張體彬,閆思慧,羅 敏,王 春,張通港,程 煜,馮 浩
基于電導(dǎo)率和結(jié)構(gòu)穩(wěn)定性陽離子比的微咸水灌溉水質(zhì)評估方法
張體彬1,3,閆思慧1,2,羅 敏1,2,王 春1,2,張通港1,2,程 煜1,2,馮 浩1,3
(1.西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,楊凌 712100;2. 西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100;3. 中國科學(xué)院水利部水土保持研究所,楊凌 712100)
電導(dǎo)率(Electrical Conductivity,EC)和結(jié)構(gòu)穩(wěn)定性陽離子比(Cation Ratio of Soil Structural Stability,CROSS)是評估微咸水對土壤滲透性能影響的重要指標(biāo)。雖然CROSS全面地考慮了Na+、K+、Ca2+和Mg2+對土壤結(jié)構(gòu)穩(wěn)定性的復(fù)雜影響,但CROSS的離子濃度系數(shù)在不同地區(qū)的適用性存在差異,有必要根據(jù)當(dāng)?shù)氐乃|(zhì)條件確定基于EC和CROSS評估方法的分類標(biāo)準(zhǔn)。該研究旨在分析CROSS替代鈉吸附比(Sodium Adsorption Ratio,SAR)評估水質(zhì)危害的合理性以及其在河套灌區(qū)的適用性。在河套灌區(qū)不同區(qū)域采集73份地下水水樣,并采用EC和SAR、EC和CROSS對其進(jìn)行評估。結(jié)果表明,基于2種方法的地下水分類結(jié)果中,僅有34.25%的水樣分類結(jié)果相同,并且不同的CROSS計算方法(基于陽離子相對絮凝能力(Flocculation)的CROSSf、相對分散能力(Dispersion)的CROSSd和優(yōu)化的(Optimal)CROSSopt)在河套灌區(qū)的適用性也不相同。建議采用CROSSd或CROSSopt,并結(jié)合土壤鹽分和離子濃度評估河套灌區(qū)地下水水質(zhì)。該評估方法更全面地考慮了地下水和土壤中的離子組成對土壤滲透性能的影響,有效避免了不合理的微咸水利用導(dǎo)致的土壤結(jié)構(gòu)惡化等問題,可為微咸水的安全可持續(xù)利用提供理論支撐。
入滲;水質(zhì);評估;SAR;CROSS;微咸水;陽離子
灌溉微咸水中的鹽分不僅影響作物生長,而且影響土壤的入滲性能。灌溉水Na+濃度過高會引起土壤板結(jié),造成土壤結(jié)構(gòu)破壞,降低水分入滲速率和飽和導(dǎo)水率[1]。這是由于土壤溶液中的鈉離子(Na+)是降低土壤導(dǎo)水性能的重要因素[2],Na+會中和土壤膠體電荷,造成土壤顆粒分散,阻塞水分下滲。所以,可以采用鈉吸附比(Sodium Adsorption Ratio,SAR)來評估灌溉水中Na+對土壤結(jié)構(gòu)造成的危害[3]。然而,SAR只考慮了Na+、鈣離子(Ca2+)和鎂離子(Mg2+)對土壤結(jié)構(gòu)特性的影響,忽略了鉀離子(K+)的作用。這是因為20世紀(jì)50年代以美國鹽土實驗室的科學(xué)家為代表的土壤學(xué)和灌溉學(xué)家認(rèn)為,灌溉水中的K+濃度一般遠(yuǎn)遠(yuǎn)低于Na+,而且K+對土壤物理性質(zhì)只有輕微影響甚至沒有影響[3]。然而,K+對土壤結(jié)構(gòu)穩(wěn)定性的影響不能忽略,研究表明[4-5]K+對土壤的分散程度約為Na+的1/3,并且K+累積會降低土壤飽和導(dǎo)水率,減少土壤大孔隙數(shù)量。有研究[6]甚至提出用鉀吸附比(Potassium Adsorption Ratio,PAR)評估K+對土壤入滲性能的影響。Buelow等[7]研究表明,PAR>2 (mmolc0.5/L0.5)(mmolc/L表示當(dāng)量濃度)的灌溉水會降低土壤的導(dǎo)水性能,其影響程度與土壤類型有關(guān)。Liang等[8]通過田間試驗發(fā)現(xiàn),可交換性Mg2+易被K+置換,K+在田間累積會導(dǎo)致Mg2+濃度降低,高濃度的可交換K+可能對土壤結(jié)構(gòu)穩(wěn)定性產(chǎn)生潛在的負(fù)面影響。SAR假定Ca2+和Mg2+對土壤顆粒絮凝的促進(jìn)程度相同,故Ca2+和Mg2+在分母中的系數(shù)相等[9]。雖然可以基于電導(dǎo)率(Electrical conductivity,EC)和SAR評估灌溉水質(zhì)對土壤入滲性能的影響[10-14],但SAR計算式中Mg2+的濃度系數(shù)可能并不符合實際情況。有研究指出[4],當(dāng)Mg2+的濃度比Ca2+大1個數(shù)量級時,Mg2+和Ca2+才能對土壤結(jié)構(gòu)穩(wěn)定性產(chǎn)生相同的影響。因此,當(dāng)灌溉水中Mg2+濃度較大時,利用EC和SAR評估微咸水水質(zhì)的結(jié)果與實際情況存在偏差。
近年來,Rengasamy等[15]在SAR的基礎(chǔ)上,提出采用結(jié)構(gòu)穩(wěn)定性陽離子比(Cation Ratio of Soil Structural Stability,CROSS)評估微咸水水質(zhì)對土壤結(jié)構(gòu)穩(wěn)定性的影響。CROSS為SAR和PAR對土壤結(jié)構(gòu)穩(wěn)定性作用的組合[16],兼顧了Na+、K+、Ca2+和Mg2+對土壤結(jié)構(gòu)的影響,且濃度系數(shù)均通過試驗分析確定,鑒于SAR在考慮陽離子影響方面的不足,可以利用CROSS替代SAR評估微咸水水質(zhì)和土壤黏粒分散性。在CROSS計算式中,離子濃度系數(shù)受多種因素限制,不僅與灌溉微咸水中離子的濃度有關(guān),還受土壤的礦物質(zhì)類型、土壤溶液的離子濃度等因素的顯著影響[17-18]。因為離子濃度系數(shù)具有土壤特異性[16],而且不同灌溉區(qū)域地下水中的離子組成不同,所以基于EC和CROSS評估微咸水水質(zhì)的標(biāo)準(zhǔn)也并不是一成不變的,應(yīng)該根據(jù)當(dāng)?shù)厮|(zhì)特點確定適應(yīng)當(dāng)?shù)毓喔葪l件的評估標(biāo)準(zhǔn)。
目前,基于EC和CROSS評估微咸水水質(zhì)方面的研究主要在美國和澳大利亞等國家,且對于含K+和Mg2+濃度較高的地區(qū),CROSS的適用性明顯優(yōu)于SAR[9,15,19]。因為微咸水CROSS值與土壤黏粒分散性高度相關(guān),土壤黏粒分散改變土壤的孔隙分布,這是土壤入滲速率降低的重要原因[20]。雖然CROSS廣泛應(yīng)于灌溉水質(zhì)評估中,但是該水質(zhì)評價方法在國內(nèi)還未見報道。因此本文以河套灌區(qū)為例,評估CROSS在河套灌區(qū)評估微咸水水質(zhì)的適用性,并根據(jù)河套灌區(qū)地下水的水質(zhì)特點和土壤的理化性質(zhì)特征,確定適用于河套灌區(qū)的評估分類標(biāo)準(zhǔn),以期為微咸水長期安全利用提供理論支撐。
CROSS計算方法中的離子濃度系數(shù)是基于K+和Na+對土壤顆粒的分散作用、Ca2+和Mg2+的絮凝作用來確定[15]。Jayawardane等[16]考慮到CROSS計算式中K+和Mg2+的濃度系數(shù)可能具有土壤特異性,建議將K+和Mg2+的濃度系數(shù)分別用和來表示
式中CROSS表示結(jié)構(gòu)穩(wěn)定性陽離子比,(mmolc0.5/L0.5);和分別表示K+和Mg2+的濃度系數(shù);Na、K、Ca和Mg分別表示Na+、K+、Ca2+和Mg2+的當(dāng)量濃度,mmolc/L。
前人通過測定K+相對Na+對土壤顆粒的分散作用、Mg2+相對Ca2+對土壤顆粒的絮凝作用,調(diào)整離子濃度系數(shù),不斷修正CROSS計算方法。目前CROSS的計算方法主要有3種類型[15,21]:1)基于不同陽離子對土壤顆粒的相對絮凝能力[15,21](相對絮凝能力等于相對分散能力的倒數(shù),相對分散能力以導(dǎo)致土壤飽和導(dǎo)水率降低10%~15%時的電解質(zhì)濃度閾值(Threshold Electrolyte Concentrations,TEC)來表征);2)基于不同陽離子對土壤顆粒的相對分散能力[4];3)通過CROSS和TEC間線性擬合確定的優(yōu)化方法,以實測的水樣和土壤溶液數(shù)據(jù)為基礎(chǔ),擬合CROSS與TEC之間的線性關(guān)系,得到最優(yōu)的離子濃度系數(shù)數(shù)值[4]。以上3種方法計算式[4,15]如下:
式中CROSSf、CROSSd和CROSSopt分別代表基于陽離子相對絮凝能力、相對分散能力和優(yōu)化的不同CROSS的計算方法,(mmolc0.5/L0.5)。
此外,在基于EC和CROSS評估灌溉水質(zhì)時,需要全面考慮灌溉水質(zhì)特點和土壤的理化特性,這是因為陽離子導(dǎo)致的土壤黏粒分散或絮凝作用,不僅與陽離子自身的性質(zhì)有關(guān),還受土壤中其他陽離子的濃度、組成以及土壤的礦物質(zhì)類型的影響[22-25]。
基于EC和CROSS評估灌溉水質(zhì)的步驟如下:
1)根據(jù)EC、SAR和CROSS評估地下水水質(zhì)時,需要測定的水質(zhì)指標(biāo)包括EC、Na+、K+、Ca2+和Mg2+濃度。
2)根據(jù)離子濃度計算CROSSf、CROSSd、CROSSopt和SAR,SAR計算式[3]如下
式中SAR代表鈉吸附比,(mmolc0.5/L0.5)。
3)基于EC、SAR和CROSS綜合評估水質(zhì)對土壤入滲性能的影響,根據(jù)評估結(jié)果可以將水樣分為不降低、輕微降低和嚴(yán)重降低入滲速率3種類型[9,26],見表1。
表1 根據(jù)鈉吸附比或結(jié)構(gòu)穩(wěn)定性陽離子比評估水質(zhì)對土壤入滲性能的降低程度
注:若水樣參數(shù)同時滿足兩組分類范圍,則按照就劣不就優(yōu)的原則分類水樣。
Note: If the water sample parameters meet both groups of classification range, the water samples are classified in accordance with the principle of inferiority rather than superiority.
4)結(jié)合當(dāng)?shù)毓喔人巴寥廊芤褐械柠}分含量及陽離子組成,選擇適宜當(dāng)?shù)毓喔葪l件的CROSS計算方法,并根據(jù)得到的水質(zhì)評估分類結(jié)果調(diào)整評估閾值,確定符合該區(qū)域的最優(yōu)水質(zhì)評估標(biāo)準(zhǔn)。
本文以河套灌區(qū)為例,基于EC、SAR和CROSS評估河套灌區(qū)地下微咸水灌溉可能帶來的土壤滲透性能危害。數(shù)據(jù)源于文獻(xiàn)[27],水樣采自河套灌區(qū)不同區(qū)域的淺層地下水(圖1)。在采樣時,充分考慮灌區(qū)上、中、下游區(qū)域以及與灌水渠和排水渠的不同距離設(shè)置采樣點。
使用HANNA HI 9828多參數(shù)防水型水質(zhì)測定儀測定水樣EC,利用電感耦合等離子體原子發(fā)射光譜法(ICP-AES)測定Na+、K+、Ca2+和Mg2+濃度。有5份水樣缺少EC值,不滿足水質(zhì)評估的參數(shù)要求,因此,本文僅采用含有EC值的73份水樣(不包含排水渠內(nèi)水樣)。首先,根據(jù)EC、SAR和CROSS將水樣分類,再對比不同評估結(jié)果的差異,并分析CROSS不同計算方法的適用性。最后根據(jù)河套灌區(qū)的水質(zhì)特點和土壤鹽堿化特性調(diào)整分類標(biāo)準(zhǔn),得到適宜河套灌區(qū)的水樣評估方法。
圖1 河套灌區(qū)水質(zhì)采樣點位置[27]
2.2.1 水樣EC和陽離子組成分析
河套灌區(qū)地下水的EC分布在1.18~2.70 dS/m之間(25%~75%順序統(tǒng)計量,下同)(圖2a),4種陽離子濃度大小順序為Na+>Mg2+>Ca2+>K+(圖2b)。陽離子主要為Na+,占陽離子總量的78.96%,K+濃度最低,分布在0.04~0.16 mmolc/L之間,占Na+濃度的0.93%。Ca2+和Mg2+濃度均低于Na+但高于K+,雖然Mg2+濃度高于Ca2+,但僅為Ca2+濃度的1.64倍。有研究指出,當(dāng)Mg2+濃度至少比Ca2+高1個數(shù)量級時,兩者才可能對土壤絮凝產(chǎn)生相同的影響[4]。因此,在河套灌區(qū)利用SAR評估微咸水水質(zhì)時,假設(shè)Ca2+和Mg2+的濃度系數(shù)相同是不準(zhǔn)確的。
雖然地下水中K+和Mg2+濃度相對Na+較小,但是CROSS的計算值仍與SAR有較大差異(圖2c)。4個參數(shù)的最大值、最小值和中位數(shù)大小順序均為CROSSopt>CROSSd>CROSSf>SAR。由CROSS的計算公式可知,Mg2+的有效濃度系數(shù)<1,因此對于相同陽離子濃度的水樣,CROSS的計算值會高于SAR。CROSSf、CROSSd和CROSSopt的中位數(shù)分別比SAR增加61.42%、87.03%和119.44%,CROSSopt計算式中Mg2+的濃度系數(shù)較小,而水樣中的Mg2+濃度較高,因此計算結(jié)果偏大。
注:CROSSf、CROSSd和CROSSopt分別代表基于陽離子相對絮凝能力(Flocculation)、相對分散能力(Dispersion)和優(yōu)化(Optimal)的不同結(jié)構(gòu)穩(wěn)定性陽離子比的計算方法。
2.2.2 不同分類水樣參數(shù)特征分析
分別根據(jù)EC和SAR、CROSSf、CROSSd、CROSSopt評估水樣對土壤入滲的影響,以3種CROSS方法評估結(jié)果中至少2種結(jié)果相同作為最終CROSS評估結(jié)果,基于EC和SAR、CROSS方法的分類結(jié)果如表2所示。水樣共分為4組:1)組1共14份水樣,評估分類均為不降低入滲速率,水樣對應(yīng)的水源可以作為農(nóng)業(yè)灌溉用水,且不會引起潛在的土壤水分入滲速率降低風(fēng)險。2)組2共11份水樣,評估分類為降低入滲速率,包括輕微降低(8份)和嚴(yán)重降低入滲速率(3份)。3)組3共32份水樣,根據(jù)EC和SAR評估分類為不降低入滲速率,根據(jù)EC和CROSS分類為輕微(24份)和嚴(yán)重降低入滲速率(8份)。4)組4共16份水樣,根據(jù)EC和SAR的評估分類為輕微降低入滲速率,根據(jù)EC和CROSS分類為嚴(yán)重降低入滲速率,根據(jù)EC和CROSS評估水質(zhì)對土壤水分入滲能力的降低程度均大于基于EC和SAR。其中,組1和組2的水樣根據(jù)2種評估方法的分類等級相同,而組3和組4水樣根據(jù)2種評估方法的分類等級不同:73份樣本中共有48份水樣(組3和組4)根據(jù)2種評估方法的評估結(jié)果不一致,評估結(jié)果保持一致的水樣數(shù)目較少,共25份,占總體樣本數(shù)的34.25%。
組2水樣EC、SAR和CROSS計算值的中位數(shù)均小于其他組,且Na+濃度最低,中位數(shù)為3.65 mmolc/L,僅為組1的24.88%,雖然組1的Na+濃度大于組2,但是同時Ca2+和Mg2+濃度較大,因此SAR和CROSS計算值較?。ū?)。Ca2+和Mg2+抑制了Na+對土壤入滲性能的影響,整體不影響土壤水分入滲速率,說明灌溉水EC和離子濃度均會對土壤水分入滲速率造成影響,評估水質(zhì)需要綜合考慮灌溉水鹽分和離子濃度的影響。組3和組4的EC中位數(shù)均小于組1且大于組2,但組3和組4的CROSS計算值卻高于組1和組2,這說明高EC值搭配低CROSS值的微咸水更有利于土壤結(jié)構(gòu)穩(wěn)定性,促進(jìn)水分下滲。
組1水樣對入滲性能影響程度最小,組4水樣對入滲性能影響最嚴(yán)重,但組1和組4的EC值卻存在重合部分,表明在離子組成不同的情況下,即使水樣的EC值相同,微咸水對土壤入滲性能的影響也會存在顯著差異。4個組的Na+/K+值(中位數(shù))分別為97.80、45.63、120.23和195.09,Na+/Ca2+值(中位數(shù))分別為5.08、4.29、9.65和46.65,Na+/Mg2+值(中位數(shù))分別為3.62、3.17、5.88和17.45。組3和組4的Na+/K+、Na+/Ca2+、Na+/Mg2+值均大于組1和組2,且組4的比值大于組3。對于離子濃度比值較大的水樣,2種評估方法的分類結(jié)果會產(chǎn)生差異。在評估灌溉水質(zhì)對土壤入滲性能的影響時,若灌溉水中的Na+/K+、Na+/Ca2+、Na+/Mg2+濃度比值較大,應(yīng)盡量考慮離子組成的影響,建議根據(jù)EC和CROSS評估灌溉水中陽離子對土壤結(jié)構(gòu)穩(wěn)定性和入滲性能的影響。
表2 基于不同方法的水質(zhì)評估分類結(jié)果
表3 水樣主要參數(shù)
2.3.1 基于EC和CROSS的河套灌區(qū)地下水灌溉適宜性評估
灌溉水中的EC、Na+/K+、Na+/Ca2+和Na+/Mg2+濃度比值都是影響土壤水分滲透性能的重要因素(表3)。河套灌區(qū)土壤含鹽量高,且鈉質(zhì)化嚴(yán)重[28],因此,適用河套灌區(qū)灌溉的微咸水應(yīng)含有較低的含鹽量和Na+濃度。Ca2+可以改良土壤孔隙結(jié)構(gòu),促進(jìn)土壤團聚體穩(wěn)定性,因此,在土壤脫鹽的基礎(chǔ)上,可以選用Ca2+濃度相對較高的微咸水,通過改善土壤結(jié)構(gòu)以降低土壤堿化度[29]。水質(zhì)分類結(jié)果中(表3),組1水樣對土壤入滲性能的影響程度最小,可作為農(nóng)業(yè)灌溉用水,組2水樣對土壤入滲性能的影響程度略高于組1,但是EC值和Na+濃度均最低,有助于緩解河套灌區(qū)嚴(yán)重的鹽分累積和堿化度高的問題,而且組2水樣Na+/Ca2+值最小,相對高濃度的Ca2+可以置換Na+促進(jìn)鹽分淋洗,有益于土壤結(jié)構(gòu)穩(wěn)定性。雖然組3水樣根據(jù)EC和CROSS分類為降低入滲速率,但組3水樣的EC值和CROSS計算值與組1水樣相差不大,說明組3水樣對入滲性能影響程度較小。組4水樣根據(jù)EC和CROSS評估分類為嚴(yán)重降低入滲速率,EC值小于組1,但Na+/Ca2+值極高,CROSS計算值約為組1的3倍,因此并不適宜灌溉。相比于組4水樣,組2水樣不僅有利于鹽分淋洗,而且可以緩解土壤堿化程度,由此可見,組2水樣最適宜作為河套灌區(qū)的灌溉用水,組1和組3水樣的適宜程度介于組2和組4之間,且組1水樣適宜程度高于組3。但是組2對應(yīng)水樣范圍較小,輕微降低入滲速率水樣只有8份,且水樣對應(yīng)EC值較低,在0.53~1.25 dS/m之間,因此,只將組2水樣定義為適宜河套灌區(qū)灌溉水樣并不符合實際農(nóng)田灌溉情況。綜上,將組2、組3、組4的所有嚴(yán)重降低入滲速率水樣分類為不適宜灌溉水樣,其余水樣均為適宜灌溉水樣。基于EC、CROSSf、CROSSd和CROSSopt的數(shù)值,采用分位數(shù)回歸方法,取5%~95%順序統(tǒng)計量,剔除異常值,把水樣數(shù)據(jù)按照0.50 dS/m分區(qū),確定區(qū)域內(nèi)降低入滲速率水樣的下邊界和不降低入滲速率的上邊界水樣數(shù)據(jù),將水樣數(shù)據(jù)進(jìn)行擬合,確定適宜灌溉和不適宜灌溉水樣分界線(圖3)。分類圖中CROSSf、CROSSd和CROSSopt的分界線方程分別為=4.93+7.31(2=0.80,<0.001)、=6.56+7.72(2=0.81,<0.001)和=9.76+6.61(2=0.82,<0.001),分界線上方區(qū)域為不適宜灌溉,下方為適宜灌溉。
圖3 河套灌區(qū)地下水質(zhì)評估分類圖
評估結(jié)果發(fā)現(xiàn),河套灌區(qū)不適宜灌溉的水樣更多分布在灌區(qū)的上游(西部)、靠近總排水干渠的位置(圖4)。河套灌區(qū)作為自流灌區(qū),地勢自西向東降低,淺層地下水也整體上自西向東流動,地下水含鹽量也逐漸增加[30]。鄭復(fù)樂等[31]指出Na+的遷移性較強,Na+可以隨上行水返回到土壤中。因此,在地下水的自流過程中,灌區(qū)東部區(qū)域地下水中Na+濃度的相對降低導(dǎo)致CROSS較小。這都與本文結(jié)果一致,相比低EC和高CROSS的微咸水,高EC和低CROSS值的微咸水(東部區(qū)域)可以更好維持土壤結(jié)構(gòu)的穩(wěn)定性,更適宜灌溉。李澤巖等[32]基于SAR、滲透系數(shù)、鈉含量和殘余碳酸鈉評估了河套灌區(qū)的地下水水質(zhì),結(jié)果表明不適宜灌溉的地下水主要分布在灌區(qū)西北部總排干位置,與本文評估結(jié)果一致(圖4),這也從側(cè)面證實了基于EC和CROSS評估方法的科學(xué)性。
圖4 河套灌區(qū)適宜和不適宜灌溉水樣分布圖
2.3.2 基于EC和CROSS的灌溉水對土壤水分入滲性能影響評估
根據(jù)河套灌區(qū)的地下水和土壤中的EC和離子濃度特點,評估結(jié)果中所有嚴(yán)重降低入滲速率的水樣被視為不適宜灌溉(圖3)。但是在農(nóng)業(yè)生產(chǎn)實踐中,輕微降低入滲速率的灌溉水同樣存在造成土壤結(jié)構(gòu)惡化的風(fēng)險。為避免因分類標(biāo)準(zhǔn)的誤差而導(dǎo)致的不合理農(nóng)業(yè)水源利用,可以將輕微降低和嚴(yán)重降低入滲速率均歸類為降低入滲速率進(jìn)行水質(zhì)評估(圖5)。
圖5 水樣EC和CROSS分布圖
根據(jù)EC和SAR、CROSSf、CROSSd、CROSSopt評估灌溉水質(zhì),定義為降低土壤水分入滲速率的水樣數(shù)目分別為27(表2)、55、59和66份(圖5)。根據(jù)EC和SAR評估水質(zhì),將較多可能引起土壤水分入滲速率降低的水樣評估為不會降低入滲速率,其分類結(jié)果與實際情況可能有較大偏差。根據(jù)河套灌區(qū)水樣數(shù)據(jù)計算的CROSSf 根據(jù)水樣EC和CROSSf、CROSSd、CROSSopt的分布位置特征(圖6),可以確定灌溉水對土壤入滲性能影響的水質(zhì)評估標(biāo)準(zhǔn)(確定方法同圖3)。CROSSf、CROSSd和CROSSopt的分界線方程分別為=7.15-2.72(2=0.88,<0.001)、=6.60-2.51(2=0.99,<0.001)和=6.73-2.68(2=0.95,<0.001)(圖6)。分界線上方區(qū)域為降低入滲速率,下方為不降低入滲速率。EC值相同的水樣,CROSS數(shù)值越高代表水樣中的陽離子對土壤的黏粒分散性越強,對入滲性能的影響也越強(圖 6左上角區(qū)域)。在水樣數(shù)據(jù)量較多時,對于評估結(jié)果均為降低入滲速率的水樣(位于圖6左上角區(qū)域),越偏離分類線,土壤入滲速率降低程度越大,相對而言越不適宜灌溉。因此,將水樣分類為降低和不降低入滲速率2種類型后,參照總水樣數(shù)量和當(dāng)?shù)貙嶋H灌溉和生產(chǎn)條件,可以調(diào)整適宜和不適宜灌溉水樣分類標(biāo)準(zhǔn)。水質(zhì)評估分類圖的分界線根據(jù)河套灌區(qū)水樣參數(shù)確定,而河套灌區(qū)水樣EC和陽離子濃度較高,對于含鹽量和陽離子濃度較小地區(qū),灌溉水質(zhì)評估標(biāo)準(zhǔn)的適用性還有待進(jìn)一步校準(zhǔn)驗證。 圖6 水質(zhì)評估分類圖 本文評估了河套灌區(qū)73份地下水水質(zhì)可能對土壤入滲性帶來的危害,根據(jù)EC和CROSS的評估分類結(jié)果與根據(jù)EC和SAR的結(jié)果存在較大差異。建議在河套灌區(qū)可以根據(jù)EC和CROSSd或CROSSopt評估水質(zhì)危害,并結(jié)合當(dāng)?shù)毓喔葏^(qū)域的地質(zhì)條件,合理選取最適宜灌溉的水樣。本文建議的水質(zhì)評估方法只需要測定水樣EC與Na+、K+、Ca2+、Mg2+濃度,和SAR相比僅增加了K+濃度指標(biāo),灌溉水中K+濃度測定較簡單[33-34],實施較為可行。 微咸水在農(nóng)業(yè)生產(chǎn)中的利用持續(xù)增加,微咸水的長期高效利用是緩解淡水資源短缺的重要內(nèi)容[35-39]。因此,為了提高微咸水的利用效率,采用準(zhǔn)確的水質(zhì)評估方法具有重要意義。水質(zhì)評估標(biāo)準(zhǔn)并不是一成不變且適用所有地區(qū)的,應(yīng)該根據(jù)不同地區(qū)的水樣參數(shù)特征,調(diào)整水質(zhì)評估標(biāo)準(zhǔn),以確保符合當(dāng)?shù)厮|(zhì)特點[9]。本文分析的水樣數(shù)據(jù)均來源于河套灌區(qū)且數(shù)量較少,后續(xù)可以開展實地試驗并增加樣本量,對水質(zhì)評估指南進(jìn)行修正,以尋求更適用于當(dāng)?shù)貤l件的水質(zhì)評估方法。 本文以河套灌區(qū)為例,分析了利用電導(dǎo)率(Electrical Conductivity,EC)和結(jié)構(gòu)穩(wěn)定性陽離子比(Cation Ratio of Soil Structural Stability)評估微咸水水質(zhì)的適用性,并根據(jù)河套灌區(qū)的水質(zhì)和地質(zhì)特點,得到適應(yīng)當(dāng)?shù)毓喔葪l件的水質(zhì)評估標(biāo)準(zhǔn),結(jié)論如下: 1)分別通過EC和鈉吸附比(Sodium Adsorption Ratio,SAR)、EC和CROSS對水質(zhì)進(jìn)行評估分類,分類結(jié)果相同的水樣數(shù)量占總樣本量的34.25%。在河套灌區(qū)宜使用EC和CROSS評估灌溉水水質(zhì),CROSS更多地考慮了灌溉水中K+和Mg2+的作用,可以提高分類標(biāo)準(zhǔn)的精確度,避免由于不合理的灌溉水利用而導(dǎo)致的土壤結(jié)構(gòu)惡化等問題。 2)根據(jù)河套灌區(qū)土壤的離子濃度特點,在灌溉水水質(zhì)對土壤入滲性能的分類標(biāo)準(zhǔn)基礎(chǔ)上,調(diào)整分類閾值,得到了河套灌區(qū)適宜灌溉與否的水質(zhì)分類標(biāo)準(zhǔn)(2>0.80,<0.001)。 3)通過比較不同的CROSS計算方法在河套灌區(qū)的適用性,優(yōu)化的CROSS計算方法(CROSSopt)在河套灌區(qū)的適用性較高。根據(jù)河套灌區(qū)的水質(zhì)特點,得到了適用于灌區(qū)地下水的水質(zhì)對土壤入滲性能的影響分類標(biāo)準(zhǔn)(2>0.88、<0.001)。 [1] 李韻珠,李保國. 土壤溶質(zhì)運移[M]. 北京:科學(xué)出版社,1998. [2] Yaduvanshi N P S, Sharma D R. Tillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigation[J]. Soil and Tillage Research, 2007, 98(1): 11-16. [3] Richards L A. Diagnosis and improvement of saline and alkali soils[J]. Soil Science, 1954, 2: 154. [4] Smith C J, Oster J D, Sposito G. Potassium and magnesium in irrigation water quality assessment[J]. Agricultural Water Management, 2015, 157: 59-64. [5] Assouline S, Russo D, Silber A, et al. Balancing water scarcity and quality for sustainable irrigated agriculture[J]. Water Resources Research, 2015, 51(5): 3419-3436. [6] Chen Y, Banin A, Borochovitch A. Effect of potassium on soil structure in relation to hydraulic conductivity[J]. Geoderma, 1983, 30(1/2/3/4): 135-147. [7] Buelow M C, Steenwerth K, Parikh S J. The effect of mineral-ion interactions on soil hydraulic conductivity[J]. Agricultural Water Management, 2015, 152: 277-285. [8] Liang X Y, Rengasamy P, Smernik R, et al. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability?[J]. Agricultural Water Management, 2021, 243: 106422. [9] Qadir M, Sposito G, Smith C J, et al. Reassessing irrigation water quality guidelines for sodicity hazard[J]. Agricultural Water Management, 2021, 255: 107054. [10] 石秀蘭. 應(yīng)用鈉吸附比評價灌溉水質(zhì)[J]. 農(nóng)田水利與小水電,1990(3):15-17. [11] Suarez D L, Wood J D, Lesch S M. Effect of SAR on water infiltration under a sequential rain-irrigation management system[J]. Agricultural Water Management, 2006, 86(1/2): 150-164. [12] 郭凱,張秀梅,李向軍,等. 不同鈉吸附比的咸水結(jié)冰融水入滲對蘇打堿土的水鹽運移影響[J]. 水土保持學(xué)報,2010,24(4):94-98. Guo Kai, Zhang Xiumei, Li Xiangjun, et al. Effect of the water and salt transport on soda alkaline soil after infiltration with melting ice saline water of different SAR[J]. Journal of Soil and Water Conservation, 2010, 24(4): 94-98. (in Chinese with English abstract) [13] 武敏,范昊明,劉爽,等. SAR,EC與水溫對遼西褐土入滲速率的影響研究[J]. 水土保持研究,2015,22(3):276-279. Wu Min, Fan Haoming, Liu Shuang, et al. Effects of SAR/EC and water temperature on infiltration in cinnamon of western Liaoning[J]. Research of Soil and Water Conservation, 2015, 22(3): 276-279. (in Chinese with English abstract) [14] 張杰,周金龍,乃尉華,等. 新疆葉爾羌河流域平原區(qū)淺層地下水咸化空間分布及成因[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(23):126-134. Zhang Jie, Zhou Jinlong, Nai Weihua, et al. Spatial distribution and cause of salinization of shallow groundwater in plain terrain of the Yarkant River Basin, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 126-134. (in Chinese with English abstract) [15] Rengasamy P, Marchuk A. Cation ratio of soil structural stability (CROSS)[J]. Soil Research, 2011, 49(3): 280-285. [16] Jayawardane N S, Christen E W, Arienzo M, et al. Evaluation of the effects of cation combinations on soil hydraulic conductivity[J]. Soil Research, 2011, 49(1): 56-64. [17] Oster J D, Sposito G, Smith C J. Accounting for potassium and magnesium in irrigation water quality assessment[J]. California Agriculture, 2016, 70(2): 71-76. [18] Sposito G, Oster J D, Smith C J, Assouline S. Assessing soil permeability impacts from irrigation with marginal-quality waters[J]. AB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2016, 11(15): 15. [19] Marchuk S, Marchuk A. Effect of applied potassium concentration on clay dispersion, hydraulic conductivity, pore structure and mineralogy of two contrasting Australian soils[J]. Soil and Tillage Research, 2018, 182: 35-44. [20] Awedat A M, Zhu Y, Bennett J M, et al. The impact of clay dispersion and migration on soil hydraulic conductivity and pore networks[J]. Geoderma, 2021, 404: 115297. [21] Quirk J P. The significance of the threshold and turbidity concentrations in relation to sodicity and microstructure[J]. Soil Research, 2001, 39(6): 1185-1217. [22] Marchuk A, Rengasamy P. Clay behaviour in suspension is related to the ionicity of clay–cation bonds[J]. Applied Clay Science, 2011, 53(4): 754-759. [23] Bennett J M, Marchuk A, Marchuk S. An alternative index to the exchangeable sodium percentage for an explanation of dispersion occurring in soils[J]. Soil Research, 2016, 54(8): 949-957. [24] Dang A, Bennett J M, Marchuk A, et al. Validating laboratory assessment of threshold electrolyte concentration for fields irrigated with marginal quality saline-sodic water[J]. Agricultural Water Management, 2018, 205: 21-29. [25] Zhu Y, Ali A, Dang A, et al. Re-examining the flocculating power of sodium, potassium, magnesium and calcium for a broad range of soils[J]. Geoderma, 2019, 352: 422-428. [26] Ayers R S, Westcot D W. Water Quality for Agriculture[M]. FAO Irrigation and Drainage Paper 29 Rev 1. Rome: Food and Agriculture Organization of the United Nations, 1985: 59-62. [27] Guo H M, Zhang B, Li Y, et al. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia[J]. Environmental Pollution, 2011, 159(4): 876-883. [28] 鄂繼芳,楊樹青,婁帥,等. 井渠輪灌下秸稈還田對土壤含鹽量與玉米產(chǎn)量的影響[J]. 農(nóng)業(yè)機械學(xué)報,2021,52(12):336-345, 367. E Jifang, Yang Shuqing, Lou Shuai, et al. Effects of straw returning field on soil salinity content and maize yield under alternate irrigation of canal-well[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 336-345, 367. (in Chinese with English abstract) [29] 王瑞萍,萬核洋,陳帥,等. 河套灌區(qū)烏拉特灌域春季土壤鹽堿化空間分布特征[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(15):105-113. Wang Ruiping, Wan Heyang, Chen Shuai, et al. Spatial distribution pattern of soil salinization in farmland of Wulate sun-irrigation areas in Hetao Irrigation District in Inner Mongolia in spring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 105-113. (in Chinese with English abstract) [30] 李彬,史海濱,妥德寶,等. 節(jié)水改造前后土壤鹽分剖面特征及其空間分布:以內(nèi)蒙古河套灌區(qū)中游臨河區(qū)為例[J]. 干旱區(qū)研究. 2015,32(4):663-673. Li Bin, Shi Haibin, Tuo Debao, et al. Soil salinity profile characteristics and its spatial distribution before and after water saving-taking the middle reach in Hetao Irrigation District of Inner Mongolia as an example[J]. Arid Zone Research, 2015, 32(4): 663-673. (in Chinese with English abstract) [31] 鄭復(fù)樂,姚榮江,楊勁松,等. 改良材料對微咸水滴灌農(nóng)田土壤鹽分分布與離子組成的影響[J]. 灌溉排水學(xué)報. 2020,39(8):60-71. Zheng Fule, Yao Rongjiang, Yang Jingsong, et al. The effects of soil amendment with different materials on soil salt distribution and its ion composition under brackish-water drip irrigation[J]. Journal of Irrigation and Drainage, 2020, 39(8): 60-71. (in Chinese with English abstract) [32] 李澤巖,曹文庚,王卓然,等. 內(nèi)蒙古河套灌區(qū)淺層地下水化學(xué)特征和灌溉適宜性分析[J]. 現(xiàn)代地質(zhì),2022,36(2):418-26. Li Zeyan, Cao Wengeng, Wang Zhuoran, et al. Hydrochemical characterization and irrigation suitability analysis of shallow groundwater in Hetao Irrigation District, Inner Mongolia[J]. Geoscience, 2022, 36(2): 418-426. (in Chinese with English abstract) [33] 喬云峰,王全九,莫淑紅,等. 應(yīng)用原子吸收分光光度計量測較高濃度鉀溶液[J]. 中國農(nóng)村水利水電,2001(6):25-27. [34] 王敬,王火焰,周健民,等. 不同儀器測鉀性能及優(yōu)缺點比較研究[J]. 土壤學(xué)報,2013,50(2):340-348. Wang Jing, Wang Huoyan, Zhou Jianmin, et al. Comparison between different instruments in potassium determination performance[J]. Acta Pedologica Sinaca, 2013, 50(2): 340-348. (in Chinese with English abstract) [35] 王丹,康躍虎,萬書勤. 微咸水滴灌條件下不同鹽分離子在土壤中的分布特征[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(2):83-87. Wang Dan, Kang Yuehu, Wan Shuqin. Distribution characteristics of different salt ions in soil under drip irrigation with saline water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(2): 83-87. (in Chinese with English abstract) [36] 馬文軍,程琴娟,李良濤,等. 微咸水灌溉下土壤水鹽動態(tài)及對作物產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(1):73-80. Ma Wenjun, Cheng Qinjuan, Li Liangtao, et al. Effect of slight saline water irrigation on soil salinity and yield of crop[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 73-80. (in Chinese with English abstract) [37] 王全九,單魚洋. 微咸水灌溉與土壤水鹽調(diào)控研究進(jìn)展[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(12):117-126. Wang Quanjiu, Shan Yuyang. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117-126. (in Chinese with English abstract) [38] 王全九,許紫月,單魚洋,等. 去電子處理微咸水礦化度對土壤水鹽運移特征的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(4):125-132. Wang Quanjiu, Xu Ziyue, Shan Yuyang, et al. Effect of salinity of de-electronic brackish water on characteristics of water and salt movement in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 125-132. (in Chinese with English abstract) [39] Zhang T B, Dong Q G, Zhan X Y, et al. Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production[J]. Agricultural Water Management, 2019, 213: 636-645. Water quality assessment method based on the electrical conductivity and cation ratio of soil structural stability under saline water irrigation Zhang Tibin1,3, Yan Sihui1,2, Luo Min1,2, Wang Chun1,2, Zhang Tonggang1,2, Cheng Yu1,2, Feng Hao1,3 (1.,,,712100,; 2.,,712100,; 3.,,712100,) The Electrical Conductivity (EC) and cation concentration in the soil solution are important indicators to assess the stability of soil structure. Previously, Sodium Adsorption Ratio (SAR) is used to quantify the impact of soil alkalinity and Na+concentration on the soil structural stability. However, the SAR water quality assessment cannot fully meet the soil structure in the areas with high concentrations of K+and Mg2+. The reason is that the SAR is focused only on the dispersion of Na+on the soil particles and the similar promotion of Ca2+and Mg2+on the soil flocculation. Fortunately, a new assessment index of water quality called as Cation Ratio Of Soil Structural Stability (CROSS) can comprehensively consider the complex effects of Na+, K+, Ca2+,and Mg2+on the soil infiltration, in order to quantify the extent of different cations on the soil dispersion or flocculation. Much effort was made to quantify the Na+, K+, Ca2+, and Mg2+on the stability of soil structure, the relative dispersion power of K+versus Na+, and the relative flocculation power of Mg2+versus Ca2+. Among them, the concentration coefficients were adjusted to constantly modify the CROSS equation. The CROSS can be expected to serve as the surrogate index of SAR for the assessment of water quality, due to the high accuracy of the coefficients to compensate for the SAR without considering K+effects. This study aims to (1) analyze the influence of K+and Mg2+on the soil structure, in order to develop the SAR alternative technology (CROSS) for the water quality assessment. Although the effect of K+on the soil dispersion was not as capable as that of Na+, the irrigation water with a high concentration of K+reduced the soil-saturated water conductivity, to remove the large soil pores for better dispersion of soil particles. The dispersion effect of Mg2+on the soil was more capable than that of Ca2+. But, the accumulation of Mg2+in soil caused the risk of soil salinization; (2) evaluate 73 water samples collected from the Hetao Irrigation District by SAR and CROSS. The effect of irrigation water on soil infiltration was closely related to the EC and the proportion of cation concentration. Therefore, the high cation concentration of K+, Ca2+, and Mg2+neutralized the negative effect of Na+on soil infiltration. As such, there was no potential infiltration harm in the irrigation water. Nevertheless, the potential harm to the soil infiltration was triggered by the irrigation water with the low EC value and the high Na+concentration. The classification was greatly varied in the influence on the infiltration rate using SAR and CROSS, particularly for the irrigation water with the high cation concentration ratio of Na+/K+, Na+/Ca2+, and Na+/Mg2+. Specifically, the higher the ratio was, the more serious the impact on the soil infiltration was. Consequently, the CROSS can be recommended to assess the effect of cations in irrigation water on soil infiltration properties. Among them, the CROSSdor CROSSoptcalculation formulas can be suggested to evaluate the irrigation water quality. On this basis, the salt and cation concentration of soil can be determined by the range of EC. The optimal water samples were selected as the CROSS of the underground brackish water suitable for the geological conditions of irrigation water in the study area. Correspondingly, suitable irrigation water can be determined with the appropriate salt and cation concentration without reducing the infiltration rate. The brackish water with the higher EC and lower CROSS was the most conducive to the stability of the soil structure. Nevertheless, it is still necessary to correct the classification evaluation by the infiltration tests in practice. Anyway, this assessment can be expected to comprehensively consider the influence of the salt and cation concentration on soil infiltration. The finding can provide theoretical support for the long-term efficient utilization of brackish water. infiltration; water quality; assessment; SAR; CROSS; saline water; cation 10.11975/j.issn.1002-6819.2022.20.012 S152.7 A 1002-6819(2022)-20-0105-08 張體彬,閆思慧,羅敏,等. 基于電導(dǎo)率和結(jié)構(gòu)穩(wěn)定性陽離子比的微咸水灌溉水質(zhì)評估方法[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(20):105-112.doi:10.11975/j.issn.1002-6819.2022.20.012 http://www.tcsae.org Zhang Tibin, Yan Sihui, Luo Min, et al. Water quality assessment method based on the electrical conductivity and cation ratio of soil structural stability under saline water irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 105-112. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.20.012 http://www.tcsae.org 2022-04-28 2022-08-10 國家重點研發(fā)計劃項目(2021YFD1900700);陜西省創(chuàng)新能力支撐計劃項目(2022PT-23) 張體彬,博士,副研究員,碩士生導(dǎo)師,研究方向為農(nóng)業(yè)節(jié)水灌溉與水土資源高效利用。Email:zhangtibin@163.com3 討 論
4 結(jié) 論