彭?xiàng)鳌±铌?yáng) 戴雨柔 王雪美 楊蛟 王全華 蔡曉鋒
摘? 要: 以483份菠菜種質(zhì)為材料,基于20個(gè)表型性狀數(shù)據(jù),根據(jù)2種遺傳距離、3種取樣方法、8種系統(tǒng)聚類(lèi)方法、3種取樣比例構(gòu)建了144份菠菜核心種質(zhì).應(yīng)用均值差異百分率、方差差異百分率、極差符合率和變異系數(shù)變化率4個(gè)參數(shù)來(lái)檢驗(yàn)各取樣策略的優(yōu)劣. 通過(guò)比較核心種質(zhì)和原始種質(zhì)的變異系數(shù)、方差、多樣性指數(shù)、符合率和主成分,對(duì)構(gòu)建的核心種質(zhì)進(jìn)行代表性檢驗(yàn).結(jié)果表明:“歐氏距離+優(yōu)先取樣法+離差平方和法+15%的取樣比例”取樣策略最佳,其均值差異百分率、方差差異百分率、極差符合率和變異系數(shù)變化率分別為0,65%,100%和124.32%.核心種質(zhì)與原始種質(zhì)在20個(gè)指標(biāo)上的均值符合率在95.08%~99.83%之間,最大值、最小值符合率均為100%,多樣性指數(shù)符合率在83.94%~99.11%之間.原始種質(zhì)和核心種質(zhì)的前6個(gè)主成分相同,累積貢獻(xiàn)率分別為69.563%和70.242%,表明所選出的72份菠菜核心種質(zhì)能代表483份原始種質(zhì)的表型變異特征性,有利于種質(zhì)的保存和利用.
關(guān)鍵詞: 菠菜; 核心種質(zhì); 表型性狀; 種質(zhì)資源
中圖分類(lèi)號(hào):? S 636.1??? ?文獻(xiàn)標(biāo)志碼: A??? 文章編號(hào): 1000-5137(2022)01-0009-11
Construction of spinachs core germplasms based on its phenotypic traits
Abstract:This study used 483 spinach germplasm as materials, based on 20 phenotypic traits, and based on 2 genetic distances, 3 sampling methods, and 8 systematic clustering method and 3 sampling ratios constructed 144 core collections of spinach. Four parameters, the percentage of mean difference, the percentage of variance difference, the coincidence rate of range, and the rate of variation of the coefficient of variation, were used to test the pros and cons of each sampling strategy. By comparing the coefficient of variation, variance, diversity index, coincidence rate and principal components of the core collection and the original collection, the representative test of the constructed core collection was carried out. The results show that:“Euclidean distance+priority sampling method+deviation square sum method+15% sampling ratio” sampling strategy is the best, and its mean difference percentage, variance difference percentage, range coincidence rate, and variation coefficient change rate are 0, 65%, 100%, and 124.32% respectively. The average coincidence rate of the core collection and the original collection on the 20 indicators is between 95.08% and 99.83%, the maximum and minimum coincidence rates are both 100%, and the diversity index coincidence rate is between 83.94% and 99.11%. The first six principal components of the original germplasm and the core germplasm are same, and the cumulative contribution rates are 69.563% and 70.242%, respectively. It shows that the 72 spinach core collections constructed can represent the phenotypic variation characteristics of 483 original collections to be utilized and preserved.
Key words:spinach; core germplasm; phenotypic trait; germplasm resource
菠菜(Spinacia oleraceaL.)屬于莧科藜亞科菠菜屬一二年生草本植物[1],原產(chǎn)于伊朗,2 000年前己有栽培記錄[2].菠菜以葉片和嫩莖為食用器官,富含維生素和鎂、鐵等營(yíng)養(yǎng)元素[3],世界各地普遍種植,是我國(guó)栽培和食用最廣泛的蔬菜之一,同時(shí)也是我國(guó)出口創(chuàng)匯的主要蔬菜之一[4-5].據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)2014年統(tǒng)計(jì),我國(guó)菠菜年產(chǎn)量約2 500萬(wàn)t,占世界菠菜總產(chǎn)量的90%,是世界上最大的菠菜種植國(guó)家及消費(fèi)國(guó)家[6].
種質(zhì)資源的征集保存對(duì)作物新品種的選育、特異種質(zhì)材料的利用,及種質(zhì)創(chuàng)新具有重要意義[7].隨著種質(zhì)資源的不斷積累,種質(zhì)資源庫(kù)變得越來(lái)越大,極大地提高了種質(zhì)資源的管理費(fèi)用,增加了特異種質(zhì)材料篩選、挖掘的難度.BROWN和FRANKEL等[8-10]首次提出了核心種質(zhì)(core collection)的概念以解決這一難題.核心種質(zhì)是指從整個(gè)種質(zhì)資源中選取一定數(shù)量的資源作為樣本,以最小的樣本數(shù)量最大限度地代表整個(gè)種質(zhì)資源的多樣性.構(gòu)建核心種質(zhì)為海量種質(zhì)資源的深入評(píng)價(jià)、高效保護(hù)與利用提供了新的途徑[11-13].如何有效地構(gòu)建作物核心種質(zhì),使盡可能少的樣品保存盡可能多的遺傳變異,已是作物種質(zhì)資源研究的一個(gè)新領(lǐng)域[14].目前,國(guó)內(nèi)外已先后構(gòu)建了甜菜[14]、水稻[15-16]、小麥[17-18]、玉米[19]、大豆[20]、番茄[21-23]等多種作物核心種質(zhì).同時(shí),有關(guān)核心種質(zhì)的取樣比例、取樣策略以及有效性評(píng)價(jià)等理論研究也取得了長(zhǎng)足的進(jìn)展,為核心種質(zhì)的構(gòu)建及代表性評(píng)價(jià)提供了理論依據(jù)[24-27].
菠菜栽培歷史悠久,地域分布廣泛,種質(zhì)資源極為豐富,國(guó)內(nèi)外研究者對(duì)菠菜種質(zhì)資源進(jìn)行了廣泛的收集與利用[28].據(jù)荷蘭遺傳資源中心KIK博士報(bào)道,目前收集的菠菜種質(zhì)資源共計(jì)1 938份[29].國(guó)內(nèi)外對(duì)菠菜核心種質(zhì)構(gòu)建方法進(jìn)行的系統(tǒng)研究尚未見(jiàn)報(bào)道.本研究通過(guò)對(duì)上海師范大學(xué)種質(zhì)資源中心前期收集的、具有代表性的483份菠菜種質(zhì)資源的20個(gè)表型性狀進(jìn)行田間調(diào)查,然后基于表型數(shù)據(jù)進(jìn)行遺傳多樣性分析和核心種質(zhì)的構(gòu)建,并對(duì)其代表性進(jìn)行了評(píng)價(jià),最終確定核心種質(zhì),以更有效地利用現(xiàn)有種質(zhì)資源,去除冗余和重復(fù)材料,優(yōu)化菠菜基因庫(kù)結(jié)構(gòu),為菠菜種質(zhì)資源的保存、改良和新品種選育提供了科學(xué)依據(jù).
1? 材料與方法
1.1實(shí)驗(yàn)材料
實(shí)驗(yàn)材料為上海師范大學(xué)種質(zhì)資源中心園藝系蔬菜課題組收集并保存的483份菠菜種質(zhì)資源材料.
1.2實(shí)驗(yàn)設(shè)計(jì)
實(shí)驗(yàn)于2018年10月—2019年5月在上海師范大學(xué)植物種質(zhì)資源開(kāi)發(fā)中心生物基地進(jìn)行.2018年10月31日將種子播于96孔穴盤(pán)中育苗,基質(zhì)為草炭和蛭石(質(zhì)量比為3∶1),進(jìn)行催苗處理,育苗初期,每2~3 d澆1次水.“兩葉一心”后每天澆1次水,每3 d施用1次氮鉀肥;12月22日(5~6片真葉),將小苗移植在大棚中.成熟后,以每個(gè)種質(zhì)資源為單位,進(jìn)行性狀調(diào)查.
1.3表型性狀調(diào)查與方法
表型性狀調(diào)查內(nèi)容與分級(jí)標(biāo)準(zhǔn)參照《菠菜種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)》[30],調(diào)查株型、株高、株幅、花期等20個(gè)性狀.
1.4數(shù)據(jù)處理
采用Excel計(jì)算20個(gè)性狀的平均值、標(biāo)準(zhǔn)差、最大值、最小值、多樣性指數(shù)和符合率,符合率為
其中,rc為核心種質(zhì)的某一性狀參數(shù);r0為原始種質(zhì)的某一性狀參數(shù)[31].利用PAST 2.17軟件進(jìn)行主成分分析,主成分分析采用均值化的數(shù)據(jù).采用Shannon-Weaver指數(shù)計(jì)算表型性狀的多樣性指數(shù)
其中,Pi為某一性狀出現(xiàn)的概率[32].利用核心種質(zhì)抽取軟件QGA 2.0進(jìn)行核心種質(zhì)的抽提[33-35].
1.5核心種質(zhì)的評(píng)價(jià)
本研究基于均值差異百分率(MD)、方差差異百分率(VD)、極差符合率(CR)和變異系數(shù)變化率(VR)4個(gè)評(píng)價(jià)參數(shù)評(píng)價(jià)所構(gòu)建核心種質(zhì)的代表性,從中篩選出最佳取樣策略.并利用表型性狀的方差、極差、均值和變異系數(shù)等指標(biāo),多樣性指數(shù)檢驗(yàn)法、符合率檢驗(yàn)法、主成分分析法等方法驗(yàn)證所構(gòu)建菠菜核心種質(zhì)是否能夠代表原種質(zhì)資源的遺傳多樣性.
2? 結(jié)果與分析
2.1確定最佳取樣策略
采用馬氏(Mahalanobis)距離和歐氏(Euclidean)距離2種遺傳距離,隨機(jī)取樣法(random)、優(yōu)先取樣法(preferred)和偏離度取樣法(deviation)3種取樣方法,15%,20%和25% 3種取樣比例,最短距離法(single)、最長(zhǎng)距離法(complete)、中間距離法(median)、重心法(centroid)、可變類(lèi)平均法(weighted)、可變類(lèi)平均法(flexible)、不加權(quán)類(lèi)平均法(unweighted)、離差平方和法(ward)8種聚類(lèi)方法,分別在144種取樣策略下構(gòu)建了核心種質(zhì).根據(jù)MD,VD,CR和VR 4個(gè)評(píng)價(jià)參數(shù),從144種取樣策略中選出評(píng)價(jià)參數(shù)最佳的取樣策略.
2.2.1 遺傳距離比較
由不同方法構(gòu)建的144份核心種質(zhì)中,117個(gè)核心種質(zhì)的MD小于20%,CR大于80%,說(shuō)明這117個(gè)核心種質(zhì)能夠代表原群體的遺傳多樣性.比較2種遺傳距離發(fā)現(xiàn),采用歐氏距離構(gòu)建的核心種質(zhì)VD,VR普遍優(yōu)于采用馬氏距離構(gòu)建的核心種質(zhì).在優(yōu)先取樣法下,采用馬氏距離構(gòu)建的核心種質(zhì)的CR雖也達(dá)到100%,但其VD和VR明顯低于采用歐氏距離構(gòu)建的核心種質(zhì).以上分析表明,在菠菜核心種質(zhì)構(gòu)建中,采用歐氏距離優(yōu)于馬氏距離.
2.2.2 取樣方法比較
表1為菠菜核心種質(zhì)篩選評(píng)價(jià)參數(shù),由表1可知:采用歐氏距離,在不同抽樣比例、不同聚類(lèi)方法下,隨機(jī)取樣法構(gòu)建的核心種質(zhì)的各評(píng)價(jià)參數(shù)均劣于優(yōu)先取樣法和偏離度取樣法.其具有相對(duì)較小的VD,CR和VR,不能盡可能多地保存原群體的遺傳變異,因此隨機(jī)取樣法不太適合于構(gòu)建菠菜核心種質(zhì).優(yōu)先取樣法的CR均為100%,完全保存了原群體的變異幅度,同時(shí)又具有相對(duì)較高的VD和VR,因此本實(shí)驗(yàn)采用優(yōu)先取樣法構(gòu)建菠菜的核心種質(zhì).
2.2.3 聚類(lèi)方法比較
對(duì)于歐氏距離,利用優(yōu)先取樣法,采用8種聚類(lèi)方法構(gòu)建菠菜核心種質(zhì),結(jié)果發(fā)現(xiàn):用最短距離法的核心種質(zhì)MD都大于20%,應(yīng)首先排除;在各個(gè)取樣比例下,用離差平方和法得到的核心種質(zhì)的VD和VR都是最大的,因此離差平方和法的聚類(lèi)效果較好.
2.2.4 取樣比例確定
采用歐氏距離,利用離差平方和法進(jìn)行聚類(lèi),結(jié)合優(yōu)先取樣法取樣,按照15%,20%,25% 3個(gè)取樣比例抽取3個(gè)核心種質(zhì)(表1),發(fā)現(xiàn)MD均為0,CR均為100%,VR逐漸減小,且VD在取樣比例為15%時(shí)最高,因此15%是構(gòu)建菠菜核心種質(zhì)最適宜的取樣比例.
綜上所述,應(yīng)選擇“歐氏距離+優(yōu)先取樣法+離差平方和法+15%的取樣比例”的策略構(gòu)建菠菜核心種質(zhì).
2.2核心種質(zhì)驗(yàn)證
2.2.1 核心種質(zhì)與原群體間的遺傳差異
利用均值、極差、表型方差、變異系數(shù)等評(píng)價(jià)了核心種質(zhì)的代表性(表2).由表1及表2可知:核心種質(zhì)庫(kù)與原始群體相比,MD為0,20個(gè)性狀的均值都沒(méi)有顯著差異;各性狀的CR為100%,表明核心種質(zhì)對(duì)原始種質(zhì)中的特異種質(zhì)保留效果較好;各性狀的VR為124.32%,除葉片挺直度、葉基外,18個(gè)性狀的VR均高于原始種群,表明核心種質(zhì)具有良好的異質(zhì)性;各性狀的VD為65%,葉褶皺、葉柄色、株幅、葉柄寬的方差顯著高于原始種質(zhì),株型、葉色、單株葉數(shù)、株高、葉片長(zhǎng)、葉片寬、葉柄長(zhǎng)、抽薹期、開(kāi)花期的方差極顯著高于原始種質(zhì),表明核心種質(zhì)獲得了更大的變異.
2.2.2 核心種質(zhì)與原始種質(zhì)的符合率檢驗(yàn)
核心種質(zhì)與原始種質(zhì)的均值、最大值、最小值和多樣性指數(shù)符合率詳見(jiàn)表3.核心種質(zhì)與原始種質(zhì)的均值符合率在95.08%~99.83%之間,多樣性指數(shù)符合率在83.94%~99.11%之間.說(shuō)明所構(gòu)建的核心種質(zhì)可以代表原始種質(zhì)在20個(gè)表型性狀上的遺傳多樣性;最大值、最小值的符合率均為100%,說(shuō)明核心種質(zhì)保留了原始種質(zhì)中的特異種質(zhì).
2.2.3 核心種質(zhì)與原始種質(zhì)的主成分分析
核心種質(zhì)和原始種質(zhì)的主成分分析詳見(jiàn)表4,分析可知兩者具有相似的特征值、貢獻(xiàn)率和累積貢獻(xiàn)率.以特征值大于1為標(biāo)準(zhǔn)[36],原始種質(zhì)入選5個(gè)主成分,核心種質(zhì)入選6個(gè)主成分.原始種質(zhì)和核心種質(zhì)的前6個(gè)主成分的累積貢獻(xiàn)率分別為69.563%和70.242%,說(shuō)明建立的核心種質(zhì)能夠排除遺傳冗余,使貢獻(xiàn)率和累積貢獻(xiàn)率略有所提升.
3? 討 論
目前,很多育種和相關(guān)科研工作者都會(huì)廣泛收集種質(zhì)資源,但種質(zhì)資源的保存利用技術(shù)尚不成熟,因此,構(gòu)建核心種質(zhì)是種質(zhì)資源工作的重要內(nèi)容,核心種質(zhì)以最少的種質(zhì)數(shù)量包含原群體的全部或大部分的遺傳變異,可以解決種質(zhì)資源數(shù)量龐大、不易保存等問(wèn)題.MIAO等[37]綜述了園藝作物核心種質(zhì)構(gòu)建的研究新進(jìn)展與展望,表明種質(zhì)分組及取樣策略是園藝作物核心種質(zhì)構(gòu)建方法研究的重點(diǎn).
遺傳距離是度量群體間遺傳相似性的綜合數(shù)量指標(biāo),不同遺傳距離的計(jì)算方法直接影響樣品的聚類(lèi)結(jié)果和核心種質(zhì)的構(gòu)建.目前,在核心種質(zhì)構(gòu)建過(guò)程中,最為常用的是歐氏距離和馬氏距離.GAO等[38]采用標(biāo)準(zhǔn)化的數(shù)據(jù),利用歐氏距離結(jié)合類(lèi)平均距離法構(gòu)建了中國(guó)果梅的核心種質(zhì).WANG等[24]在采用標(biāo)準(zhǔn)化的數(shù)據(jù)比較不同遺傳距離對(duì)構(gòu)建棉花核心種質(zhì)的影響時(shí)也發(fā)現(xiàn),歐氏距離優(yōu)于馬氏距離,與本研究結(jié)果一致.聚類(lèi)分析常應(yīng)用于種質(zhì)資源親緣關(guān)系研究[39].常用的聚類(lèi)方法有最短距離法、最長(zhǎng)距離法、中間距離法、重心法、可變類(lèi)平均法、可變類(lèi)平均法、不加權(quán)類(lèi)平均法、離差平方和法等.不同的聚類(lèi)方法在不同的作物中均有成功構(gòu)建核心種質(zhì)的報(bào)道[40].本研究比較了8種聚類(lèi)方法,得出采用離差平方和法構(gòu)建的菠菜核心種質(zhì)具有較大的遺傳變異,明顯優(yōu)于其他方法,這與ZHANG[41]和DONG等[42]的研究結(jié)果一致.
取樣方法一直是核心種質(zhì)研究的重點(diǎn),因?yàn)樗鼪Q定哪一個(gè)株系有資格入選為核心種質(zhì).XU等[43]對(duì)棉花核心種質(zhì)的研究表明,優(yōu)先取樣法和偏離度取樣法都能明顯提高核心種質(zhì)的方差,但是優(yōu)先取樣法先抽取具有性狀最大或最小值的樣品作為核心樣品,有利于保存一些特異材料,構(gòu)建的核心種質(zhì)能完全保存原群體的極差,略優(yōu)于偏離度取樣法.本研究對(duì)比了這3種取樣方法,得出相同結(jié)論.確定合理的取樣比例也是構(gòu)建作物核心種質(zhì)的重要環(huán)節(jié),LI等[44]認(rèn)為取樣比例應(yīng)根據(jù)具體物種遺傳結(jié)構(gòu)及數(shù)量規(guī)模狀況而定.農(nóng)作物因原始群體大,取樣比例多為5%~15%[8],而園藝植物構(gòu)建核心種質(zhì)的取樣比例較大,一般為10%~30%[37].取樣比例的大小還與原種質(zhì)調(diào)查性狀的數(shù)量有關(guān).本研究比較了3種取樣比例(15%,25%和25%),其中用取樣比例15%獲得72份材料的菠菜核心種質(zhì),既保留了原種質(zhì)的遺傳多樣性,又便于管理和利用,是適宜的取樣比例.
表型水平的遺傳多樣性檢驗(yàn)常采用均值、方差、極差和變異系數(shù)等指標(biāo)進(jìn)行檢驗(yàn)[45].BASIGALUP等[46]認(rèn)為極差和方差越大,代表性越強(qiáng).QIAN等[47]用最大值、最小值、均值、標(biāo)準(zhǔn)差和變異系數(shù)作為檢驗(yàn)棉花核心種質(zhì)的代表性和遺傳多樣性的參數(shù).XU等[48]認(rèn)為在評(píng)價(jià)構(gòu)建核心種質(zhì)取樣方法間優(yōu)劣時(shí),多樣性指數(shù)是重要參數(shù).胡晉認(rèn)為合理的核心種質(zhì)需同時(shí)滿足均值差異百分率小于20%和極差符合率參數(shù)大于80%的條件[26].并且,均值差異百分率越小,方差差異百分率、極差符合率和變異系數(shù)變化率越大,對(duì)原始種質(zhì)的代表性越強(qiáng)[49-50].目前,國(guó)內(nèi)根據(jù)表型數(shù)據(jù)構(gòu)建核心種質(zhì)時(shí),大多采用胡晉的評(píng)價(jià)方法,或結(jié)合其他一些評(píng)價(jià)參數(shù).本研究以胡晉的4個(gè)評(píng)價(jià)參數(shù)為主,結(jié)合表型多樣性指數(shù)檢驗(yàn)、符合率檢驗(yàn)法和主成分分析法等方法獲得的菠菜核心種質(zhì)的各個(gè)參數(shù)較優(yōu),代表性較強(qiáng).
表型性狀數(shù)據(jù)能夠真實(shí)反映材料遺傳多樣性,是傳統(tǒng)的構(gòu)建核心種質(zhì)的方法.但表型性狀由于受環(huán)境影響較大,利用表型值度量的材料間遺傳距離不能準(zhǔn)確、真實(shí)地反映材料間基因型的遺傳差異[51].近年來(lái)分子標(biāo)記技術(shù)不斷成熟完善,分子標(biāo)記數(shù)據(jù)能相對(duì)更真實(shí)地反映資源的遺傳多樣性和親緣關(guān)系,利用分子標(biāo)記技術(shù)構(gòu)建核心種質(zhì)是研究熱點(diǎn).但單純使用分子標(biāo)記數(shù)據(jù)構(gòu)建核心種質(zhì)會(huì)造成表型遺傳多樣性的丟失[41,52-53].CHANG等[54]將分子標(biāo)記與表型數(shù)據(jù)相結(jié)合進(jìn)行核心種質(zhì)的構(gòu)建,分別篩選出14個(gè)超甜玉米核心材料和19個(gè)普甜玉米材料作為核心種質(zhì),構(gòu)建的甜玉米核心種質(zhì)最大限度地保留了原始群體的遺傳多樣性和表型變異,能夠有效地代表原始甜玉米材料群體.因此,下一步工作應(yīng)繼續(xù)采集菠菜分子標(biāo)記數(shù)據(jù),整合表現(xiàn)型和基因型數(shù)據(jù),構(gòu)建更加完善的菠菜核心種質(zhì),為菠菜的高產(chǎn)、優(yōu)質(zhì)、抗逆等優(yōu)質(zhì)種質(zhì)資源的挖掘提供便利.
4? 結(jié) 論
本研究利用483份菠菜原始種質(zhì)材料的20個(gè)表型性狀數(shù)據(jù)構(gòu)建核心種質(zhì),優(yōu)化的系統(tǒng)聚類(lèi)方法為離差平方和法結(jié)合優(yōu)先取樣法,采用15%的取樣比例、歐氏距離,最終獲得包含72份材料的核心種質(zhì). 該核心種質(zhì)各項(xiàng)評(píng)價(jià)參數(shù)優(yōu)良,能夠代表原始種質(zhì)的遺傳多樣性,主成分信息得到保留,并且很好地去除了原種質(zhì)的遺傳冗余,可以優(yōu)先作為后續(xù)菠菜種質(zhì)資源研究的材料.
參考文獻(xiàn):
[1]? KADEREIT G, BORSCH T, WEISING K, et al. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis [J]. International Journal of Plant Sciences,2003,164(6):959-986.
[2]? LIU X, ZHENG D S, DONG Y C, et al. Diversity assessment of crops and their wild relatives in China [J]. Journal of Plant Genetic Resources,2008,9(4):411-416.
[3]? LESTER G E, MAKUS D J, HODGES D, et al. Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, Folate, K1, provitamin A), lutein, phenolics, and antioxidants [J]. Journal of Agricultural and Food Chemistry,2013,61(29):7019-7027.
[4]? LAN T, ZHANG S, LIU B, et al. Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA [J]. Cytogenetic and Genome Research,2006,114(2):175-177.
[5]? YAO Y, CUI Y L, CHEN H L, et al. Diversity analysis of morphological traits of spinach germplasm resources [J]. Acta Agriculturae Shanghai,2016,32(1):76-79.
[6]? QIAN W, ZHANG H L, LIU W, et al. Research progress on genetic breeding of spinach (Spinacia oleracea L.) [J]. China Vegetables,2014(3):5-13.
[7]? REN L P, NI X Y, HUANG J X, et al. Core collection of a representative germplasm population in Brassica napus [J]. Scientia Agricultura Sinica,2008(11):3521-3531.
[8]? BROWN A H D. Core collections: a practical approach to genetic resources management [J]. Genome,1989,31(2):818-824.
[9]? FRANKEL O H, BROWN A H D. Current Plant Genetic Resources: A Critical Appraisal [M]// HOLDEN J H W, WILLIAMS J T. Crop Genetic Resources: Conservation and Evaluation. London: George Allan and Unwin,1984.
[10] BROWN A H D. The Case for Core Collections [M]// BROWN A H D, FRANKEL O H, MARSHALL D R, et al. The Use of Plant Genetic Resources. Cambridge: Cambridge University Press,1989:136-156.
[11] FRANKEL O H. Genetic Perspectives of Germplasm Conservation [M]. Cambridge: Cambridge University Press,1984:161-170.
[12] FRANKEL O H, BROWN A H D. Plant Genetic Resources Today: A Critical Appraisal [M]// HOLDEN J H W, WILLIAMS J T. Crop Genetic Resources: Conservation and Evaluation. London: George Allan and Unwin,1984:249-257.
[13] BROWN A H D, FRANKEL O H, MARSHALL D R, et al. The Use of Plant Genetic Resources [M]. Cambridge: Cambridge University Press,1989.
[14] GUO Y N, XING W, ZHOU J C, et al. Construction of core germplasm of sugar beet [J]. Chinese Agricultural Science Bulletin,2017,33(24):41-46.
[15] NOBUHIRO T, MATTHEW S, YOSHIHIRO K, et al. Investigation of the genetic diversity of a rice core collection of Japanese landraces using whole-genome sequencing [J]. Plant and Cell Physiology,2021,61(12):2087-2096.
[16] ZHAO L. Genetic diversity analysis and core collection construction of rice germplasm resources in Ningxia and Xinjiang [D]. Yinchuan: Ningxia University,2018.
[17] ERIC N, JACQUES B, FRAN?OIS B, et al. Association between SNP markers and 11 vitamin contents in grains of a worldwide bread wheat core collection [J]. Journal of Agricultural and Food Chemistry,2021,69(14):4307-4318.
[18] FERNANDO M, PATRICIA G, MAR C M D, et al. Evaluation of leaf rust resistance in the spanish core collection of tetraploid wheat landraces and association with ecogeographical variables [J]. Agriculture,2021,11(4): 1-18.
[19] LIU S Q, DUAN Y P, HAN X D, et al. Effect of construction and improvement of maize core germplasm [J]. Seed,2019,38(3):108-113.
[20] LI X N, ZHOU Y, BU Y, et al. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection [J/OL]. Genes Genomic [2021-09-08]. DOI: 10.1007/s13258-021-01109-9.
[21] ZHENG F S, WANG X M, LI G H, et al. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits [J]. Journal of Zhejiang University (Agric. & Life Sci.),2021,47(2):171-181.
[22] HE H, YANG Y, NIU Y, et al. Construction strategy of larger fruit tomato core germplasm based on genotype value [J]. Northern Horticulture,2020(15):8-14.
[23] NIU Y, LIU W X, YANG Y, et al. Construction strategy of core germplasm of cherry tomato [J]. Chinese Journal of Tropical Crops,2019,40(12):2356-2363.
[24] WANG J, HU J, ZHANG C, et al. Assessment on evaluating parameters of rice core collections constructed by genotypic values and molecular marker information [J]. Rice Science,2007,14(2):101-110.
[25] SHARMA B. Core collection of plant genetic resources [J]. The Indian Journal of Genetics and Plant Breeding,1995,44(4):460-461.
[26] HU J, ZHU J, XU H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops [J]. Theoretical and Applied Genetics,2000,101:264-268.
[27] YAO Q L, FANG P, YANG K C, et al. Methods of constructing a core collection of maize landraces in southwest China based on SSR data [J]. Journal of Hunan Agricultural University (Natural Sciences),2009,35(3):225-228.
[28] SHI A, MOU B, CORRELL J C. Association analysis for oxalate concentration in spinach [J]. Euphytica,2016,212(1):17-28.
[29] KIK C. Two collecting expeditions to the centers of biodiversity of spinach [C]// International Spinach Conference 2013, Guangzhou,2013.
[30] WANG H P. Description Specification and Data Standard of Spinach Germplasm Resources [M]. Beijing: China Agricuture Press,2008.
[31] LI X L, JIA J W, WANG J H, et al. Morphological diversity analysis and preliminary construction of core collection of Catalpa fargesii Bureau [J]. Journal of Plant Genetic Resources,2013,14(2):243-248.
[32] ZHENG Y Q, GUO Y, FANG S J, et al. Construction pre-core collection of Cynodon dactylon based on phenotypic data [J]. Acta Prataculturae Sinica,2014,23(4):49-60.
[33] HU J, XU H M, ZHU J. A Method of constructing core collection reserving special germplasm materials [J]. Journal of Biomathematics,2001(3):348-352.
[34] XU H M, HU J, ZHU J. An efficient method of sampling core collection from crop germplasm [J]. Acta Agronomica Sinica,2000(2):157-162.
[35] HU J, XU H M, ZHU J. Constructing core collection of crop germplasm by multiple clusters based on genotypic values [J]. Journal of Biomathematics,2000(1):103-109.
[36] WEI S W, YANG H, ZHANG Q R, et al. The diversity of lettuce resource based on the analysis of phenotypic traits [J]. Journal of Plant Genetic Resources,2016,17(5): 871-876.
[37] MIAO L M, WANG S Y, ZOU M H, et al. Review of the studies on core collection for horticultural crops [J]. Journal of Plant Genetic Resources,2016,17(5):791-800.
[38] GAO Z H, ZHANG Z, HAN Z H, et al. Development and evaluation of core collection of Japanese apricot germplasms in China [J]. Scientia Agricultura Sinica,2005(2):363-368.
[39] PEETERS J P, MARTINELLI J A. Hierarchical cluster analysis as a tool to manage variation in germplasm collections [J]. Theoretical and Applied Genetics,1989,78(1):42-48.
[40] WANG J C. Studies on new methods for constructing core collection of plant germplasm resources [D]. Hangzhou: Zhejiang University,2006.
[41] ZHANG Y F, ZHANG Q L, YANG Y, et al. Development of Japanese persimmon core collection by genetic distance sampling based on SSR markers [J]. Biotechnology and Biotechnological Equipment,2009,23(4):1474-1478.
[42] DONG Y H, Evaluation on genetic diversity of agronomic characters and core collection construction in Ziziphus jujuba Mill [D]. Baoding: Hebei Agricultural University,2008.
[43] XU H M, QIU Y X, HU J, et al. Methods of constructing core collection of crop germplasm by comparing different genetic distances, cluster methods and sampling strategies [J]. Acta Agronomica Sinica,2004(9):932-936.
[44] LI Z C. ZHANG H L, ZENG Y W,et al. Study on sampling schemes of core collection of local varieties of rice in Yunnan, China [J]. Scientia Agricultura Sinica,2000(5):1-7.
[45] CUI Y H, QIU L J, CHANG R Z, et al. Representative test for primary core collection of summer sowing soybeans in Huanghuai region of China [J]. Acta Agronomica Sinica,2004(3):284-288.
[46] BASIGALUP, D H, BARNES, et al. Development of a core collection for perennial Medicago plant introductions [J]. Crop Science,1995,35(4):1163-1168.
[47] QIAN Y Y, LIU W, CUI S F, et al. Analysis of genetic diversity of cotton germplasm resources and extraction of core germplasm based on phenotypic traits [J]. Acta Agriculturae Boreali-Sinica,2019,34(suppl.):29-35.
[48] XU H M, LI X L, LI J Q, et al. Study on the strategies of integrating qualitative and quantitative traits for constructing core collection. [J]. Journal of Zhejiang University (Agric. & Life Sci.),2005(4):362-367.
[49] WANG J C, HU J, ZHANG C F, et al. Evaluating parameters of rice core collections based on genotypic values and molecular marker information [J]. Chinese Journal of Rice Science,2007(1):51-58.
[50] LIU Z C, ZHANG C Y, ZHANG Y M, et al. Study on method of constructing core collection of Malus sieversii based on quantitative traits [J]. Scientia Agricultura Sinica,2010,43(2):358-370.
[51] XU H M, HU J, QIU Y X. Study on constructing core collection based on plant molecular markers and quantitative traits [J]. Journal of Biomathematics,2005(3):97-101.
[52] TREUREN R V, TCHOUDINOVA I, SOEST L, et al. Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data [J]. Genetic Resources and Crop Evolution,2006,53:43-52.
[53] ZHANG C Y, CHEN X S, ZHANG Y M, et al. A method for constructing core collection of Malus sieversii using molecular markers [J]. Scientia Agricultura Sinica,2009,42(2):597-604.
[54] CHANG L F, BAI J R, LI R, et al. Construction of a core collection of sweet corn populations based on SSR markers [J]. Journal of Maize Sciences,2018,26(3):40-49.
(責(zé)任編輯:顧浩然,馮珍珍)
收稿日期: 2021-10-03
基金項(xiàng)目: 上海市科研創(chuàng)新行動(dòng)計(jì)劃項(xiàng)目(19070502600);上海市科技興農(nóng)項(xiàng)目(滬農(nóng)科推字(2021)第1-14號(hào));上海植物種質(zhì)資源工程技術(shù)研究中心項(xiàng)目(17DZ2252700);上海市協(xié)同創(chuàng)新中心項(xiàng)目(ZF1205);上海市植物分子科學(xué)實(shí)驗(yàn)室項(xiàng)目(18DZ2260500)
作者簡(jiǎn)介: 彭 楓(1996—),男,碩士研究生,主要從事蔬菜遺傳育種及分子生物學(xué)方面的研究. E-mail: 13816873387@126.com*通信作者: 蔡曉鋒(1986—),男,教授,主要從事蔬菜遺傳育種及分子生物學(xué)方面的研究. E-mail: cxf0012@163.com
引用格式: 彭?xiàng)鳎?李陽(yáng), 戴雨柔, 等. 基于表型性狀的菠菜核心種質(zhì)構(gòu)建 [J]. 上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,51(1):9?19.
Citation format:?PENG F, LI Y, DAI Y R, et al. Construction of spinachs core germplasms based on its phenotypic traits [J]. Journal of Shanghai Normal University(Natural Sciences),2022,51(1):9?19.