縣醫(yī)院收集30例乙型肝炎患者,經(jīng)余甘沖劑治療可顯著改善肝功能,臨床總有效率達(dá)89.9%[48]。在實(shí)驗(yàn)研究方面,有學(xué)者對(duì)28種藏藥提取物進(jìn)行抗HBV活性篩選,結(jié)果顯示僅余甘子提取物對(duì)肝HepG2.215細(xì)胞的乙型肝炎表面抗原(hepatitis B surface antigen,HBsAg)和e抗原(HBeAg)表達(dá)具有抑制作用[49]。一項(xiàng)余甘子抗HBV活性成分篩選研究結(jié)果表明,從余甘子中分離得到的雙沒食子酸、elaeocarpusin、1,6-二-沒食子?;?β--葡萄糖和沒食子酸具有顯著的抗HBV活性[50]。Lv等[51]從余甘子中分離出8個(gè)新的倍半萜苷類化合物和3個(gè)已知化合物,并對(duì)其抗HBV活性進(jìn)行評(píng)價(jià),結(jié)果表明phyllaemblic G6對(duì)HBsAg和HBeAg的分泌有抑制作用。
另外,有研究采用表達(dá)丙型肝炎病毒(hepatitis C virus,HCV)非結(jié)構(gòu)蛋白的HCV復(fù)制子亞基因組細(xì)胞培養(yǎng)系統(tǒng)探究沒食子酸對(duì)HCV表達(dá)的影響,結(jié)果發(fā)現(xiàn)沒食子酸較強(qiáng)的抗氧化能力可能抑制了肝癌細(xì)胞中HCV的復(fù)制[52]。鞣花酸也可抑制HBV誘導(dǎo)的病毒復(fù)制的轉(zhuǎn)錄激活,有效降低HBeAg的產(chǎn)生及其在血清中的積累,阻斷HBeAg對(duì)免疫耐受的抑制作用,恢復(fù)B細(xì)胞產(chǎn)生抗HBeAg免疫球蛋白,維持T細(xì)胞的活化和增殖,增強(qiáng)淋巴細(xì)胞的產(chǎn)生[53];鞣花酸在體外可抑制非結(jié)構(gòu)蛋白3/4A(non-structural protein 3/4A,NS3/4A)蛋白酶活性,并通過這種方式抑制NS4B/5A和NS5A/5B連接的蛋白水解過程,從而降低NS5B活性和HCV RNA水平[53]。在HCV復(fù)制子攜帶肝癌細(xì)胞系和基因嵌合小鼠模型中,柯里拉京通過抑制關(guān)鍵酶NS3蛋白酶和NS5B RNA依賴的RNA聚合酶,調(diào)控轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)/Smad通路抑制HCV復(fù)制[54]。此外,還有研究者從余甘子中提取得到其他單體成分,如沒食子酸乙酯和1,2,4,6-四--沒食子酰-β--葡萄糖,能抑制HepG2.2.15細(xì)胞表達(dá)HBsAg和HBeAg,表明其具有抗HBV活性[49-55]。
目前,余甘子抗病毒性肝炎的研究主要集中于乙型肝炎和丙型肝炎,而對(duì)其他類型病毒性肝炎的相關(guān)研究鮮見報(bào)道。此外,余甘子的抗HCV研究僅停留在體外細(xì)胞實(shí)驗(yàn)水平,考慮到相關(guān)成分的體內(nèi)代謝過程,其體內(nèi)藥效及作用機(jī)制仍需確認(rèn)和進(jìn)一步闡明。
NAFLD是目前發(fā)生率超過病毒性肝炎的一種臨床常見肝臟疾病[56]。余甘子及多種主要活性成分對(duì)NAFLD具有顯著改善作用。
Lu等[57]采用游離脂肪酸混合物刺激下的HepG2細(xì)胞為研究載體,觀察到余甘子水提物可降低其脂肪累積和減少ROS,推測其機(jī)制可能與調(diào)控脂肪生成相關(guān)基因表達(dá)及激活A(yù)MPK信號(hào)通路有關(guān)?;谟喔首诱{(diào)脂、抗炎、抗氧化的作用,朱煒等[58]探究其對(duì)高脂飲食誘導(dǎo)的NAFLD大鼠的改善作用,發(fā)現(xiàn)其水提物可降低大鼠ALT、AST活性的升高,改善肝臟損傷和減少炎癥的發(fā)生。在采用幼鼠NAFLD模型進(jìn)行余甘子乙醇提取物的藥效評(píng)價(jià)研究中,發(fā)現(xiàn)其可降低肝組織中膽固醇(cholesterol,CHO)、低密度脂蛋白(low density lipoprotein,LDL)含量從而減輕肝脂肪病變[59]。在高脂飲食[60]和蛋氨酸-膽堿缺乏飼料(methionine-choline deficiency,MCD)[61]誘導(dǎo)的NAFLD模型中,余甘子水提物通過減少脂肪變性,降低ALT和AST活性來減慢NAFLD的快速發(fā)展,其可能通過抑制促炎因子表達(dá)、上調(diào)抗氧化酶、抑制脂質(zhì)過氧化和肝臟特異性酶、降低脂肪生成基因固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element binding proteins-1c,SREBP-1c)的表達(dá)等阻止NAFLD的惡化[59-60]。
沒食子酸對(duì)NAFLD的調(diào)節(jié)作用也被相關(guān)實(shí)驗(yàn)研究證實(shí),其可通過激活HepG2細(xì)胞中的AMPK來減弱棕櫚酸誘導(dǎo)的脂肪積累,抑制凋亡相關(guān)基因的表達(dá)和Caspase-3/7活性。在含脂的肝癌Hepa 1-6細(xì)胞和RAW264.7細(xì)胞的共同培養(yǎng)中,沒食子酸可顯著降低炎癥介質(zhì)水平,并誘導(dǎo)抗氧化酶的表達(dá)[62]。沒食子酸能改善高脂飲食、粉塵等導(dǎo)致的NAFLD模型動(dòng)物的血清肝功能生化指標(biāo)異常,這可能與其抗氧化以及調(diào)節(jié)脂質(zhì)代謝作用相關(guān)[63-65]。鞣花酸可通過抑制TNF-α、IL-6等炎癥因子的表達(dá),提高抗氧化能力來改善蛋白激酶B(protein kinase B,)質(zhì)粒導(dǎo)入FVB小鼠中導(dǎo)致的NAFLD[66]。有研究者通過肝AML12細(xì)胞和動(dòng)物的生物學(xué)模型探究了柯里拉京對(duì)NAFLD的作用,發(fā)現(xiàn)其可通過減輕氧化應(yīng)激,降低自噬通量來改善NAFLD[67]。余甘子提取物及單體成分對(duì)NAFLD的保護(hù)作用及機(jī)制見表2。
上述研究表明余甘子提取物及單體成分抗NAFLD的機(jī)制主要與調(diào)控脂肪生成基因、降低脂肪積聚、改善氧化應(yīng)激及降低炎性反應(yīng)等相關(guān)。且已有研究廣泛地證實(shí)了余甘子水提物抗NAFLD的體內(nèi)有效性,鑒于水提物中除酚酸類成分外存在多糖等含量較高的大分子類物質(zhì),該類成分是否也具有抗NAFLD作用仍需進(jìn)一步深入探索。
表2 余甘子提取物及單體成分對(duì)NAFLD的保護(hù)作用及機(jī)制
Table 2 Protective effects and mechanisms of extracts and monomer components of P. emblica on NAFLD
余甘子提取物及單體成分誘導(dǎo)因素動(dòng)物模型/細(xì)胞系主要結(jié)果文獻(xiàn) 余甘子水提物游離脂肪酸混合物HepG2細(xì)胞ROS↓,PPARα↓,CPT-1↓,ACC↓,F(xiàn)AS↓,AMPK↑57 高脂飲食SD大鼠ALT↓,AST↓,TNF-α↓,IL-1β↓,COX-2↓58 高脂飲食SD大鼠ALT↓,AST↓,GLU↓,TG—,CHOL↓,LDL↓,HDL↓,Cr—,UA—,CAT↑,GSH-Px↑,GR↑,GST↑,SREBP-1c↓60 MCDC57BL/6小鼠ALT↓,AST↓,CHOL↓,TG↑,SOD↑,CAT↑,GSH-Px↑,GR↑,GST↑,CYP2E1↓,TNF-α↓,IL-1β↓61 余甘子70%乙醇回流提取物高脂飲食SD幼鼠ALT↓,AST↓,GLU↓,TG—,CHO↓,LDL↓,INS↓,HOMA-IR↓59 沒食子酸棕櫚酸小鼠HepG2細(xì)胞、Hepa 1-6小鼠巨噬細(xì)胞RAW264.7脂質(zhì)沉積↓,CD36↓,SLC27A2↓,ACACA↓,SREBP-1c↓,LXR α↓,AMPK↓,p-AMPK/AMPK↑,Bax/Bcl-2↓,ATF3mRNA↓,Caspase-3/7↑,TNF-α↓,IL-1β↓,HO-1↑,MCP-1↑,iNOS↓,CAT↑62 高脂飲食C57BL/6小鼠HDL↓,TCHO↓,INS↓,葡萄糖↓,TG↓,ALT↓,AST↓63 HPDSwiss小鼠ACC↓,AST—,ALT—,F(xiàn)AS↑,TG—,TC↓,INS↑,SREBP-1↓64 粉塵Wistar大鼠LDL—,TG↓,TC—,MDA↓,NF-κB↓,TNF-α↓,IL-6↓,HO1↓,HDL—65 鞣花酸Akt質(zhì)粒FVB小鼠AST↓,ALT↓,MDA↓,SOD↑,NF-κB↓,TNF-α↓,IL-6↓,COX-2↓66 柯里拉京高脂飲食AML12細(xì)胞、C57BL/6小鼠FASN↓,ACC1↓,SREBP-1c↓,PPARα↑,CPT-1α↓,ACOX1↑,MCP-1↓,F(xiàn)4/80↓,TNF-α↓,IL-6↓,TG↓,TC↓,LDL↓,LDH↓,CAT↑,GSH-Px↑,SOD↑,MDA↓,ROS↑67
CPT-1-肉堿棕櫚酰轉(zhuǎn)移酶-1 CHOL-膽固醇 UA-尿酸 LXR α-肝X受體α MCP-1-單核細(xì)胞趨化蛋白-1 HOMA-IR-穩(wěn)態(tài)模型胰島素抵抗指數(shù) TCHO-總膽固醇 ACACA-乙酰輔酶A羧化酶 Bax-細(xì)胞凋亡促進(jìn)基因 IR-胰島素抵抗 GLU-血糖 INS-胰島素 HDL-高密度脂蛋白 FASN-脂肪酸合酶 ACOX1-過氧化物酶酰基輔酶A氧化酶1
CPT-1-carnitine palmitoyl transferase-1 CHOL-cholesterol UA-uric acid LXR α-liver X receptor-alpha MCP-1-monocyte chemoattractant protein-1 HOMA-IR-homeostasis model assessment-insulin resistance TCHO-total cholesterol ACACA-acetyl-CoA carboxylase Bax-Bcl-2-associated X IR-insulin resistance GLU-blood glucose INS-insulin HDL-high density lipoprotein FASN-fatty acid synthase ACOX1-peroxidase acyl-coA oxidase 1
肝纖維化是慢性肝病向肝硬化及肝癌等終末期肝病轉(zhuǎn)變的重要病理過程,其中肝星狀細(xì)胞(hepatic stellate cell,HSC)的激活是肝纖維化發(fā)生的核心環(huán)節(jié)。Lu等[57]借助瘦素刺激下的HSC活化模型,發(fā)現(xiàn)余甘子水提物能減少其α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA)及I型膠原表達(dá),并促進(jìn)HSC凋亡。Mir等[68]使用CCl4和TAA聯(lián)合誘導(dǎo)大鼠肝纖維化,結(jié)果顯示余甘子可逆轉(zhuǎn)肝臟纖維化病理改變。在CCl4誘導(dǎo)的小鼠肝纖維化模型中,同樣證實(shí)余甘子乙醇提取物能減少膠原纖維的形成[69]。李萍等[70]制備得到余甘子水提醇沉上清液,發(fā)現(xiàn)其能降低CCl4誘導(dǎo)肝纖維化小鼠的ALT和AST活性,升高Alb及白蛋白/球蛋白值,降低羥脯氨酸(hydroxyproline,Hyp)含量,并認(rèn)為與其抗脂質(zhì)過氧化相關(guān)。在豬血清誘導(dǎo)的大鼠肝纖維化模型中,余甘子提取物也可抑制其TGF-β表達(dá),降低Hyp含量,并升高SOD活性,提示其保護(hù)作用可能與減少氧自由基及炎癥因子釋放、抑制HSC活化等有關(guān)[71-72]。此外,余甘子還能通過較強(qiáng)的鐵螯合能力顯著減少右旋糖酐鐵誘導(dǎo)的小鼠肝組織PC和Hyp的生成[73]。
沒食子酸在體內(nèi)外生物學(xué)模型中均被證實(shí)能減輕肝纖維化進(jìn)程。對(duì)大鼠原代HSC于不同時(shí)間給予不同劑量的沒食子酸干預(yù),結(jié)果發(fā)現(xiàn)沒食子酸以劑量和時(shí)間相關(guān)性地方式選擇性地抑制HSC激活,而對(duì)正常肝細(xì)胞無顯著影響[74]。Wang等[75]在CCl4小鼠纖維化實(shí)驗(yàn)中,得出沒食子酸可抑制HSC活化,降低基質(zhì)金屬蛋白酶的表達(dá)以此降低纖維化等級(jí)。有學(xué)者采用二甲基亞硝胺(dimethylnitrosamine,DMNA)誘導(dǎo)肝纖維化模型評(píng)價(jià)沒食子酸的體內(nèi)藥效作用,結(jié)果表明其能通過TGF-β/Smad通路來改善纖維化進(jìn)程[76]。沒食子酸還可下調(diào)肝組織中miR-21的表達(dá),上調(diào)miR-30和miR-200的表達(dá),抑制TGF-β1/Smad3信號(hào)來減輕TAA誘導(dǎo)大鼠肝纖維化[77]。
此外,在雙氯芬酸鈉誘導(dǎo)大鼠慢性肝病的肝組織病理切片中觀察到鞣花酸可以改善纖維延伸,減少大纖維間隔形成及纖維堆積[78]。鞣花酸還可通過抗氧化能力維持HSC靜止?fàn)顟B(tài),降低膠質(zhì)纖維酸性蛋白和α-SMA的表達(dá)[79]。在血吸蟲病誘導(dǎo)的肝纖維化小鼠中,柯里拉京可通過干擾miR-21/ Smad7/ERK信號(hào)通路抑制纖維化進(jìn)程[45],另有研究證實(shí)其也可通過調(diào)節(jié)IL-13/信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子6(signal transducer and activator of transcription 6,STAT6)信號(hào)通路,直接影響IL-13介導(dǎo)的肝纖維化信號(hào)通路[80]。訶子酸和訶黎勒酸在余甘子中含量也較高,研究發(fā)現(xiàn)其能通過抑制Smad信號(hào)通路來增加對(duì)HSC-T6細(xì)胞的毒性從而減少增殖,具有抗肝纖維化的潛在作用[81-83]。余甘子提取物及單體成分的抗肝纖維化作用及機(jī)制見表3。
表3 余甘子提取物及單體成分的抗肝纖維化作用及機(jī)制
Table 3 Anti-liver fibrosis effects and mechanisms of extracts and monomer components of P. emblica
余甘子提取物及單體成分誘導(dǎo)因素動(dòng)物模型/細(xì)胞系主要結(jié)果文獻(xiàn) 余甘子水提物瘦素HSC-T6細(xì)胞α-SMA↓,I型膠原↓,MMP-9↓,MMP-2↓,Caspase-3/-9↑,Bax/Bcl-2↑57 余甘子70%乙醇提取物CCl4昆明小鼠HA↓,PIIINP↓,LN↓,MDA↓,Hyp↓,SOD↑69 豬血清SD大鼠ALT↓,AST↓,GLO↓,TP↓,Alb↑,HA↓,PIIINP↓,LN↓, MDA↓,Hyp↓,TNF-α↓,TGF-β↓,SOD↑71-72 余甘子水提醇沉上清液CCl4昆明小鼠ALT↓,AST↓,Alb↑,A/G↑,Hyp↓70 余甘子70%甲醇提取物右旋糖酐鐵Swiss小鼠AST↓,ALT↓,SOD↑,GSH↑,CAT↑,ALP↓,GST↑,Hyp↓,PC↓73 沒食子酸 大鼠原代HSCsHSCs↓,CAL↑,caspase↑,ROS↑,Ca2+↓74 CCl4BALB/c小鼠纖維化等級(jí)↓,HA↓,cIV↓,ALT↓,AST↓,γ-GT↓,MMP-2↓,TIMP-1↓75 DMNASD大鼠ALT↓,AST↓,ALP↓,TB↓,SOD↑,CAT↑,GSH↑,MDA↓,TGF-β1↓,EGF↓,Hyp↓,α-SMA↓,PDGFR↓,TIMP-1↓,TIMP-2↓,I型膠原↓,p-Smad2↓,p-Smad3↓,76 TAAWistar大鼠ALT↓,AST↓,ALP↓,SOD↑,CAT↑,GSH↑,MDA↓,TGF-β1↓,p-Smad3↓,總Smad3↓,CAT↑,miR-30↓,miR-200↑,miR-21↓,TGF-β1/Smad 3↓77 鞣花酸雙氯芬酸鈉Wistar大鼠AST↓,ALT↓,ALP↓,Cr↓,總蛋白↓,尿酸↓,SOD↑,CAT↑78 HSCsGFAP↓,α-SMA↓79 柯里拉京吸血蟲Balb/c小鼠IL-13↓,吸血蟲抗原↓,miR-21 mRNA↓,Smad7 mRNA↑,p-Smad 1↓,p-Smad2↓,p-Erk1/2↓,Erk1/2↓,TGF-β1↓,CTGF↓45 吸血蟲Balb/c小鼠IL-13α1↓,IL-4α↓,SOCS1↓,KLF4↓,PPARγ↓,PPARδ↓,Phospho-STAT6↓80
MMP-9-基質(zhì)金屬蛋白酶-9 HA-透明質(zhì)酸 PIIINP-III型前膠原氨基端肽 LN-層黏連蛋白 TP-總蛋白 GLO-球蛋白 TIMP-基質(zhì)金屬蛋白酶抑制劑 cIV-IV膠原 EGF-表皮生長因子 PDGFR-血小板衍生生長因子受體 GFAP-膠質(zhì)纖維酸性蛋白 SOCS1-細(xì)胞因子信號(hào)抑制物1 KLF4-Krüppel樣因子4
MMP-9-matrixmetalloproteinase-9 HA-hyaluronic acid PIIINP-amino-terminal propeptide of type III procollagen LN-laminin TP-total protein GLO-globulin TIMP-matrix metallo-proteinase inhibitor cIV-type IV collagen EGF-epidermal growth factor PDGFR-platelet-derived growth factor receptor GFAP-glial fibrillary acidic protein SOCS1-suppressor of cytokine signaling 1 KLF4-Krüppel-like factor 4
綜上所述,多數(shù)研究證實(shí)余甘子水提醇沉上清液及70%醇提物具有減輕肝纖維化的作用,主要機(jī)制涉及抑制HSC活化及減輕膠原沉積等。然而,相關(guān)研究大多停留在藥效評(píng)價(jià)層面,缺乏深入的分子機(jī)制探討。沒食子酸、鞣花酸及柯里拉京等可通過多種信號(hào)通路途徑抑制HSC增殖、降低炎癥從而減輕肝纖維化,這為余甘子抗肝纖維化的整合作用機(jī)制闡釋提供了有益啟示和研究方向。
肝細(xì)胞癌是世界范圍內(nèi)常見的惡性腫瘤,動(dòng)物實(shí)驗(yàn)研究表明余甘子可有效防止化學(xué)性物質(zhì)誘導(dǎo)肝癌的發(fā)生。有學(xué)者觀察到余甘子可以降低二乙基亞硝胺(diethylnitrosamine,NDEA)誘導(dǎo)的大鼠肝腫瘤,并通過降低血清GGT、ALP、ALT和TB水平介導(dǎo)余甘子的抗肝癌作用[84]。在NDEA誘導(dǎo)大鼠肝細(xì)胞瘤中,余甘子顯著降低大鼠血清ALP、ALT、TB、GST和GSH水平[85]。在另外的NDEA誘導(dǎo)腫瘤、2-乙酰氨基氟(2-acetylamino fluorine,2-AAF)促進(jìn)肝癌的大鼠實(shí)驗(yàn)中,余甘子甲醇提取物預(yù)防治療可顯著抑制γ-GT病灶的出現(xiàn)、病理表現(xiàn)和腫瘤的形成,并抑制細(xì)胞增殖標(biāo)志物的表達(dá)[86]。此外,采用余甘子預(yù)防性治療可逆轉(zhuǎn)TAA誘導(dǎo)的氧化應(yīng)激和原發(fā)性肝癌的發(fā)生[87]。余甘子提取物也可誘導(dǎo)肝癌細(xì)胞株的凋亡[88-89],沒食子酸乙酯通過上調(diào)Bax蛋白表達(dá)、下調(diào)Bcl-2蛋白表達(dá)誘導(dǎo)人肝細(xì)胞癌BEL-7404凋亡,這可能與G0/G1和G2/M周期阻滯有關(guān)[89]。
沒食子酸對(duì)肝癌的抑制作用也被報(bào)道。鐘振國等[90]研究顯示沒食子酸5~80 mg/mL對(duì)肝癌BEL-7404細(xì)胞有不同程度的抑制作用,且測得其半數(shù)抑制濃度(median inhibitory concentration,IC50)值為24.61 μg/mL。在NDEA誘導(dǎo)大鼠體內(nèi)肝癌模型中,沒食子酸降低了肝功能生化指標(biāo)和癌癥標(biāo)志物增殖細(xì)胞核抗原(proliferation cell nuclear antigen,PCNA)水平[91]。Aglan等[92]同樣使用NDEA誘導(dǎo)大鼠肝癌發(fā)生,研究表明沒食子酸能下調(diào)血清甲胎蛋白(serum alpha-fetoprotein,AFP)、磷脂酰肌醇蛋白聚糖-3(glypican-3,GPC-3)、STAT3、細(xì)胞因子信號(hào)通路3(cytokine signaling pathway 3,SOCS3)、肝臟和基因,并通過調(diào)節(jié)信號(hào)轉(zhuǎn)導(dǎo)因子和STAT3信號(hào)通路來達(dá)到其抗氧化、抗炎、促凋亡和抗腫瘤效果。鞣花酸可通過減少肝細(xì)胞凋亡、抗血管生成和抗肝癌細(xì)胞增殖等活性來達(dá)到預(yù)防大鼠肝癌的作用[93]。在NDEA誘導(dǎo)的大鼠肝癌研究中,發(fā)現(xiàn)柯里拉京可通過線粒體凋亡途徑和死亡受體途徑顯著促進(jìn)肝癌細(xì)胞凋亡[94]。訶黎勒酸通過下調(diào)COX-2增強(qiáng)了HepG2細(xì)胞的凋亡,顯示出潛在抗肝癌活性[82]。余甘子提取物及單體成分的抗肝癌作用及機(jī)制見表4。
表4 余甘子提取物及單體成分的抗肝癌作用及機(jī)制
Table 4 Anti-liver cancer effects and mechanisms of extracts and monomer components of P. emblica
余甘子提取物及單體成分誘導(dǎo)因素動(dòng)物模型/細(xì)胞系主要結(jié)果文獻(xiàn) 余甘子10%水提物NDEAWistar大鼠GST↓,GGT↓,ALP↓,ALT↓,TB↓,LPO↓,ALT↓84 余甘子多酚部位NDEADLA腫瘤細(xì)胞系、Wistar大鼠γ-GT↓,GSH↓,GST↓,ALP↓,ALT↓,LPO↓,TB↓85 余甘子石油醚提取,甲醇萃取物NDEA、2-AAFWistar大鼠GSH↑,GST↓,γ-GT↓86 TAAWistar大鼠GSH↑,MDA↓,SGOT↓,SALT↓,GGT↓,ST↓,GSH-Px↑,GR↓,G6PD↓87 余甘子醋酸乙酯部位 BEL-7404細(xì)胞株BEL-7404細(xì)胞↓,Bax↑,Bcl-2↓89 沒食子酸NDEAWistar大鼠AST↓,ALT↓,ACP↓,ALP↓,LDH↓,GGT↑,AFP↓,CEA↓,AgNORs↓,PCNA↓,結(jié)合膽紅素↓,TB↓,非結(jié)合膽紅素↓91 NDEAWistar大鼠AFP↓,GPC-3↓,STAT3↓,SOCS3↓,肝GGT↓,HSPgp96基因↓92 鞣花酸NDEAWistar大鼠AFP↓,GPC-3↓,STAT3↓,SOCS3↑,VEGF↓93 柯里拉京 SMMC-7721、Bel-l7402、MHCC97-H細(xì)胞細(xì)胞增殖↓,p-Akt↓,Bcl-2↓,p53↑,Caspase-9↓,Caspase-3↓,PARP↓,F(xiàn)as↑,F(xiàn)asL↑,Caspase-8↓94
G6PD-葡萄糖-6-磷酸脫氫酶 CEA-癌胚抗原 CAL-鈣蛋白酶 VEGF-血管內(nèi)皮生長因子 AgNORs-核仁組成區(qū)嗜銀蛋白 FasL-Fas配體
G6PD-glucose 6-phosphate dehydrogenase CEA-carcinoembryonic antigen CAL-Calpai VEGF-vascular endothelial growth factor AgNORs- argyrophilicnucleolar organizer regions FasL-Fas ligand
由上述研究結(jié)果可知,余甘子對(duì)肝癌的治療改善作用與其清除自由基、抗脂質(zhì)過氧化、抑制腫瘤細(xì)胞增殖相關(guān)。
余甘子作為一種藥食同源植物藥,在印度醫(yī)藥、我國中醫(yī)藥及多個(gè)民族醫(yī)藥中具有廣泛且悠久的應(yīng)用歷史。近幾十年來,大量研究報(bào)道了余甘子的化學(xué)成分、藥理作用及相關(guān)功能產(chǎn)品,進(jìn)一步證實(shí)了其藥用價(jià)值的有效性和多向性。其中,對(duì)肝臟的保護(hù)和修復(fù)作用是余甘子功能活性研究的重要熱點(diǎn)之一。余甘子水提物和醇提物對(duì)肝損傷、NAFLD、病毒性肝炎、肝纖維化和肝癌等肝臟疾病均有較好的防治作用。從已報(bào)道的實(shí)驗(yàn)研究結(jié)果來看,余甘子中含量較高的單體成分如沒食子酸、柯里拉京、鞣花酸等顯示出與提取物相似的抗肝病作用,包括酒精、化學(xué)毒物、抗結(jié)核藥、高脂飼料等誘導(dǎo)的肝臟疾病等,其共同作用機(jī)制主要包括抗氧化、抗炎、抗肝細(xì)胞凋亡、調(diào)節(jié)脂質(zhì)代謝、抗腫瘤、維持HSC形態(tài)、減少細(xì)胞外基質(zhì)沉降等。余甘子提取物及單體成分對(duì)不同肝病的作用機(jī)制有所不同,涉及到的信號(hào)通路也不同,主要包括Nrf2/HO-1、Nrf2/ARE、AMPK/NF-κB、TGF-β/Smad、IL-13/STAT6等,體現(xiàn)了余甘子多成分、多環(huán)節(jié)及多通路干預(yù)肝臟疾病的作用優(yōu)勢。通過對(duì)余甘子提取物及單體成分作用及機(jī)制的關(guān)聯(lián)分析,一定程度上反映了酚酸類成分可能是余甘子抗肝病的主要活性組分(圖2)。
圖2 余甘子保肝活性成分與作用機(jī)制
目前對(duì)余甘子保肝作用研究取得了一定的進(jìn)展,但多數(shù)仍以粗提取物和酚酸組分為研究對(duì)象,缺乏系統(tǒng)的藥效物質(zhì)篩選和評(píng)價(jià)。如余甘子中的多糖含量較高且具有顯著的抗氧化等生物活性,而其是否有保肝活性卻鮮見報(bào)道。因此,今后可從余甘子整體化學(xué)物質(zhì)組出發(fā),系統(tǒng)篩選其保肝活性組分或成分,并基于此進(jìn)行組分提取和配伍優(yōu)化,從而提高該藥物資源的有效利用,并為相關(guān)功能產(chǎn)品的質(zhì)量控制提供質(zhì)量標(biāo)志物參考。此外,關(guān)于余甘子及單體成分的保肝研究主要集中于藥效評(píng)價(jià)層面,未來可結(jié)合代謝組學(xué)、蛋白質(zhì)組學(xué)及轉(zhuǎn)錄組學(xué)等系統(tǒng)生物學(xué)手段探究其作用機(jī)制,以闡釋其整合作用特點(diǎn),為擴(kuò)大余甘子抗肝病的臨床應(yīng)用提供參考,并為其相關(guān)藥物及功能保健品的開發(fā)提供科學(xué)依據(jù)。
利益沖突 所有作者均聲明不存在利益沖突
[1] 仇敏, 黃浩洲, 林俊芝, 等. 基于專利視角的余甘子全產(chǎn)業(yè)鏈開發(fā)現(xiàn)狀分析與評(píng)述[J]. 中草藥, 2020, 51(12): 3355-3364.
[2] 楊崇仁, 張穎君, 王海濤, 等. 余甘子應(yīng)用源流考 [J]. 亞太傳統(tǒng)醫(yī)藥, 2021, 17(2): 197-200.
[3] Sriwatcharakul S. Evaluation of bioactivities ofseed [J]., 2020, 6: 442-447.
[4] Krishnaveni M, Mirunalini S. Therapeutic potential of(Amla): The ayurvedic wonder [J]., 2010, 21(1): 93-105.
[5] 羅維. 余甘子干果活性成分的分離鑒定與生理活性研究 [D]. 廣州: 華南理工大學(xué), 2010.
[6] 劉延澤, 李海霞, 許利嘉, 等. 藥食兼用余甘子的現(xiàn)代研究概述及應(yīng)用前景分析 [J]. 中草藥, 2013, 44(12): 1700-1706.
[7] 中國藥典 [S]. 一部. 2020: 186.
[8] 周濤, 邱德文. 民族藥余甘子的本草學(xué)概況 [J]. 貴陽中醫(yī)學(xué)院學(xué)報(bào), 2002, 24(3): 3-5.
[9] 朱華偉, 李偉, 陳運(yùn)嬌, 等. 余甘子化學(xué)成分及其抗炎作用的研究進(jìn)展 [J]. 中成藥, 2018, 40(3): 670-674.
[10] 吳玲芳. 藏藥余甘子鞣質(zhì)部位體內(nèi)成分分析 [D]. 北京: 北京中醫(yī)藥大學(xué), 2014.
[11] 張志畢, 張媛, 于浩飛, 等. 余甘子提取物對(duì)小鼠急性酒精肝損傷的保護(hù)作用研究 [J]. 食品工業(yè)科技, 2017, 38(5): 350-356.
[12] Reddy V D, Padmavathi P, Varadacharyulu N.protects against alcohol-induced liver mitochondrial dysfunction in rats [J]., 2009, 12(2): 327-333.
[13] Pramyothin P, Samosorn P, Poungshompoo S,. The protective effects ofLinn. extract on ethanol induced rat hepatic injury [J]., 2006, 107(3): 361-364.
[14] 楊冰鑫. 余甘子多酚對(duì)酒精性肝損傷的保護(hù)作用研究 [D]. 廣州: 廣東工業(yè)大學(xué), 2020.
[15] Panchabhai T S, Ambarkhane S V, Joshi A S,. Protective effect of,and their combination against antitubercular drugs induced hepatic damage: An experimental study [J]., 2008, 22(5): 646-650.
[16] Tasduq S A, Kaisar P, Gupta D K,. Protective effect of a 50% hydroalcoholic fruit extract ofagainst anti-tuberculosis drugs induced liver toxicity [J]., 2005, 19(3): 193-197.
[17] 姚亮亮, 張丁, 劉家琛, 等. 余甘子對(duì)對(duì)乙酰氨基酚(APAP)誘發(fā)的肝損傷的保護(hù)機(jī)制研究 [J]. 現(xiàn)代食品科技, 2019, 35(3): 7-14.
[18] Haque R, Bin-Hafeez B, Ahmad I,. Protective effects ofGaertn. in cyclophosphamide-treated mice [J]., 2001, 20(12): 643-650.
[19] 李萍, 謝金鮮, 林啟云. 民族藥余甘子對(duì)-半乳糖胺致小鼠急性肝損傷的影響 [J]. 中國民族民間醫(yī)藥雜志, 2003, 12(3): 161-164.
[20] 李萍, 謝金鮮, 林啟云. 余甘子對(duì)-半乳糖胺致小鼠急性肝損傷的影響 [J]. 云南中醫(yī)中藥雜志, 2003, 24(1): 31-33.
[21] Anilakumar K R, Nagaraj N S, Santhanam K. Reduction of hexachlorocyclohexane-induced oxidative stress and cytotoxicity in rat liver byGaertn [J]., 2007, 45(5): 450-454.
[22] Lee C Y, Peng W H, Cheng H Y,. Hepatoprotective effect ofin Taiwan on acute liver damage induced by carbon tetrachloride [J]., 2006, 34(3): 471-482.
[23] 王錦菊, 王瑞國, 林久茂, 等. 余甘子對(duì)急性肝損傷的干預(yù)作用 [J]. 福建中醫(yī)學(xué)院學(xué)報(bào), 2006, 16(1): 42-43.
[24] Sultana S, Ahmad S, Khan N,. Effect of(Gaertn) on CCl4induced hepatic toxicity and DNA synthesis in Wistar rats [J]., 2005, 43(5): 430-436.
[25] Bhattacharya A, Kumar M, Ghosal S,. Effect of bioactive tannoid principles ofon iron-induced hepatic toxicity in rats [J]., 2000, 7(2): 173-175.
[26] Sharma A, Sharma M K, Kumar M. Modulatory role offruit extract against arsenic induced oxidative stress in Swiss albino mice [J]., 2009, 180(1): 20-30.
[27] Khandelwal S, Shukla L J, Shanker R. Modulation of acute cadmium toxicity byfruit in rat [J]., 2002, 40(5): 564-570.
[28] Verma R, Chakraborty D. Alterations in DNA, RNA and protein contents in liver and kidney of mice treated with ochratoxin and their amelioration byaqueous extract [J]., 2008, 65(1): 3-9.
[29] Ojeaburu S I, Oriakhi K. Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats [J]., 2021, 8: 177-185.
[30] Perazzoli M R, Perondi C K, Baratto C M,. Gallic acid and dodecyl gallate prevents carbon tetrachloride-induced acute and chronic hepatotoxicity by enhancing hepatic antioxidant status and increasing p53 expression [J]., 2017, 40(4): 425-434.
[31] Omobowale T O, Oyagbemi A A, Ajufo U E,. Ameliorative effect of gallic acid in doxorubicin-induced hepatotoxicity in Wistar rats through antioxidant defense system [J]., 2018, 15(2): 183-196.
[32] Rasool M K, Sabina E P, Ramya S R,. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice [J]., 2010, 62(5): 638-643.
[33] Feng R B, Wang Y, He C,. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response [J]., 2018, 119: 479-488.
[34] Gholamine B, Houshmand G, Hosseinzadeh A,. Gallic acid ameliorates sodium arsenite-induced renal and hepatic toxicity in rats [J]., 2021, 44(4): 341-352.
[35] Safaei F, Mehrzadi S, Khadem Haghighian H,. Protective effects of gallic acid against methotrexate-induced toxicity in rats [J]., 2018, 118(3): 152-160.
[36] Karimi-Khouzani O, Heidarian E, Amini S A. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats [J]., 2017, 69(4): 830-835.
[37] Zhou Y, Jin H, Wu Y,. Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism [J]., 2019, 57: 226-232.
[38] 羅蘭, 黃慧, 饒雪娥, 等. UPLC測定余甘子產(chǎn)地、采收時(shí)間和炮制對(duì)其質(zhì)量關(guān)系影響 [J]. 海峽藥學(xué), 2020, 32(1): 30-34.
[39] 楊麗娜, 喬楠, 胡敏予, 等. 鞣花酸對(duì)小鼠酒精性肝損傷的保護(hù)作用 [J]. 吉林大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2015, 41(5): 956-960.
[40] Aslan A, Gok O, Erman O,. Ellagic acid impedes carbontetrachloride-induced liver damage in rats through suppression of NF-κB, Bcl-2 and regulating Nrf-2 and caspase pathway [J]., 2018, 105: 662-669.
[41] Mehrzadi S, Fatemi I, Malayeri A R,. Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats [J]., 2018, 70(4): 712-719.
[42] Shendge A K, Basu T, Panja S,. An ellagic acid isolated fromleaves ameliorates iron-overload induced hepatotoxicity in Swiss albino mice through inhibition of oxidative stress and the apoptotic pathway [J]., 2018, 106: 454-465.
[43] Mehrzadi S, Mehrabani M, Malayeri A R,. Ellagic acid as a potential antioxidant, alleviates methotrexate-induced hepatotoxicity in male rats [J]., 2019, 119(2): 69-77.
[44] Lee J H, Won J H, Choi J M,. Protective effect of ellagic acid on concanavalin A-induced hepatitis via toll-like receptor and mitogen-activated protein kinase/nuclear factor κB signaling pathways [J]., 2014, 62(41): 10110-10117.
[45] Yang F, Wang Y, Xue J,. Effect of corilagin on the miR-21/smad7/ERK signaling pathway in a schistosomiasis- induced hepatic fibrosis mouse model [J]., 2016, 65(4): 308-315.
[46] Lv H, Hong L H, Tian Y,. Corilagin alleviates acetaminophen-induced hepatotoxicity via enhancing the AMPK/GSK3β-Nrf2 signaling pathway [J]., 2019, 17(1): 2.
[47] Jin F, Cheng D, Tao J Y,. Anti-inflammatory and anti-oxidative effects of corilagin in a rat model of acute cholestasis [J]., 2013, 13: 79.
[48] 陳章榮. 余甘沖劑治療乙型肝炎30例療效觀察 [J]. 福建中醫(yī)藥, 1985, 16(1): 32.
[49] 吉守祥, 鞠懷強(qiáng), 向陽飛, 等. 余甘子等28種藏藥提取物體外抗乙型肝炎病毒的實(shí)驗(yàn)研究 [J]. 中藥材, 2011, 34(3): 438-440.
[50] 侯海燕. 中藥余甘子抗HBV活性成分研究 [D]. 北京: 中國人民解放軍軍事醫(yī)學(xué)科學(xué)院, 2006.
[51] Lv J J, Wang Y F, Zhang J M,. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from[J]., 2014, 12(43): 8764-8774.
[52] Govea-Salas M, Rivas-Estilla A M, Rodríguez-Herrera R,. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity [J]., 2016, 11(2): 619-624.
[53] García-Ni?o W R, Zazueta C. Ellagic acid: Pharmacological activities and molecular mechanisms involved in liver protection [J]., 2015, 97: 84-103.
[54] Reddy B U, Mullick R, Kumar A,. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage [J]., 2018, 150: 47-59.
[55] Xiang Y F, Ju H Q, Li S,. Effects of 1,2,4,6-tetra--galloyl-β--glucose fromon HBsAg and HBeAg secretion in HepG2.2.15 cell culture [J]., 2010, 25(5): 375-380.
[56] 余虹, 武俊紫, 宋波, 等. 基于Notch信號(hào)通路研究銀杏內(nèi)酯B對(duì)非酒精性脂肪肝病的影響 [J]. 康復(fù)學(xué)報(bào), 2021, 31(2): 138-144.
[57] Lu C C, Yang S H, Hsia S M,Inhibitory effects ofL. on hepatic steatosis and liver fibrosis[J]., 2016, 20: 20-30.
[58] 朱煒, 俞宏斌, 戴闖, 等. 余甘子對(duì)大鼠非酒精性脂肪肝疾病中肝損傷和炎癥的抑制作用研究 [J]. 醫(yī)學(xué)研究雜志, 2012, 41(2): 140-143.
[59] 林敏華, 歐宇軒, 鄧桂清, 等. 余甘子提取物對(duì)幼鼠非酒精性脂肪肝病的防治作用 [J]. 解剖學(xué)研究, 2019, 41(5): 412-417.
[60] Huang C Z, Tung Y T, Hsia S M,. The hepatoprotective effect ofL. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats [J]., 2017, 8(2): 842-850.
[61] Tung Y T, Huang C Z, Lin J H,. Effect ofL. fruit on methionine and choline-deficiency diet-induced nonalcoholic steatohepatitis [J]., 2018, 26(4): 1245-1252.
[62] Tanaka M, Sato A, Kishimoto Y,. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes [J]., 2020, 12(5): E1479.
[63] Chao J, Huo T I, Cheng H Y,. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice [J]., 2014, 9(2): e96969.
[64] Sousa J N, Paraíso A F, Andrade J M O,. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice [J]., 2020, 134: 110881.
[65] Fanaei H, Mard S A, Sarkaki A,. Gallic acid treats dust-induced NAFLD in rats by improving the liver’s anti-oxidant capacity and inhibiting ROS/NF-κB/TNFα inflammatory pathway [J]., 2021, 24(2): 240-247.
[66] 張聰, 盛磊, 楊恬, 等. 鞣花酸對(duì)AKT基因轉(zhuǎn)染誘導(dǎo)小鼠脂肪性肝病中炎癥及氧化應(yīng)激的影響 [J]. 中國中藥雜志, 2019, 44(9): 1869-1875.
[67] Zhang R, Chu K, Zhao N,. Corilagin alleviates nonalcoholic fatty liver disease in high-fat diet-induced C57BL/6 mice by ameliorating oxidative stress and restoring autophagic flux [J]., 2019, 10: 1693.
[68] Mir A I, Kumar B, Tasduq S A,. Reversal of hepatotoxin-induced pre-fibrogenic events by: A histological study [J]., 2007, 45(7): 626-629.
[69] 彭百承, 周海松, 李萍. 余甘子抗實(shí)驗(yàn)性肝纖維化作用的研究 [J]. 內(nèi)蒙古中醫(yī)藥, 2012, 31(11): 86-87.
[70] 李萍, 謝金鮮, 林啟云, 等. 余甘子抗慢性肝損傷性肝纖維化的實(shí)驗(yàn)研究 [J]. 中西醫(yī)結(jié)合肝病雜志, 2002, 12(6): 355-357.
[71] 李萍, 楊政騰, 彭百承, 等. 余甘子抗大鼠免疫性肝纖維化作用(I) [J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2010, 16(6): 171-173.
[72] 李萍, 彭百承, 楊政騰, 等. 余甘子抗免疫性肝纖維化大鼠的作用(II) [J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2010, 16(8): 139-141.
[73] Sarkar R, Hazra B, Mandal N. Amelioration of iron overload-induced liver toxicity by a potent antioxidant and iron chelator,Gaertn [J]., 2015, 31(7): 656-669.
[74] Hsieh S C, Wu C H, Wu C C,. Gallic acid selectively induces the necrosis of activated hepatic stellate cells via a calcium-dependent calpain I activation pathway [J]., 2014, 102(1): 55-64.
[75] Wang J, Tang L, White J,. Inhibitory effect of gallic acid on CCl4-mediated liver fibrosis in mice [J]., 2014, 69(1): 21-26.
[76] Chen Y X, Zhou Z P, Mo Q G,. Gallic acid attenuates dimethylnitrosamine-induced liver fibrosis by alteration of smad phosphoisoform signaling in rats [J]., 2018, 2018: 1682743.
[77] Hussein R M, Anwar M M, Farghaly H S,. Gallic acid and ferulic acid protect the liver from thioacetamide-induced fibrosis in rats via differential expression of miR-21, miR-30 and miR-200 and impact on TGF-β1/Smad3 signaling [J]., 2020, 324: 109098.
[78] Gupta A, Kumar R, Ganguly R,. Antioxidant, anti-inflammatory and hepatoprotective activities ofand its bioactive component ellagic acid against diclofenac induced oxidative stress and hepatotoxicity [J]., 2021, 8: 44-52.
[79] Buniatian G H. Stages of activation of hepatic stellate cells: Effects of ellagic acid, an inhibiter of liver fibrosis, on their differentiation in culture [J]., 2003, 36(6): 307-319.
[80] Du P, Ma Q, Zhu Z D,. Mechanism of Corilagin interference with IL-13/STAT6 signaling pathways in hepatic alternative activation macrophages in schistosomiasis- induced liver fibrosis in mouse model [J]., 2016, 793: 119-126.
[81] Kinoshita S, Inoue Y, Nakama S,. Antioxidant and hepatoprotective actions of medicinal herb,L. from Okinawa island and its tannin corilagin [J]., 2007, 14(11): 755-762.
[82] Achari C, Reddy G V, Reddy T C,. Chebulagic acid synergizes the cytotoxicity of doxorubicin in human hepatocellular carcinoma through COX-2 dependant modulation of MDR-1 [J]., 2011, 7(5): 432-442.
[83] Chuang H Y, Ng L T, Lin L T,. Hydrolysable tannins of tropical almond show antifibrotic effects in TGF-β1-induced hepatic stellate cells [J]., 2011, 91(15): 2777-2784.
[84] Jeena K J, Joy K L, Kuttan R. Effect of,andon-nitrosodiethylamine induced hepatocarcinogenesis [J]., 1999, 136(1): 11-16.
[85] Rajeshkumar N V, Pillai M R, Kuttan R, Induction of apoptosis in mouse and human carcinoma cell lines bypolyphenols and its effect on chemical carcinogenesis [J]., 2003, 22(2): 201-212.
[86] Sultana S, Ahmed S, Jahangir T.and hepatocarcinogenesis: A chemopreventive study in Wistar rats [J]., 2008, 118(1): 1-6.
[87] Sultana S, Ahmed S, Sharma S,.reverses thioacetamide-induced oxidative stress and early promotional events of primary hepatocarcinogenesis [J]., 2004, 56(12): 1573-1579.
[88] Ngamkitidechakul C, Jaijoy K, Hansakul P,. Antitumour effects ofL.: Induction of cancer cell apoptosis and Inhibition oftumour promotion andinvasion of human cancer cells [J]., 2010, 24(9): 1405-1413.
[89] Zhong Z G, Wu D P, Huang J L,. Progallin A isolated from the acetic ether part of the leaves ofL. induces apoptosis of human hepatocellular carcinoma BEL-7404 cells by up-regulation of Bax expression and down-regulation of Bcl-2 expression [J]., 2011, 133(2): 765-772.
[90] 鐘振國, 黃金蘭, 梁紅, 等. 余甘子葉化學(xué)成分沒食子酸對(duì)人肝癌BEL-7404細(xì)胞株凋亡的影響 [J]. 中藥材, 2009, 32(7): 1097-1101.
[91] Jagan S, Ramakrishnan G, Anandakumar P,. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma [J]., 2008, 319(1/2): 51-59.
[92] Aglan H A, Ahmed H H, El-Toumy S A,. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action fromstudy [J]., 2017, 39(6): 1010428317699127.
[93] Zaazaa A M, Lokman M S, Shalby A B,. Ellagic acid holds promise against hepatocellular carcinomain an experimental model: Mechanisms of action [J]., 2018, 19(2): 387-393.
[94] Deng Y, Li X D, Li X,. Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways [J]., 2018, 39(6): 2545-2552.
Research progress on hepatoprotective effect and mechanism ofand its active components
YIN Ke-huan1, LUO Xiao-min1, DING Yi1, QUE Han-yun1, TAN Rui2, LI Da-peng3, GONG Pu-yang1, GU Jian1
1. College of Pharmacy, Southwest Minzu University, Chengdu 610041, China 2. College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China 3. West China School of Pharmacy, Sichuan University, Chengdu 610041, China
Yuganzi () is derived from dried ripe fruits of, and is an important medicinal and food homologous variety in China, which possessed a wide range of biological activities including anti-inflammatory, anti-oxidant, anti-tumor and immune regulation. By summarizing the pharmacological effects ofextracts and its active ingredients such as gallic acid, ellagic acid and corilagin, it is indicated that the extracts and monomer components have therapeutic effects on liver damage, viral hepatitis, non-alcoholic fatty liver, liver fibrosis and liver cancer mainly through inhibiting lipid peroxidation, reducing inflammation, anti-apoptosis of hepatocytes, regulating lipid metabolism, maintaining the homeostasis of hepatic stellate cells and promoting apoptosis of hepatoma cells. Hepatoprotective effects and related mechanisms ofand its components are summarized and analyzed in this paper, in order to provide a reference for further research and development ofin prevention and treatment of liver diseases.
L.; gallic acid; ellagic acid; corilagin; liver damage; viral hepatitis; non-alcoholic fatty liver; liver fibrosis; liver cancer
R282.710.5
A
0253 - 2670(2022)01 - 0295 - 13
10.7501/j.issn.0253-2670.2022.01.034
2021-09-22
國家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(82004069);四川省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20ZDYF3291);西南民族大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(校2021121)
尹可歡(1996—),女,碩士研究生,研究方向?yàn)橹兴幩幚韺W(xué)。E-mail: kehyin@163.com
龔普陽(1990—),講師,博士,主要從事中藥藥效物質(zhì)基礎(chǔ)研究。E-mail: gongpuyang1990@163.com
[責(zé)任編輯 崔艷麗]