李雅菲,師江瀾,吳天琪,王少霞,李雨諾,屈春燕,劉聰慧,寧鵬,田霄鴻
鋅與吡蟲(chóng)啉配合噴施對(duì)小麥籽粒富鋅效果及蛋白質(zhì)組分的影響
李雅菲,師江瀾,吳天琪,王少霞,李雨諾,屈春燕,劉聰慧,寧鵬,田霄鴻*
西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院/農(nóng)業(yè)農(nóng)村部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100
【目的】探討鋅與殺蟲(chóng)劑配合噴施對(duì)小麥全粒及面粉富鋅效果、蛋白質(zhì)組分和人體每日吸收總鋅(TAZ)的影響,闡明富鋅效果存在差異的可能原因,以期為小麥農(nóng)藝富鋅方法提供可靠依據(jù)及高效可行的噴施方案?!痉椒ā?016—2018年進(jìn)行了兩年田間試驗(yàn),試驗(yàn)共設(shè)置了6個(gè)處理:噴蒸餾水(CK)、噴施0.1%吡蟲(chóng)啉(P)、噴施0.4%ZnSO4·7H2O(Zn)、噴施0.23%甘氨酸鋅(GZn)、噴施ZnSO4·7H2O+吡蟲(chóng)啉(ZnP)、噴施甘氨酸鋅+吡蟲(chóng)啉(GZnP)。測(cè)定小麥全粒、面粉及麩皮中的鋅Zn、蛋白質(zhì)、蛋白質(zhì)組分、植酸等含量,并計(jì)算TAZ?!窘Y(jié)果】不同噴施處理籽粒產(chǎn)量無(wú)顯著差異,但噴鋅顯著提高籽粒鋅攜出量以及全粒、面粉和麩皮中鋅含量。兩季試驗(yàn)中,與CK相比,單獨(dú)噴鋅處理面粉鋅含量分別提高了71%、120%,鋅與吡蟲(chóng)啉配合噴施增幅為103%、127% 。與單獨(dú)噴鋅處理(Zn、GZn)相比,鋅與吡蟲(chóng)啉配合噴施(ZnP、GZnP)不會(huì)影響小麥富鋅效果,且全粒、面粉中鋅含量有增加的趨勢(shì),噴ZnSO4·7H2O的富鋅效果優(yōu)于噴甘氨酸鋅,其中ZnP處理全粒和面粉中鋅含量最高。全粒和面粉中鋅含量與蛋白質(zhì)、醇溶蛋白及谷蛋白含量間分別呈顯著正相關(guān)。鋅與吡蟲(chóng)啉配合噴施顯著提高全粒、面粉中蛋白質(zhì)含量。與CK相比,ZnP和GZnP處理面粉中蛋白質(zhì)含量?jī)赡昶骄岣吡?9%和20%。不同噴施處理全粒和面粉中白蛋白、球蛋白組分無(wú)明顯變化規(guī)律,ZnP和GZnP處理全粒和面粉中醇溶蛋白和谷蛋白含量顯著提高。噴鋅顯著提高了小麥中鋅的生物有效性,并且ZnP處理全粒及面粉中鋅的生物有效性顯著高于其他各處理。【結(jié)論】選擇煙堿類(lèi)殺蟲(chóng)劑如吡蟲(chóng)啉與ZnSO4·7H2O配合噴施,能提高全粒特別是面粉中蛋白質(zhì)、醇溶蛋白、谷蛋白含量,從而進(jìn)一步提高面粉鋅含量、鋅生物有效性,是一種克服人體缺鋅問(wèn)題且易于實(shí)際應(yīng)用的有效方法。
小麥面粉;葉面噴施;鋅;吡蟲(chóng)啉;醇溶蛋白;谷蛋白;鋅生物有效性
【研究意義】缺鋅是人類(lèi)最嚴(yán)重的微量元素缺乏癥之一。鋅是人體必需微量元素,在人類(lèi)神經(jīng)、生殖和免疫系統(tǒng)以及兒童身體和認(rèn)知發(fā)育方面發(fā)揮重要作用[1-2]。缺鋅不僅危害人類(lèi)健康,也增加經(jīng)濟(jì)負(fù)擔(dān)[3]。據(jù)估計(jì),全世界約1/4的人口面臨缺鋅問(wèn)題,20%的5歲以下兒童是缺鋅的高危人群,每年約50萬(wàn)名兒童因鋅攝入不足死亡[4-5]。2015年10月在巴西舉行的第四屆國(guó)際鋅研討會(huì)上認(rèn)為,解決人類(lèi)缺鋅問(wèn)題是巨大的挑戰(zhàn)[6]。人類(lèi)主要從飲食中攝取鋅,在發(fā)展中國(guó)家人們?nèi)粘o嬍持懈哌_(dá)75%的熱量都是來(lái)自鋅生物有效性非常低的谷類(lèi)食物[7-8]。目前,最經(jīng)濟(jì)有效并且可持續(xù)的方法是通過(guò)生物強(qiáng)化提高植物食用部分鋅含量[9]。小麥作為我國(guó)主要糧食作物之一,占每日人均攝取能量的30%,提供約20%的鋅源,其營(yíng)養(yǎng)品質(zhì)直接影響人體健康[5,10-12]。而我國(guó)小麥籽粒鋅含量約為38.87 mg·kg-1[5],與CAKMAK[9]提出的滿(mǎn)足人體鋅營(yíng)養(yǎng)健康籽粒鋅強(qiáng)化目標(biāo)值(40—60 mg·kg-1)還有一定差距。預(yù)計(jì)將來(lái)大氣CO2濃度上升會(huì)使小麥在內(nèi)的C3作物籽粒中碳水化合物含量增加,蛋白質(zhì)和鋅含量降低[13]?!厩叭搜芯窟M(jìn)展】在灌漿期葉面噴施少量鋅肥,可顯著提高潛在缺鋅土壤上小麥籽粒鋅含量,是小麥籽粒富鋅的有效措施[14-16]。但單獨(dú)噴鋅費(fèi)時(shí)費(fèi)力,并且不能提高籽粒產(chǎn)量進(jìn)而增加收益,因此難以應(yīng)用[14-16]。實(shí)際生產(chǎn)中常在小麥開(kāi)花期或灌漿期噴施化學(xué)殺蟲(chóng)劑,減輕小麥生長(zhǎng)后期頻發(fā)的蟲(chóng)害[17],在小麥灌漿期將鋅肥與農(nóng)藥配合噴施,既可以提高籽粒鋅含量,又不影響病蟲(chóng)害控制效果,是一種投入少收益高的農(nóng)藝措施[16,18-22]。淀粉胚乳是小麥的中央儲(chǔ)藏組織,用來(lái)生產(chǎn)面粉。在我國(guó)約85%的小麥?zhǔn)称酚擅娣壑瞥桑\與農(nóng)藥配合噴施后面粉富鋅效果有限,因此提高胚乳組織中鋅含量至關(guān)重要[21-23]。供鋅充足時(shí),施用氮肥能夠提高籽粒蛋白質(zhì)含量,增加鋅在籽粒的累積,表明鋅氮吸收具有正相關(guān)關(guān)系[8,24-26]。同時(shí),小麥籽粒蛋白最主要成分-醇溶蛋白和谷蛋白含量也會(huì)影響面粉的加工品質(zhì)[8,27]?!颈狙芯壳腥朦c(diǎn)】受環(huán)境和品種等因素的影響,關(guān)于噴施氨基酸態(tài)鋅肥和ZnSO4·7H2O對(duì)籽粒中蛋白質(zhì)含量和富鋅效果的影響研究結(jié)論不一致[15,28]。同時(shí),噴施兩種鋅肥后小麥籽粒特別是面粉中蛋白質(zhì)組分變化情況以及富鋅效果產(chǎn)生差異的原因尚不清楚。有研究表明化學(xué)殺蟲(chóng)劑能夠提高弱筋小麥籽粒中醇溶蛋白和谷蛋白含量[29],鋅與殺蟲(chóng)劑配合噴施后小麥全粒及面粉中富鋅效果與蛋白質(zhì)組分間的關(guān)系尚未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】綜上所述,本研究將ZnSO4·7H2O、甘氨酸鋅(Gly-Zn)和吡蟲(chóng)啉分別配合噴施,進(jìn)行為期兩個(gè)生長(zhǎng)季的田間試驗(yàn),研究鋅肥與吡蟲(chóng)啉配合噴施對(duì)小麥全粒、面粉及麩皮中鋅含量、蛋白質(zhì)組分及鋅生物有效性的影響。通過(guò)本研究,期望為大田生產(chǎn)中提高小麥籽粒特別是面粉中鋅含量和蛋白品質(zhì)提供切實(shí)可行的應(yīng)用方案。
試驗(yàn)于2016年10月至2018年7月在西北農(nóng)林科技大學(xué)農(nóng)作一站(34°17′56″N,108°4′7″E)進(jìn)行。試驗(yàn)區(qū)海拔525 m,年平均氣溫13℃,屬于半濕潤(rùn)易旱區(qū),年均降水量約為600 mm,生長(zhǎng)季的月降水量和月平均氣溫見(jiàn)圖1。土壤屬黃土母質(zhì)褐土類(lèi)土亞類(lèi)紅油土屬,類(lèi)型為土墊旱耕人為土。試驗(yàn)開(kāi)始前耕層(0—20 cm)土壤基本理化性質(zhì)為pH 8.32(水土比為2.5﹕1)、有機(jī)質(zhì)18.94 g·kg-1、全氮0.97 g·kg-1、速效磷9.06 mg·kg-1、速效鉀140.1 mg·kg-1,CaCO365.1 g·kg-1,DTPA-Zn 0.72 mg·kg-1。供試土壤中有效鋅處于潛在缺鋅水平[21]。
試驗(yàn)共設(shè)計(jì)6個(gè)處理,分別為噴施蒸餾水(CK)、吡蟲(chóng)啉(P)、ZnSO4·7H2O(Zn)、Gly-Zn(GZn)、ZnSO4·7H2O+吡蟲(chóng)啉(ZnP)、Gly-Zn+吡蟲(chóng)啉(GZnP)。上述處理中P處理僅進(jìn)行一年試驗(yàn)(2017—2018小麥生長(zhǎng)季),其余處理均進(jìn)行兩年試驗(yàn)(2016—2018小麥生長(zhǎng)季)。噴施所用微量元素肥料均為分析純,吡蟲(chóng)啉、ZnSO4·7H2O和Gly-Zn的噴施濃度分別為0.1%、0.4%和0.23%(w/v),所有噴施處理均加入0.01%(v/v)吐溫-20作為表面活性劑。采用完全隨機(jī)區(qū)組設(shè)計(jì),田間共設(shè)置4個(gè)區(qū)組。
在兩個(gè)小麥生長(zhǎng)季,均采用冬小麥-夏休閑種植模式。供試小麥(L.)品種為小偃22,分別于2016、2017年10月中旬播種,2017、2018年6月初收獲。播種量150 kg·hm-2,小區(qū)面積為6 m×9.9 m = 59.4 m2,每小區(qū)播種30行,行距為20 cm,播種深度5 cm。氮肥采用尿素,施用量為120 kg N·hm-2;磷肥采用過(guò)磷酸鈣,施用量為100 kg P2O5·hm-2;有機(jī)肥(當(dāng)?shù)馗煅蚣S)30 000 kg·hm-2。所有肥料均作底肥,在小麥播種前一次性撒施于土壤表面后用旋耕機(jī)翻入土壤。開(kāi)始噴施前,分別在每個(gè)小區(qū)畫(huà)出6個(gè)噴施微區(qū)(1 m×2 m),每個(gè)噴施微區(qū)間隔約2 m,噴施采用容積為330 mL的小型手動(dòng)噴霧器(規(guī)格8 cm×22 cm),于小麥開(kāi)花后第7天和第14天傍晚均勻噴施于小麥穗及葉片,每個(gè)噴施微區(qū)每次噴300 mL。田間試驗(yàn)的其他管理措施與當(dāng)?shù)卮筇锕芾泶胧┮恢隆?/p>
圖1 2016—2018年小麥生長(zhǎng)季月降雨量和月平均氣溫
于成熟期收獲各微區(qū)全部小麥,人工脫粒后測(cè)產(chǎn)。全粒用高通量組織研磨儀(北京鼎昊源科技有限公司,TL2020)粉碎后儲(chǔ)存。另取100 g籽粒,用小型實(shí)驗(yàn)?zāi)ィ≦uadrumat Junior mill, Brabender, Duisburg, Germany)磨制成面粉和麩皮(出粉率為57%—64%)。
小麥籽粒鋅含量的測(cè)定:稱(chēng)取0.5 g粉碎樣品,于馬弗爐中600℃灰化6 h,用5 mL 1﹕1(v/v)HNO3溶解后定容至50 mL,用原子吸收分光光度法(PE- PinAAcle 900F火焰原子吸收光譜儀)測(cè)定。樣品的消解和測(cè)定過(guò)程均加入空白和國(guó)家標(biāo)準(zhǔn)物質(zhì)進(jìn)行質(zhì)量控制(GWB08503c,Zn=(41.1±2.0)mg·kg-1),分析過(guò)程中鋅回收率均為95%—105%。小麥籽粒氮含量的測(cè)定:經(jīng)H2SO4-H2O2消煮,用流動(dòng)分析儀測(cè)定全氮(Auto Analyzer 3-AA3連續(xù)流動(dòng)分析儀),全粒、面粉和麩皮分別以氮含量乘以5.83、5.7和6.31計(jì)算蛋白質(zhì)含量。蛋白質(zhì)組分采用連續(xù)提取法測(cè)定,依次用超純水、5%NaCl溶液、75%乙醇溶液和0.2% NaOH溶液提取白蛋白、球蛋白、醇溶蛋白和谷蛋白。提取的蛋白組分用半微量凱氏定氮法測(cè)定其氮含量,全粒和面粉分別以各組分氮含量乘以5.83和5.7計(jì)算蛋白組分的蛋白質(zhì)含量[30]。籽粒植酸的測(cè)定參考WANG等[22]方法:用10% Na2SO4和0.2 mol·L-1HCl溶液浸提,F(xiàn)eCl3沉淀植酸鐵,通過(guò)原子吸收光譜儀測(cè)定浸提液中鐵的濃度(CFe),計(jì)算出植酸含量。
人體每日吸收總鋅(total daily-absorbed zinc,TAZ)用于估算籽粒和面粉中鋅的生物有效性:
TAZ=0.5×65×100×{Amax+TDZ+KR×(1+)-
式中,TDZ(mmol Zn·d-1)是假設(shè)成人每日食用242.3 g小麥粉作為鋅和植酸(PA)的唯一來(lái)源;TDP(mmol PA·d-1)是根據(jù)每日攝入的植酸(PA)的含量得出;Amax、KR和KP分別表示最大吸收量(0.091)、鋅受體結(jié)合反應(yīng)的平衡常數(shù)(0.680)和Zn-PA結(jié)合反應(yīng)的平衡解離常數(shù)(0.033)。
試驗(yàn)數(shù)據(jù)均用Microsoft Excel 2010、Origin 2018、DPS 7.05版和IBM SPSS Statistics 24統(tǒng)計(jì)軟件進(jìn)行作圖分析。分別對(duì)小麥產(chǎn)量與全粒鋅含量,全?;蛎娣壑袖\與蛋白質(zhì)含量、鋅與各蛋白質(zhì)組分作皮爾遜相關(guān)分析;對(duì)同一年不同處理間全粒和面粉的蛋白質(zhì)組分含量進(jìn)行單因素方差分析;其余指標(biāo)均采用重復(fù)測(cè)量(年份)單因素方差分析。處理間差異顯著性采用LSD法進(jìn)行多重比較(>0.05)。
所有指標(biāo)年際間變化顯著(表1)。處理間和年際與處理間籽粒鋅攜出量,全粒、面粉、麩皮鋅含量、鋅生物有效性均變化顯著,處理間麩皮蛋白質(zhì)含量也變化顯著,其余指標(biāo)無(wú)顯著差異。
兩個(gè)生長(zhǎng)季中,不同處理間小麥籽粒產(chǎn)量無(wú)顯著差異(圖2),2016—2017年小麥籽粒產(chǎn)量較2017—2018年增加9.3%。噴鋅(Zn、GZn、ZnP、GZnP)處理籽粒鋅攜出量顯著提高(圖2)。與CK相比,Zn和GZn處理,2016—2017年的籽粒鋅攜出量分別增加了0.67和0.51倍,2017—2018年分別增加了1.30和0.88倍。2016—2018年,鋅與吡蟲(chóng)啉配合噴施(ZnP、GZnP),與CK相比籽粒鋅攜出量顯著提高,與單獨(dú)噴鋅(Zn、GZn)相比籽粒鋅攜出量無(wú)顯著差異。2017—2018年CK、單獨(dú)噴鋅和鋅與吡蟲(chóng)啉配合噴施籽粒鋅攜出量分別比2016—2017年高21%、59%和43%。
如圖3所示,小麥全粒、面粉及麩皮中鋅含量在年際間差異顯著。噴鋅顯著提高小麥成熟期全粒、面粉及麩皮中的鋅含量。2016—2017年,Zn和GZn處理全粒鋅含量與CK相比(22.08 mg·kg-1)增幅為90%和66%;鋅與吡蟲(chóng)啉配合噴施和單獨(dú)噴鋅全粒鋅含量間無(wú)顯著差異。2017—2018年,Zn和GZn處理全粒鋅含量與CK相比(32.00 mg·kg-1)增幅為136%和119%;P與CK處理全粒鋅含量接近;鋅與吡蟲(chóng)啉配合噴施與單獨(dú)噴鋅相比,全粒鋅含量有增加的趨勢(shì)。2016—2018年,ZnP處理全粒鋅含量最高,分別為43.24和81.00 mg·kg-1,同時(shí)Zn、ZnP處理小麥全粒鋅含量分別高于GZn、GZnP處理。兩個(gè)生長(zhǎng)季,麩皮平均鋅含量分別比面粉中高653%、676%,面粉和麩皮中鋅含量變化規(guī)律與全粒相似,鋅含量最高均為ZnP處理,該處理2016—2017、2017—2018年面粉鋅含量分別為14.84和22.75 mg·kg-1。
表1 試驗(yàn)測(cè)定指標(biāo)的顯著性效應(yīng)分析
n.s.為無(wú)顯著差異(>0.05) n.s.: Not significant (>0.05)
處理:CK(噴施蒸餾水)、P(吡蟲(chóng)啉)、Zn(ZnSO4·7H2O)、GZn(Gly-Zn)、ZnP(ZnSO4·7H2O+吡蟲(chóng)啉)、GZnP(Gly-Zn+吡蟲(chóng)啉)。圖3、4、5、6、7、8、9同。星號(hào)表示該指標(biāo)在年際間呈顯著差異,其中***表示P<0.001,**表示P<0.01;柱上不同小寫(xiě)字母表示每一生長(zhǎng)季處理間差異顯著(P<0.05)。圖3、5、9同
2016—2018年,不噴鋅組(CK、P)籽粒產(chǎn)量與全粒鋅含量間線(xiàn)性擬合方程為=-2.33+43.07,兩者間無(wú)相關(guān)性(>0.05);噴鋅組(Zn、GZn、ZnP、GZnP)中籽粒產(chǎn)量與全粒鋅含量間線(xiàn)性擬合方程為=-15.66+148.23,兩者間呈顯著負(fù)相關(guān)(2=0.56,<0.01)(圖4)。
圖3 不同噴施處理小麥全粒、面粉和麩皮中鋅含量
**:P<0.01,n.s.:無(wú)顯著差異Not significant
2016—2018年,Zn、GZn與CK相比,以及ZnP、GZnP與Zn、GZn相比,小麥全粒、面粉和麩皮中蛋白質(zhì)含量均有增加的趨勢(shì)(圖5)。ZnP與GZnP處理間,蛋白質(zhì)含量無(wú)顯著差異;鋅與吡蟲(chóng)啉配合噴施與CK相比,蛋白質(zhì)含量顯著增加,兩季面粉中分別提高了16%和19%,但2016—2017年GZnP麩皮蛋白質(zhì)含量與CK無(wú)顯著差異。因此,鋅與吡蟲(chóng)啉配合噴施顯著提高了小麥全粒和面粉中蛋白質(zhì)含量。
如圖6所示,根據(jù)兩季試驗(yàn)的數(shù)據(jù),在不噴鋅組(CK、P)、單獨(dú)噴鋅組(Zn、GZn)及鋅+吡蟲(chóng)啉組(ZnP、GZnP)中全粒和面粉鋅含量與蛋白質(zhì)含量間均呈顯著正相關(guān)(2為0.57—0.79,<0.01)。
如圖7所示,2016—2017年單獨(dú)噴鋅后小麥全粒醇溶蛋白含量高于CK。2017—2018年,與CK相比,GZn處理的醇溶蛋白含量顯著提高,Zn處理無(wú)顯著差異。兩個(gè)生長(zhǎng)季中,ZnP和GZnP處理全粒醇溶蛋白含量均顯著高于CK,第一季ZnP、GZnP分別為CK的1.63、1.71倍,第二季分別為1.22、1.28倍。Zn與GZn間,以及ZnP與GZnP間,全粒醇溶蛋白無(wú)顯著差異。2016—2018年,與CK相比,單獨(dú)噴鋅對(duì)全粒谷蛋白含量無(wú)影響,鋅與吡蟲(chóng)啉配合噴施顯著提高其含量。ZnP處理全粒谷蛋白含量在兩個(gè)生長(zhǎng)季中均為最高,與CK相比分別增加了26.7%、20.1%。
圖5 不同噴施處理小麥全粒、面粉和麩皮中蛋白質(zhì)含量
**: P<0.01
柱上不同小寫(xiě)字母表示同一生長(zhǎng)季同一組分處理間差異顯著(P<0.05)。圖8同
Zn、GZn、ZnP和GZnP處理的面粉中醇溶蛋白含量均顯著高于CK,且與單獨(dú)噴鋅相比,ZnP和GZnP醇溶蛋白有增加的趨勢(shì)(圖8)。鋅與吡蟲(chóng)啉配合噴施面粉谷蛋白含量均顯著高于CK,兩季分別提高了0.28、0.30倍??赡苡捎诃h(huán)境因子的改變[31],不同處理小麥全粒和面粉中白蛋白與球蛋白組分無(wú)明顯變化規(guī)律,但2016—2018年,鋅與吡蟲(chóng)啉配合噴施顯著提高小麥全粒和面粉中醇溶蛋白及谷蛋白含量。
兩個(gè)生長(zhǎng)季中,小麥全粒和面粉鋅含量與醇溶蛋白和谷蛋白組分呈顯著正相關(guān),與白蛋白和球蛋白組分關(guān)系較小。全粒鋅含量與谷蛋白間的相關(guān)性更強(qiáng),面粉鋅含量與醇溶蛋白間的相關(guān)性更強(qiáng)(表2)。
鋅的生物有效性采用三變量模型進(jìn)行估算[32]。小麥面粉中平均鋅的生物有效性在年際間存在極顯著差異(圖9-b)。兩個(gè)生長(zhǎng)季中,與CK相比,P處理(僅一季)對(duì)面粉中鋅的生物有效性無(wú)影響,單獨(dú)噴鋅、鋅與吡蟲(chóng)啉配合噴施顯著提高面粉中鋅的生物有效性。2016—2017年,GZn和ZnP處理面粉中鋅的生物有效性顯著高于其余處理,與CK相比分別增加了111%和132%;2017—2018年ZnP處理面粉中鋅的生物有效性最高,與CK相比增加了160%,Zn和ZnP處理TAZ達(dá)到3 mg·d-1的強(qiáng)化目標(biāo)[32]。與面粉相比,全粒(圖9-a)及麩皮(圖9-c)中鋅的生物有效性減小,但變化趨勢(shì)與面粉中相似。
表2 小麥全粒、面粉鋅含量與蛋白組分間的皮爾遜相關(guān)系數(shù)
圖8 不同噴施處理對(duì)小麥面粉蛋白質(zhì)組分含量的影響
圖9 小麥全粒、面粉和麩皮中TAZ含量
葉面噴施鋅肥是小麥籽粒富鋅最有效的生物強(qiáng)化措施,是解決以谷類(lèi)作物為基本飲食的人口缺鋅問(wèn)題的重要方法[24,33]。將鋅與同樣需要在小麥開(kāi)花期或灌漿前期使用的殺蟲(chóng)劑配合噴施是一種經(jīng)濟(jì)可行的農(nóng)藝措施[14,34]。噴殺蟲(chóng)劑的主要目的是防治蟲(chóng)害,從而提高小麥產(chǎn)量,根據(jù)蟲(chóng)害的程度不同,噴殺蟲(chóng)劑后小麥可增產(chǎn)2%—30%[35]。在本研究中,單獨(dú)噴吡蟲(chóng)啉和鋅與吡蟲(chóng)啉配合噴施小麥產(chǎn)量無(wú)顯著差異(圖2)。因?yàn)殇\與殺蟲(chóng)劑配合后在殺蟲(chóng)劑的藥效上沒(méi)有拮抗作用,同時(shí),這兩年的小麥生長(zhǎng)季無(wú)明顯蟲(chóng)害發(fā)生[22, 33]。
與噴蒸餾水相比,所有噴鋅處理均能顯著提高籽粒鋅含量,并且鋅與殺蟲(chóng)劑配合噴施處理小麥全粒及面粉中鋅含量均高于對(duì)應(yīng)的單獨(dú)噴鋅處理(圖3)。除2017年噴施Gly-Zn各處理外,其余單獨(dú)噴鋅或鋅與農(nóng)藥配合噴施處理全粒鋅含量均達(dá)到了籽粒富鋅標(biāo)準(zhǔn)(40—60 mg·kg-1),這與前人在小麥上進(jìn)行的鋅與農(nóng)藥配合噴施的結(jié)果一致[16, 21]。但田間管理措施、作物基因型、土壤以及其他的環(huán)境因素會(huì)對(duì)小麥產(chǎn)量和鋅含量產(chǎn)生影響,產(chǎn)量的大幅增加會(huì)使籽粒中必需營(yíng)養(yǎng)元素如鋅的含量顯著降低[14,18,36-38]。2017年小麥籽粒產(chǎn)量較2018年平均高9.3%,小麥全粒和面粉中鋅含量分別低46%和42%。這可能是由于2018年寒潮降溫天氣使小麥遭遇凍害減產(chǎn),但鋅的吸收量受影響較小,從而籽粒中鋅含量增加[22]。此外,噴鋅能夠顯著提高籽粒鋅攜出量,而單獨(dú)噴鋅和鋅與吡蟲(chóng)啉配合噴施籽粒鋅攜出量無(wú)顯著差異,說(shuō)明鋅與農(nóng)藥配合噴施不影響噴鋅對(duì)小麥籽粒鋅累積的促進(jìn)效果。綜合來(lái)看,在不同環(huán)境及試驗(yàn)條件下的結(jié)果均表明,葉面噴施鋅肥或與殺蟲(chóng)劑配合施用是提高小麥籽粒鋅水平的高效農(nóng)藝措施[14,18-19,39]。
在本研究條件下,不噴鋅組中小麥產(chǎn)量與鋅含量間無(wú)相關(guān)性;當(dāng)供鋅充足時(shí),即在噴鋅組中,產(chǎn)量與鋅含量間呈顯著負(fù)相關(guān)(圖4)。這一結(jié)果說(shuō)明,在自然或田間條件下,籽粒鋅主要受來(lái)源的限制,籽粒中鋅主要是營(yíng)養(yǎng)器官累積的鋅通過(guò)再轉(zhuǎn)移途徑進(jìn)入籽粒[14,33]。因此,葉面噴鋅是籽粒富鋅的重要方法[14,18,21-22,33]。在這種做法下,籽粒鋅主要受籽粒內(nèi)部因素的影響[8,40-41]。
吡蟲(chóng)啉可以使植株中游離氨基酸和可溶性蛋白質(zhì)含量顯著增加,并且提高小麥籽粒中蛋白質(zhì)含量[42-43]。開(kāi)花后噴施鋅肥,配體與鋅結(jié)合將鋅載入籽粒后,可代謝轉(zhuǎn)化為蛋白質(zhì),從而促進(jìn)氮素向籽粒中的累積,提高小麥籽粒中蛋白質(zhì)含量[15,27]。但部分結(jié)果也顯示,噴施這兩種鋅肥對(duì)小麥籽粒蛋白質(zhì)含量無(wú)顯著影響[21,28]?;颉h(huán)境因子和種植方式的不同均會(huì)對(duì)小麥籽粒蛋白質(zhì)含量造成影響[31]。在本試驗(yàn)條件下,單獨(dú)噴鋅或吡蟲(chóng)啉后小麥全粒和面粉中蛋白質(zhì)含量有增加的趨勢(shì),而鋅與吡蟲(chóng)啉配合噴施顯著提高了蛋白質(zhì)含量(圖5)。
植物中鋅主要與低分子量的金屬螯合物以及金屬結(jié)合蛋白結(jié)合[44-45]。在糊粉層和胚中,鋅主要與磷共位,鋅與植酸復(fù)合物是籽粒中鋅的主要存在形式之一。而磷被嚴(yán)格限制在糊粉層中,在胚乳中植酸的濃度很低。但鋅存在于整個(gè)籽粒中,因此在胚乳中還存在其他的鋅結(jié)合形式[46]。當(dāng)供鋅充足時(shí),小麥籽粒鋅氮吸收具有協(xié)同作用[8,25]。本研究中的相關(guān)分析也表明,小麥全粒和面粉中鋅含量與蛋白質(zhì)含量呈顯著正相關(guān),與前人研究結(jié)果一致(圖6)。ZnSO4·7H2O+吡蟲(chóng)啉處理全粒和面粉中鋅含量最高(圖3)。已有研究表明,鋅進(jìn)入胚乳過(guò)程存在兩種障礙:穗軸與籽粒間,以及籽粒內(nèi)部母體和子代組織間[40]。使用XFM和70Zn穩(wěn)定同位素標(biāo)記發(fā)現(xiàn),鋅從腹溝維管組織向胚乳的轉(zhuǎn)運(yùn),轉(zhuǎn)運(yùn)細(xì)胞和胚乳空腔分離母體和子代組織[40,47],以及鋅從糊粉層運(yùn)輸?shù)脚呷閇8],是后者鋅轉(zhuǎn)運(yùn)的瓶頸。煙酰胺(NA)是鋅卸載和移動(dòng)的重要含氮化合物,可與鋅結(jié)合作為配體,促進(jìn)鋅向胚乳中的轉(zhuǎn)運(yùn),在這一過(guò)程中,黃色條紋樣蛋白基因9(YSL9)和煙酰胺合成酶基因(NAS)高度表達(dá)[48]。同時(shí)在糊粉層細(xì)胞中,鋅載入液泡需要轉(zhuǎn)運(yùn)蛋白協(xié)助[49-50]。因此,蛋白質(zhì)總量會(huì)影響配體和轉(zhuǎn)運(yùn)蛋白“庫(kù)”的大小,是影響淀粉胚乳鋅含量的重要因素之一[8,25,46,51]。
OSBORNE等[52]根據(jù)蛋白質(zhì)的溶解性不同,將小麥籽粒蛋白質(zhì)分為白蛋白、球蛋白、醇溶蛋白和谷蛋白,而小麥蛋白中含量最高的儲(chǔ)藏蛋白(醇溶蛋白和谷蛋白)占小麥蛋白總量的70%—80%。有研究表明,鋅與蛋白質(zhì)二硫化物異構(gòu)酶(PDI)結(jié)合作為PDI的輔因子參與生理活動(dòng),而在種子胚乳形成中PDI可以促進(jìn)儲(chǔ)藏蛋白的折疊,PDIL1-1參與內(nèi)質(zhì)網(wǎng)上谷蛋白前體的成熟過(guò)程,開(kāi)花后施鋅使谷蛋白各亞基表達(dá)量增加,谷蛋白含量提高[53-55]。裴雪霞等[42]發(fā)現(xiàn)吡蟲(chóng)啉對(duì)儲(chǔ)藏蛋白的含量影響較大。在本研究中,與CK相比,鋅與吡蟲(chóng)啉配合噴施小麥全粒及面粉中醇溶蛋白和谷蛋白組分均顯著增加(圖7、圖8)。65Zn同位素示蹤技術(shù)發(fā)現(xiàn),鋅主要分布在谷蛋白組分中,這表明小麥籽粒鋅累積主要與儲(chǔ)藏蛋白有關(guān)[8,56]。本研究結(jié)果也表明,小麥全粒和面粉中鋅含量與醇溶蛋白及谷蛋白組分呈顯著正相關(guān)(表2)。這可能是鋅與吡蟲(chóng)啉配合噴施富鋅效果最優(yōu)的原因。然而,ZnP與GZnP處理小麥全粒及面粉富鋅效果不同,但醇溶蛋白和谷蛋白組分無(wú)顯著差異(圖3、圖7、圖8)。亞糊粉層主要由α-、ω-醇溶蛋白和低分子量谷蛋白亞基(LMW- GS)組成,而中心胚乳主要是γ-醇溶蛋白和高分子量谷蛋白亞基(HMW-GS)占主導(dǎo)地位[57],而中心胚乳中積累的鋅更多,表明鋅主要與儲(chǔ)藏蛋白中的γ-醇溶蛋白以及HMW-GS結(jié)合[8,58];并且乙二醛酶、蛋白二硫化物異構(gòu)酶、谷氧還蛋白、半胱氨酸-1過(guò)氧化物酶和烯醇酶等蛋白質(zhì)對(duì)鋅的儲(chǔ)存非常重要[8,58]。我們猜測(cè),葉面噴施ZnSO4·7H2O和Gly-Zn后小麥籽粒富鋅效果產(chǎn)生差異的原因可能與這些蛋白含量改變相關(guān),有待進(jìn)一步研究。
ZnSO4·7H2O+吡蟲(chóng)啉與單獨(dú)噴ZnSO4·7H2O相比,增加了籽粒中氮含量,從而促進(jìn)了籽粒對(duì)鋅的吸收。因此,根據(jù)文獻(xiàn)[59-61]整理繪制了小麥中鋅的運(yùn)輸途徑(圖10)。
圖10 小麥中鋅運(yùn)輸途徑[59-61]
小麥籽粒含有多酚和植酸等抗?fàn)I養(yǎng)物質(zhì),與鋅結(jié)
合后可降低鋅在食物中的溶解度,并限制鋅在人體中的生物利用率[62]。根據(jù)面粉中鋅含量、植酸含量、成人每日面粉攝入量等因素,可定量估計(jì)鋅的生物有效性,提出成人的生理需鋅量為3—4 mg·d-1[32,63]。本研究中,噴鋅后小麥鋅的生物有效性顯著提高,但僅在2018年因作物減產(chǎn)籽粒鋅含量增加,噴施ZnSO4·7H2O和ZnSO4·7H2O+吡蟲(chóng)啉這兩個(gè)處理的面粉中鋅生物有效性達(dá)到目標(biāo)值(3—4 mg·d-1),而多數(shù)處理均低于該值(圖9)。因此,需要進(jìn)一步解決怎樣將更多的鋅轉(zhuǎn)移至人類(lèi)可食用的淀粉胚乳中的問(wèn)題。
在灌漿期葉面噴施鋅肥可顯著提高小麥全粒、面粉及麩皮中的鋅含量。噴施ZnSO4·7H2O的富鋅效果優(yōu)于甘氨酸鋅(Gly-Zn)。與單獨(dú)噴施鋅肥相比,鋅與吡蟲(chóng)啉配合噴施全粒及面粉中鋅含量有增加的趨勢(shì),ZnSO4·7H2O+吡蟲(chóng)啉處理全粒及面粉中鋅含量最高,鋅生物有效性顯著高于其他處理。鋅與吡蟲(chóng)啉配合噴施能夠顯著提高全粒、面粉中蛋白質(zhì)、醇溶蛋白和谷蛋白含量,鋅含量與蛋白質(zhì)、醇溶蛋白及谷蛋白含量呈正相關(guān)。因此,選擇能夠提高籽粒氮含量的煙酰類(lèi)殺蟲(chóng)劑與鋅配合噴施,可以進(jìn)一步提高籽粒富鋅效果,從而有助于克服人體缺鋅問(wèn)題,是一種投入少效益高的農(nóng)藝措施。
[1] GIBSON R S. Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant and Soil, 2012, 361(1/2): 291-299.
[2] DEGRYSE F, SILVA R C D, BAIRD R, CAKMAK I, YAZICI M A, MCLAUGHLIN M J. Comparison and modelling of extraction methods to assess agronomic effectiveness of fertilizer zinc. Journal of Plant Nutrition and Soil Science, 2020, 183(2): 248-259.
[3] STEIN A J. Rethinking the measurement of under nutrition in a broader health context: Should we look at possible causes or actual e?ects? Global Food Security, 2014, 3: 193-199.
[4] KREBS N F, MILLER L V, MICHAEL H K. Zinc deficiency in infants and children: a review of its complex and synergistic interactions. Annals of Tropical Paediatrics, 2014, 34(4): 279-288.
[5] WANG M, KONG F M, LIU R, FAN Q Q, ZHANG X C. Zinc in wheat grain, processing, and food. Frontiers in Nutrition, 2020, 7: 124-134.
[6] CAKMAK I, MCLAUGHLIN M J, WHITE P. Zinc for better crop production and human health. Plant and Soil, 2017, 411(1/2): 1-4.
[7] GARCIA-BANUELOS M L, SIDA-ARREOLA J P, SANCHEZ E. Biofortification- promising approach to increasing the content of iron and zinc in staple food crops. Journal of Elementology, 2014, 19(3): 865-888.
[8] PERSSON D P, Bang T C D, PEDAS P R, KUTMAN U B, CAKMAK I, ANDERSEN B, FINNIE C, SCHJOERRING J K, HUSTED S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytologist, 2016, 211(4): 1255-1265.
[9] CAKMAK I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 2008, 302(1/2): 1-17.
[10] MA G, JIN Y, LI Y, ZHAI F, KOK F J, JACOBSEN E, YANG X. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 2008, 11(6): 632-638.
[11] 張明艷, 楊宜豪, 封超年, 郭文善, 李春燕, 朱新開(kāi), 彭永欣. 小麥籽粒礦質(zhì)元素的基因型差異及對(duì)鋅強(qiáng)化的響應(yīng). 麥類(lèi)作物學(xué)報(bào), 2014, 34(4): 489-494.
ZHANG M Y, YANG Y H, FENG C N, GUO W S, LI C Y, ZHU X K, PENG Y X. Responses of concentration of mineral elements to zinc biofortification in different wheat genotypes. Journal of Triticeae Crops, 2014, 34(4): 489-494. (in Chinese)
[12] LIU H, WANG Z H, LI F, LI K, YANG N, YANG Y, HUANG D, LIANG D, ZHAO H, MAO H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Research, 2014, 156(1): 151-160.
[13] MYERS S S, ZANOBETTI A, KLOOG I, HUYBERS P, LEAKEY A D B, BLOOM A J, CARLISLE E, DIETTERICH L H, FITZGERALD G, HASEGAWA T, HOLBROOK N M, NELSON R L, OTTMAN M J, RABOY V, SAKAI H, SARTOR K A, SCHWARTZ J, SENEWEERA S, TAUSZ M, USUI Y. Increasing CO2threatens human nutrition. Nature, 2014, 510(7503): 139-142.
[14] ZOU C Q, ZHANG Y Q, RASHID A, RAM H, SAVASLI E, ARISOY R Z, ORTIZ-MONASTERIO I, SIMUNJI S, WANG Z H, SOHU V. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 2012, 361(1/2): 119-130.
[15] GHASEMI S, KHOSHGOFTARMANESH A H, AFYUNI M,HADAZADEH H. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 2013, 45(2): 68-74.
[16] 陳娟, 王少霞, 田霄鴻,陳艷龍, 朱文玲, 李秀雙, 劉珂, 楊暢. 鋅與農(nóng)藥配合噴施對(duì)小麥鋅累積分配及轉(zhuǎn)移的影響. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 47(3): 67-76.
CHEN J, WANG S X, TIAN X H, CHEN Y L, ZHU W L, LI X S, LIU K, YANG C. Effect of combined foliar application of zinc and pesticides on accumulation, distribution and transfer of zinc in wheat. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(3): 67-76. (in Chinese)
[17] 趙廣才, 常旭虹, 王德梅, 楊玉雙, 馬少康, 楊萬(wàn)深. 小麥一噴三防技術(shù). 作物雜志, 2013(2): 128-130.
ZHAO G C, CHANG X H, WANG D M, YANG Y S, MA S K, YANG W S. One spraying and three prevention of wheat. Crops, 2013(2): 128-130. (in Chinese)
[18] RAM H, RASHID A, ZHANG W, DUARTE A P, PHATTARAKUL N, SIMUNJI S, KALAYCI M, FREITAS R, RERKASEM B, BAL R S. Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant and Soil, 2016, 403: 389-401.
[19] WANG Y H, ZOU C Q, MIRZA Z, LI H, ZHANG Z Z, LI D P, XU C L, ZHOU X B, SHI X J, XIE D T. Cost of agronomic biofortification of wheat with zinc in China. Agronomy for Sustainable Development, 2016, 36(7): 44-50.
[20] 劉珂, 趙吉紅, 王少霞, 李萌, 陳艷龍, 田霄鴻. 鋅肥與三唑酮配合噴施對(duì)冬小麥鋅營(yíng)養(yǎng)品質(zhì)的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2017, 35(4): 34-38.
LIU K, ZHAO J H, WANG S X, LI M, CHEN Y L, TIAN X H. Effects of combined foliar Zn application with triadimefon on Zn nutritional quality of winter wheat. Agricultural Research in the Arid Areas,2017, 35(4): 34-38. (in Chinese)
[21] NING P, WANG S X, FEI P W, ZHANG X Y, DONG J J, SHI J L, TIAN X H. Enhancing zinc accumulation and bioavailability in wheat grains by integrated zinc and pesticide application. Agronomy, 2019, 9(9): 530-542.
[22] WANG S X, ZHANG X Y, LIU K, FEI P W, CHEN J, LI X S, NING P, CHEN Y L, SHI J L, TIAN X H. Improving zinc concentration and bioavailability of wheat grain through combined foliar applications of zinc and pesticides. Agronomy Journal, 2019, 111(18): 1478-1487.
[23] LI M, WANG S X, TIAN X H, ZHAO J H, LI H Y, GUO C H, CHEN Y L, ZHAO A Q. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. Journal of Cereal Science, 2015, 61: 26-32.
[24] CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. Review: Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20.
[25] KUTMAN U B, KUTMAN B Y, CEYLAN Y, OVA E A, CAKMAK I. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil, 2012, 361(1/2): 177-187.
[26] 靳靜靜, 王朝輝, 戴健, 王森, 高雅潔, 曹寒冰, 于榮. 長(zhǎng)期不同氮、磷用量對(duì)冬小麥籽粒鋅含量的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(6): 1358-1367.
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization with different rates on Zn concentration in grain of winter wheat. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1358-1367. (in Chinese)
[27] 董明, 王琪, 周琴, 蔡劍, 王笑, 戴廷波, 姜東. 花后5天噴施鋅肥有效提高小麥籽粒營(yíng)養(yǎng)和加工品質(zhì). 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2018, 24(1): 63-70.
DONG M, WANG Q, ZHOU Q, CAI J, WANG X, DAI T B, JIANG D. Efficient promotion of the nutritional and processing quality of wheat grain by Zn forliar spraying at 5 days after anthesis. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 63-70.(in Chinese)
[28] 張笑媛. 鋅與農(nóng)藥、磷鉀及生物刺激素配合噴施對(duì)小麥籽粒富鋅效果的影響[D]. 楊陵: 西北農(nóng)林科技大學(xué), 2019.
ZHANG X Y. Effects of foliar Zn combined with pesticides, KH2PO4and biostimulants on Zn-enrichment of wheat grain[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[29] 夏玉榮, 封超年, 沈燕, 王正貴, 郭文善. 化學(xué)殺蟲(chóng)劑對(duì)弱筋小麥籽粒安全性和品質(zhì)的影響. 麥類(lèi)作物學(xué)報(bào), 2008, 28(6): 1093-1099.
XIA Y R, FENG C N, SHEN Y, WANG Z G, GUO W S. Effect of the pesticides on edible safety and grain quality of weak-gluten wheat. Journal of Triticeae Crops, 2008, 28(6): 1093-1099. (in Chinese)
[30] 鮑士旦. 土壤農(nóng)化分析. 3版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000: 286.
BAO S D. Soil and Agrochemical Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 286. (in Chinese)
[31] TAO Z Q, WANG D M, CHANG X H, WANG Y J, YANG Y S, ZHAO G C. Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins. Journal of Integrative Agriculture, 2018, 17(9): 1979-1990.
[32] MILLER L V, KREBS N F, HAMBIDGE K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. Journal of Nutrition, 2007, 137(1): 135-141.
[33] CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172-180.
[34] WANG X Z, LIU D Y, ZHANG W, WANG C J, CAKMAK I, ZOU C Q. An effective strategy to improve grain zinc concentration of winter wheat, aphids prevention and farmers’ income. Field Crop Research, 2015, 184: 74-79.
[35] JOZSEF P, KAROLY P, JANOS N. Pesticide productivity and food security, a review. Agronomy for Sustainable Development, 2013, 33(1): 243-255.
[36] FAN M S, ZHAO F J, FAIRWEATHER-TAIT S J, POULTON P R, DUNHAM S J, MCGRATH S P. Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology, 2008, 22: 315-324.
[37] MORGOUNOV A I, BELAN I, ZELENSKIY Y, ROSEEVA L, TOEMOESKOEZI S, BEKES F, ABUGALIEVE A, CAKMAK I, VARGAS M, CROSSA J. Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Canadian Journal of Plant Science, 2013, 93(3): 425-433.
[38] CHEN X P, ZHANG Y Q, TONG Y P, XUE Y F, LIU D Y, ZHANG W, DENG Y, MENG Q F, CHAO Y S, PENG Y, CUI Z L, SHI X J, GUO S W, SUN Y X, YE Y L, WANG Z H, JIA L L, MA W Q, HE M R, ZHANG X Y, KOU C L, LI Y T, TAN D S, CAKMAK I, ZHANG F S, ZOU C Q. Harvesting more grain zinc of wheat for human health. Scientific Reports, 2017, 7(1): 7016-7024.
[39] ZHANG Y Q, SUN Y X, YE Y L, KARIM M R, XUE Y F, YAN P, MENG Q F, CUI Z L, CAKMAK I, ZHANG F S, ZOU C Q. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research, 2012, 125: 1-7.
[40] WANG Y X, SPECHT A, HORST W J. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytologist, 2011, 189: 428-437.
[41] STOMPG T J, CHOI E Y, STANGOULIS J C R. Temporal dynamics in wheat grain zinc distribution: Is sink limitation the key? Annals of Botany, 2011, 107(6): 927-937.
[42] 裴雪霞, 王姣愛(ài), 黨建友, 張定一. 4種殺蟲(chóng)劑對(duì)優(yōu)質(zhì)小麥產(chǎn)量和品質(zhì)的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2009, 17(1): 100-104.
PEI X X, WANG J A, DANG J Y, ZHANG D Y. Effect of pesticides on yield and quality of high quality wheat. Chinese Journal of Eco-Agriculture, 2009, 17(1): 100-104. (in Chinese)
[43] 張夢(mèng)晗, 韓衛(wèi)麗, 雷彩燕, 閆鳳鳴. 吡蟲(chóng)啉種衣劑對(duì)小麥幼苗氮代謝的影響及機(jī)制研究. 種子, 2018, 37(12): 77-84.
ZHANG M H, HAN W L, LEI C Y, YAN F M. Influences of imidacloprid seed coating agent on nitrogen metabolism of wheat seedlings and its mechanism study. Seed, 2018, 37(12): 77-84. (in Chinese)
[44] JOHN N A, SPITZER E. X-ray analysis studies of elements stored in protein body globoid crystals of triticumgrains. Plant Physiology, 1980, 66: 494-499.
[45] LIN L, OCKENDEN I, LOTT J N. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa 1-1) corn (L.) grains and grain parts. Canadian Journal of Botany, 2011, 83(1): 131-141.
[46] CAKMAK I, KALAYCI M, KAYA Y,TORUN A A, AYDIN N, WANG Y, ARISOY Z, ERDEM H, YAZICI A, GOKMEN O. Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092-9102.
[47] AJIBOYE B, CAKMAK I, PATERSON D, JONGE M D, HOWARD D L, STACEY S P, TORUN A A, AYDIN N, MCLAUGHLIN M J. X-ray fluorescence microscopy of zinc localization in wheat grains biofortified through foliar zinc applications at different growth stages under field conditions. Plant and Soil, 2015, 392(1/2): 357-370.
[48] YILMAZ A, EKIZ H, TORUN B, GULTEKIN I, KARANLIK S, BAGCI S A, CAKMAK I. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition, 1997, 20(4/5): 461-471.
[49] BECHER M, TALKE I N, KRALL L, KRAMER U. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulatorPlant Journal, 2004, 37(2): 251-268.
[50] TAURIS B, BORG S, GREGERSEN P L, HOLM P B. A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. Journal of Experimental Botany, 2009, 60(4): 1333-1347.
[51] ERENOGLU E B, KUTMAN U B, CEYLAN Y, YILDIZ B, CAKMAK I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytologist, 2011, 189(2): 438-448.
[52] OSBORNE T B, VOORHEES C L. Proteids of the wheat kernel. Journal of the American Chemical Society, 1894, 16(8): 524-535.
[53] LI C P, LARKINS B A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Molecular Biology, 1996, 30(5): 873-882.
[54] JOHNSON J C, APPELS R, BHAVE M. The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice. Functional & Integrative Genomics, 2006, 6(2): 104-121.
[55] 陳珍, 江瓊, 朱誠(chéng). 植物中的蛋白質(zhì)二硫鍵異構(gòu)酶及其類(lèi)蛋白. 植物生理學(xué)報(bào), 2013, 49(8): 715-721.
CHEN Z, JIANG Q, ZHU C. Protein disulfide isomerise and PDI-Like proteins in plant. Plant Physiology Journal, 2013, 49(8): 715-721. (in Chinese)
[56] STARKS T L, JOHNSON P E. Techniques for intrinsically labeling wheat with65Zn. Journal of Agricultural and Food Chemistry, 1985, 33: 691-698.
[57] HE J, PENSON S, POWERS S J, HAWES C, SHEWRY P R, TOSI P. Spatial patterns of gluten protein and polymer distribution in wheat grain. Journal of Agricultural and Food Chemistry, 2013, 61(26): 6207-6215.
[58] GIUSEPPE D, MOHAMMAD U, EVA V. Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by zinc-IMAC capture and nano LC-MS/MS. Proteomes, 2018, 6(1): 3-24.
[59] BORRILL P, CONNORTON J M, BALK J, MILLER A J, SANDERS D, UAUY C. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science, 2014, 5: 53.
[60] CALDELAS C, WEISS D J. Zinc homeostasis and isotopic fractionation in plants: A review. Plant and Soil, 2017, 411: 17-46.
[61] ANDRESEN E, PEITER E, KUPPER H. Trace metal metabolism in plants. Journal of Experimental Botany, 2018, 69(5): 909-954.
[62] WELCH R M, GRAHAM R D. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experiment Botany, 2004, 55: 353-364.
[63] HOTZ C, BROWN K H. Assessment of the risk of zinc deficiency in populations. Food and Nutrition Bulletin, 2004, 25: S130-S162.
Effects of Combined Foliar Application of Zinc with Imidacloprid on Zinc Enrichment and Protein Components Content in Wheat Grain
LI YaFei, SHI JiangLan, WU TianQi, WANG ShaoXia, LI YuNuo, QU ChunYan, LIU CongHui, NING Peng, TIAN XiaoHong*
College of Natural Resource and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro- environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
【Objective】The aim of this study was to investigate the effects of combined foliar application of zinc (Zn) and pesticide on Zn concentration, protein components content, and the estimated Zn bioavailability intake (TAZ) in whole grain and flour of wheat plants, and to clarify the possible reasons for the differences in Zn enrichment. This study was conducted to provide a basis and highly cost-effective approach for grain Zn fortification agronomic strategies in wheat plants. 【Method】The consecutive two-season field experiments were conducted during 2016 and 2018 with six treatments, i.e., foliar application of distilled water (CK), 0.1% imidacloprid (P), 0.4% ZnSO4·7H2O (Zn), 0.23% glycine zinc (Gly-Zn, GZn), ZnSO4·7H2O+imidacloprid (ZnP), glycine zinc+imidacloprid (GZnP). The concentration of Zn, protein, protein components, and phytic acid in whole grain, flour, and bran were determined, and the TAZ was calculated. 【Result】There was no significant difference in grain yield among different treatments. But, the grain Zn uptake and Zn concentration substantially increased in whole grain, flour and bran by foliar spray of Zn. Compared with CK, the foliar Zn application alone resulted in a 71% and 120% increase of Zn concentration in flour in 2017 and 2018, respectively; the foliar spray of Zn plus imidacloprid resulted in a 103% and 127% increase in 2017 and 2018, respectively. Compared with foliar Zn application alone, foliar spray of Zn plus imidacloprid did not affect the Zn enrichment in wheat, and the Zn concentration was increased in whole grain and flour. Compared with the foliar application ofGly-Zn, the foliar application of ZnSO4·7H2O significantly enhanced grain Zn concentration, while the Zn concentration was the highest in whole grain and flour within foliar ZnP application. A positive correlation was found between Zn concentration and the concentration of protein, gliadin and glutenin in whole grain and flour, respectively. The Zn plus imidacloprid treatment increased the protein concentration in whole grain and flour. Compared with CK, foliar application of ZnP and GZnP resulted in a 19% and 20% increase of protein concentration in flour during 2016 and 2018. There was no significant difference in the albumin and globulin content in whole grain and flour among different treatments. The contents of gliadin and glutenin in whole grain and flour were significantly increased by foliar application of ZnP and GZnP. Foliar Zn application obviously improved grain Zn bioavailability, and the Zn bioavailability was the highest in whole grain and flour under foliar ZnP application treatment.【Conclusion】The ZnSO4·7H2O plus imidacloprid treatment significantly increased the concentration of Zn, protein, gliadin, and glutenin and Zn bioavailability in whole grain and flour. Therefore, combining foliar application of Zn and neonicotinoid insecticide could enhance protein concentration and further improve Zn concentration and Zn bioavailability in wheat grain, so this was an effective and useful practice to overcome human Zn deficiency.
flour; foliar application; Zn; imidacloprid; gliadin; glutenin; Zn bioavailability
2020-12-30;
2021-04-14
國(guó)家自然科學(xué)基金(31672233,31801929)
李雅菲,E-mail:1525671107@qq.com。通信作者田霄鴻,E-mail:txhong@hotmail.com
(責(zé)任編輯 李云霞)