胡 煉,彭靖怡,賴桑愉,馮達(dá)文,陳高隆,王晨陽(yáng),羅錫文
基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量方法與試驗(yàn)
胡 煉1,2,彭靖怡1,2,賴桑愉1,馮達(dá)文1,2,陳高隆1,2,王晨陽(yáng)1,2,羅錫文1,2※
(1. 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642;2.嶺南現(xiàn)代農(nóng)業(yè)科學(xué)與技術(shù)廣東省實(shí)驗(yàn)室,廣州 510642)
為提高農(nóng)田建設(shè)中挖掘機(jī)施工作業(yè)精度和智能化程度,該研究提出了一種基于北斗衛(wèi)星導(dǎo)航系統(tǒng)(BeiDou Navigation Satellite System, BDS)和慣性測(cè)量單元(Inertial Measurement Unit, IMU)的挖掘機(jī)鏟斗位姿測(cè)量方法。首先,采用IMU測(cè)量挖掘機(jī)各執(zhí)行機(jī)構(gòu)的姿態(tài)角信息,解算獲得挖掘機(jī)車體坐標(biāo)系下鏟斗末端的三維坐標(biāo),利用雙天線BDS和IMU檢測(cè)車體的位置和姿態(tài)建立了挖掘機(jī)鏟斗末端三維坐標(biāo)的實(shí)時(shí)解算模型,并設(shè)計(jì)了融合雙天線BDS和IMU輸出高頻率高精度位姿的卡爾曼濾波算法。模擬挖掘機(jī)實(shí)際施工場(chǎng)景進(jìn)行了靜態(tài)和動(dòng)態(tài)試驗(yàn),采用全站儀驗(yàn)證鏟斗末端三維坐標(biāo)解算值。試驗(yàn)結(jié)果表明,該方法能準(zhǔn)確實(shí)時(shí)測(cè)量挖掘機(jī)鏟斗末端三維坐標(biāo),挖掘機(jī)鏟斗末端三維坐標(biāo)解算值與全站儀實(shí)測(cè)值的運(yùn)動(dòng)軌跡變化一致,同一時(shí)刻空間兩坐標(biāo)點(diǎn)距離均方根偏差小于30 mm,三個(gè)軸向坐標(biāo)動(dòng)態(tài)測(cè)量均方根偏差均在20 mm內(nèi),絕對(duì)偏差≤30 mm的數(shù)據(jù)占比不低于95.35%,挖掘機(jī)鏟斗位姿的準(zhǔn)確測(cè)量為挖掘機(jī)精準(zhǔn)施工智能引導(dǎo)提供了基礎(chǔ)。
農(nóng)業(yè)機(jī)械;挖掘機(jī);BDS;IMU;坐標(biāo)轉(zhuǎn)換;位姿測(cè)量
挖掘機(jī)是常用的工程機(jī)械,也是農(nóng)業(yè)生產(chǎn)和農(nóng)田建設(shè)廣泛應(yīng)用的機(jī)械,用于河渠水下淤泥清理、農(nóng)田溝渠修建和農(nóng)田改造平整等[1],為高標(biāo)準(zhǔn)農(nóng)田建設(shè)發(fā)揮了重要作用。目前挖掘機(jī)的施工作業(yè)全憑操作人員的經(jīng)驗(yàn),在高精度造型、平整,以及視野受限的水下作業(yè)和地底挖掘等施工場(chǎng)景對(duì)于操作人員的要求很高,依靠操作人員經(jīng)驗(yàn)難以保證工作質(zhì)量和效率[2-4]。
近年來(lái),人們對(duì)挖掘機(jī)的施工作業(yè)精度與作業(yè)效率的要求也越來(lái)越高,挖掘機(jī)智能化和自動(dòng)化已成為重要發(fā)展方向,如精確感知挖掘機(jī)本身及其作業(yè)部件位姿信息實(shí)現(xiàn)軌跡控制和遠(yuǎn)程控制等[5-6]。為準(zhǔn)確獲取挖掘機(jī)作業(yè)部件位姿參數(shù),目前基于傳感器技術(shù)估計(jì)位姿是主要研究熱點(diǎn)[7],如采用旋轉(zhuǎn)編碼器和電位計(jì)[8]、旋轉(zhuǎn)電位計(jì)和傾角傳感器[9]獲取挖掘機(jī)的姿態(tài)信息。牛大偉[10]采用微機(jī)電系統(tǒng)傳感器對(duì)挖掘機(jī)姿態(tài)信息進(jìn)行測(cè)量,提高了姿態(tài)檢測(cè)系統(tǒng)的工作穩(wěn)定性與可靠性。日本小松挖掘機(jī)通過(guò)裝載位移行程油缸獲取油缸行程轉(zhuǎn)換得到各機(jī)構(gòu)臂的空間姿態(tài)角[5]、李海虹等[11]提出以液壓缸行程的線位移測(cè)量取代關(guān)節(jié)轉(zhuǎn)角測(cè)量,但位移行程油缸和轉(zhuǎn)角傳感器安裝較困難,且接觸式的轉(zhuǎn)角傳感器因機(jī)械磨損降低精度。在基于視覺(jué)技術(shù)中,為避免了傳統(tǒng)位移傳感器在惡劣工況與環(huán)境下的碰撞損壞與測(cè)量精度低的問(wèn)題,倪佳敏等[12]通過(guò)神經(jīng)網(wǎng)絡(luò)建立油缸位移長(zhǎng)度與標(biāo)識(shí)點(diǎn)坐標(biāo)間映射關(guān)系的工作裝置虛擬位移傳感器系統(tǒng),但其只針對(duì)油缸位移傳感器實(shí)現(xiàn)了非接觸測(cè)量,功能較為單一;Xu等[13]提出一種利用基于視覺(jué)的神經(jīng)網(wǎng)絡(luò)系統(tǒng)估計(jì)液壓機(jī)械手姿態(tài),在測(cè)試平臺(tái)進(jìn)行了使用經(jīng)過(guò)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)估計(jì)器來(lái)估計(jì)機(jī)械手液壓缸位移的仿真測(cè)試。Mulligan等[14]開(kāi)發(fā)了一種基于邊緣檢測(cè)的倒角匹配方法來(lái)估計(jì)挖掘機(jī)操縱器的姿態(tài),但是其圖像處理方法的性能嚴(yán)重依賴于輸入圖像的質(zhì)量;Liang等[7]采用深度卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練挖掘機(jī)圖片集,基于堆疊沙漏網(wǎng)絡(luò)算法估計(jì)機(jī)器二維姿態(tài)信息,再對(duì)三維位姿進(jìn)行預(yù)測(cè)和重構(gòu),但其三維姿態(tài)是以二維姿態(tài)估計(jì)結(jié)果作為輸入易產(chǎn)生累積誤差,且該網(wǎng)絡(luò)只能識(shí)別一臺(tái)機(jī)器的位姿,不適用多機(jī)器共同作業(yè)場(chǎng)景;王海波等[15]基于視覺(jué)技術(shù)測(cè)量挖掘機(jī)工作姿態(tài)、朱建新等[16]提出了一種基于點(diǎn)云聚類特征值方圖的目標(biāo)識(shí)別方法,但在復(fù)雜的施工背景下提取圖像特征以及提高算法的魯棒性和準(zhǔn)確性有待進(jìn)一步研究。
位姿由位置和姿態(tài)兩部分組成。在三維坐標(biāo)系中,可以用質(zhì)點(diǎn)的坐標(biāo)表示位置,質(zhì)點(diǎn)坐標(biāo)與坐標(biāo)原點(diǎn)組成的三維向量表示姿態(tài),位置的變化即質(zhì)點(diǎn)的平移過(guò)程,姿態(tài)的變化是向量的旋轉(zhuǎn)過(guò)程。其中姿態(tài)的測(cè)量可通過(guò)多種方法實(shí)現(xiàn),周云成等[17]提出一種基于時(shí)序一致性約束的自監(jiān)督位姿變換估計(jì)模型以實(shí)現(xiàn)溫室環(huán)境下機(jī)器人行進(jìn)過(guò)程中的位置及姿態(tài)跟蹤。李晨陽(yáng)等[18]利用高頻率里程計(jì)信息估計(jì)機(jī)器人位姿,但在農(nóng)田等地面不平整的環(huán)境中,里程計(jì)信息存在一定誤差。在基于傳感器的方法中,使用了如慣性測(cè)量單元(Inertial Measurement Unit, IMU)、光學(xué)姿態(tài)測(cè)量系統(tǒng)、GPS姿態(tài)測(cè)量系統(tǒng)、無(wú)線局域網(wǎng)(WLAN)、射頻識(shí)別(RFID)和基于超寬帶(UWB)等方法[19-21]。在基于WLAN、RFID和UWB的三維姿態(tài)估計(jì)中,信號(hào)源被放置在固定位置,這在動(dòng)態(tài)工作現(xiàn)場(chǎng)條件下并不適用[22]。IMU不受氣候條件、空間條件限制,方便攜帶,成本因精度而定,適用于對(duì)測(cè)量精度、動(dòng)態(tài)性能、實(shí)時(shí)性均有較高要求的領(lǐng)域,然而連續(xù)測(cè)量角度變化會(huì)受到磁干擾和漂移問(wèn)題的影響。在基于GPS的姿態(tài)估計(jì)方法中,GPS估計(jì)的每個(gè)位置和航向相互獨(dú)立,這解決了漂移問(wèn)題,但其無(wú)姿態(tài)信息、數(shù)據(jù)率低且易受環(huán)境因素干擾[23-26]。隨著中國(guó)北斗衛(wèi)星導(dǎo)航系統(tǒng)(BeiDou Navigation Satellite System,BDS)建成,其已經(jīng)在測(cè)量航向和姿態(tài)方面得到了廣泛應(yīng)用,為運(yùn)動(dòng)目標(biāo)提供三維姿態(tài)信息,可以達(dá)到毫米級(jí)的靜態(tài)定位精度和厘米級(jí)的動(dòng)態(tài)測(cè)量精度[27-28]。
為此,本文提出基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量方法,采用卡爾曼濾波算法獲取車體準(zhǔn)確位姿信息,建立鏟斗三維坐標(biāo)解算模型,解算挖掘機(jī)鏟斗末端三維坐標(biāo)。擬解決上述由于傳感器特性及安裝造成的精度、測(cè)量范圍和抗振能力較差的問(wèn)題,引導(dǎo)挖掘機(jī)精準(zhǔn)完成平整、造型施工和水下施工等作業(yè),減少人力成本和勞動(dòng)強(qiáng)度,在達(dá)到精確作業(yè)的同時(shí)提高智能化程度。
為了說(shuō)明質(zhì)點(diǎn)的位置、運(yùn)動(dòng)的快慢和方向等,必須選擇相應(yīng)的坐標(biāo)系[28]。中國(guó)北斗衛(wèi)星導(dǎo)航系統(tǒng)定位坐標(biāo)采用的是大地坐標(biāo)系,在工程上常用“高斯投影”方法將大地坐標(biāo)系中的點(diǎn)(,,)轉(zhuǎn)換成地理坐標(biāo)系(x,y,z)(本文選擇“東北天”為地理坐標(biāo)系,簡(jiǎn)稱G系,定義為:軸指向東,軸指向北,軸垂直于當(dāng)?shù)厮矫?,沿?dāng)?shù)卮咕€向上),再平移至施工本地坐標(biāo)系(簡(jiǎn)稱t系)。為使鏟斗末端姿態(tài)解算結(jié)果可直接用于施工,設(shè)施工本地坐標(biāo)系的原點(diǎn)為,在G系的坐標(biāo)為(x,y,z)[29],將地理坐標(biāo)系的坐標(biāo)(x,y,z)轉(zhuǎn)換為施工本地坐標(biāo)系下的坐標(biāo)(x,y,z)可通過(guò)式(1)獲得。
基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量系統(tǒng)主要由BDS基站、BDS雙天線、IMU姿態(tài)傳感器、車載終端構(gòu)成,如圖1所示,在車頂上搭載BDS雙天線以獲取車體位姿信息(航向角與空間位置信息),并保證雙天線間連線與駕駛室和各機(jī)械臂方向保持垂直;在車體上安裝IMU姿態(tài)傳感器讀取車體橫滾角與俯仰角;在挖掘機(jī)的動(dòng)臂、斗桿、鏟斗合適處安裝IMU姿態(tài)傳感器獲取各機(jī)構(gòu)姿態(tài)角變化;在駕駛室內(nèi)安裝車載終端連接BDS雙天線和IMU,實(shí)時(shí)讀取信息并解算出鏟斗末端三維坐標(biāo),車載終端顯示的鏟斗末端三維坐標(biāo)信息為操作人員提供準(zhǔn)確的施工作業(yè)引導(dǎo)。
1.BDS基站 2.BDS雙天線 3.車身IMU 4.車載終端 5.動(dòng)臂IMU 6.斗桿IMU 7.鏟斗IMU 8.鏟斗末端
1.BDS (BeiDou Navigation Satellite System) base station 2.BDS dual antenna 3.IMU (Inertial Measurement Unit) on the body 4.Vehicular terminal 5.IMU on the boom 6.IMU on the stick 7.IMU on the bucket 8.End of excavator bucket
注:坐標(biāo)系xyz為車體坐標(biāo)系,以車體前進(jìn)方向?yàn)?i>x軸,y軸與x軸垂直指向車體方向的左側(cè),z軸垂直于xy平面向上;坐標(biāo)系xyz為施工本地坐標(biāo)系,x軸指向東,y軸指向北,z軸垂直于當(dāng)?shù)厮矫妫禺?dāng)?shù)卮咕€向上;,,分別為車體偏航角、橫滾角和俯仰角,(°)。
Note:xyzis the vehicle body coordinate system,xrepresents the forward direction of the car body,yperpendicular toxand point to the left side of the vehicle body,zaxis perpendicular toxyplane and upward;xyzis the local construction coordinate system,xpoints east,ypoints north,zis perpendicular to the local horizontal plane and upward along the local vertical line;,,are yaw, roll and pitch angles of the body respectively, (°).
圖1 挖掘機(jī)鏟斗位姿測(cè)量系統(tǒng)
Fig.1 The position and posture measurement system of excavator bucket
基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量算法主要是建立挖掘機(jī)鏟斗末端的坐標(biāo)解算模型,包括以下幾個(gè)步驟:1)利用雙天線BDS和IMU卡爾曼濾波融合算法輸出車體的位置和姿態(tài),計(jì)算姿態(tài)旋轉(zhuǎn)矩陣;2)根據(jù)幾何關(guān)系或機(jī)器人運(yùn)動(dòng)學(xué)和所測(cè)量的各執(zhí)行機(jī)構(gòu)姿態(tài)角信息,解算基于車體坐標(biāo)系的挖掘機(jī)鏟斗末端的位置信息;3)測(cè)量計(jì)算挖掘機(jī)車身參數(shù)及BDS天線到質(zhì)心位置的坐標(biāo)增量,計(jì)算BDS天線至鏟斗末端的坐標(biāo)增量,解算基于施工本地坐標(biāo)系下鏟斗末端的三維坐標(biāo)。基于挖掘機(jī)建立坐標(biāo)系,坐標(biāo)系及測(cè)量單元安裝位置如圖1所示,通過(guò)獲取BDS雙天線的位置和航向角信息以及車體、動(dòng)臂、斗桿及鏟斗的姿態(tài)信息,基于所獲取信息和執(zhí)行機(jī)構(gòu)幾何關(guān)系建立求解鏟斗末端的三維坐標(biāo)解算模型,并計(jì)算獲得施工本地坐標(biāo)系下鏟斗末端的三維坐標(biāo)。坐標(biāo)解算模型如式(2)。
式中為施工本地坐標(biāo)系下鏟斗末端的三維坐標(biāo);為BDS天線的位置信息;1,2,3為各執(zhí)行機(jī)構(gòu)上IMU姿態(tài)傳感器角度測(cè)量值。
位姿解算步驟如下:
1)BDS和IMU的卡爾曼濾波融合算法,計(jì)算車體姿態(tài)旋轉(zhuǎn)矩陣
由于GNSS輸出頻率較低且易受干擾、IMU在動(dòng)態(tài)測(cè)量過(guò)程中受頻繁振動(dòng)影響測(cè)量精度。因此,設(shè)計(jì)了卡爾曼濾波融合算法,融合BDS(頻率10 Hz)輸出定位信息和IMU(頻率50 Hz)輸出三軸加速度、角速度信息來(lái)估計(jì)最優(yōu)車體定位信息和航向信息,保證位姿測(cè)量的實(shí)時(shí)性和準(zhǔn)確性,以滿足挖掘機(jī)實(shí)際應(yīng)用的要求。
系統(tǒng)模型建立:
通過(guò)卡爾曼濾波融合具體輸出過(guò)程如下:
(3)計(jì)算時(shí)刻的濾波增益;
式中為測(cè)量噪聲協(xié)方差矩陣;
式中為測(cè)量向量。
(5)更新時(shí)刻誤差估計(jì)的協(xié)方差
重復(fù)計(jì)算過(guò)程,直到算法結(jié)束,得到最優(yōu)估計(jì)的車體定位信息和航向信息。
車體坐標(biāo)系通過(guò)繞歐拉角橫滾、俯仰、偏航3次旋轉(zhuǎn)到與施工本地坐標(biāo)系對(duì)齊。則()、()、() 3個(gè)旋轉(zhuǎn)矩陣分別為
得車體坐標(biāo)系轉(zhuǎn)為施工本地坐標(biāo)系的旋轉(zhuǎn)矩陣:
2)計(jì)算基于車體坐標(biāo)系下鏟斗末端三維坐標(biāo)0
挖掘機(jī)的動(dòng)臂、斗桿及鏟斗在同一平面內(nèi),其幾何結(jié)構(gòu)如圖2所示,建立車體坐標(biāo)系xoz和施工本地坐標(biāo)系xoz,根據(jù)幾何關(guān)系推算基于車體坐標(biāo)系下鏟斗末端三維坐標(biāo)0。
求得車體坐標(biāo)系下0的坐標(biāo)為
注:坐標(biāo)系xoz為施工本地坐標(biāo)系;坐標(biāo)系xoz為車體坐標(biāo)系;()表示車體與動(dòng)臂之間的關(guān)節(jié),是施工本地(車體)坐標(biāo)系的原點(diǎn);1點(diǎn)表示動(dòng)臂與斗桿之間的關(guān)節(jié);2點(diǎn)表示斗桿與鏟斗之間的關(guān)節(jié);3點(diǎn)表示鏟斗末端測(cè)量點(diǎn);1表示動(dòng)臂的長(zhǎng)度,為()到點(diǎn)1的直線距離,m;2表示斗桿的長(zhǎng)度,為點(diǎn)1到點(diǎn)2的直線距離,m;3表示鏟斗的長(zhǎng)度,為點(diǎn)2到點(diǎn)3的直線距離,m;1、2、3分別為動(dòng)臂IMU、斗桿IMU和鏟斗IMU測(cè)量值,(°);為車體在運(yùn)動(dòng)狀態(tài)下車體坐標(biāo)系基于施工本地坐標(biāo)系的俯仰角,(°)。
Note: xozis the local construction coordinate system;xozis the car body coordinate system;() represents the joint between the body and the boom and is the origin of the local construction (body) coordinate system;1represents the joint between the boom and the stick;2represents the joint between the stick and the bucket;3represents the measuring points at the end of the bucket;1is the length of the boom, represents the linear distance from point() to Point1, m;2is the length of the stick, represents the linear distance from point1to Point2, m;3is the length of the bucket,represents the linear distance from point2to point3, m;1,2,3are the measured values of boom IMU, stick IMU and bucket IMU respectively, (°);is the pitch angle of the car body coordinate system based on the local construction coordinate system when the car body is in motion, (°).
圖2 挖掘機(jī)幾何結(jié)構(gòu)圖
Fig.2 Geometric structure diagram of excavator
3)計(jì)算基于施工本地坐標(biāo)系下鏟斗末端三維坐標(biāo)
測(cè)量車體坐標(biāo)系下BDS天線至車體坐標(biāo)系原點(diǎn)的坐標(biāo)增量0,可得基于車體坐標(biāo)系下BDS天線至作業(yè)部件末端的坐標(biāo)增量:
=0+0(15)
經(jīng)過(guò)歐拉角旋轉(zhuǎn)變換至施工本地坐標(biāo)系下,可得:
1)挖掘機(jī)模型試驗(yàn)平臺(tái)
設(shè)計(jì)由鏟斗、斗桿、動(dòng)臂和回轉(zhuǎn)平臺(tái)組成的挖掘機(jī)模型平臺(tái),可模擬挖掘機(jī)各機(jī)械臂和回轉(zhuǎn)關(guān)節(jié)運(yùn)動(dòng),并在挖掘機(jī)模型平臺(tái)上安裝BDS雙天線,如圖3所示。試驗(yàn)選擇施工本地坐標(biāo)系的、、3個(gè)軸向來(lái)觀察挖掘機(jī)鏟斗末端真實(shí)值與解算值的誤差,采用直線導(dǎo)軌滑塊機(jī)構(gòu)保證動(dòng)態(tài)試驗(yàn)的3個(gè)坐標(biāo)軸向運(yùn)動(dòng)直線度,導(dǎo)軌安裝有位移傳感器測(cè)量軸向運(yùn)動(dòng)位移[30],位移傳感器采用WXY15M型,最大量程為400 mm,輸入0~5 V電壓,輸出為模擬量,分辨率0.01,線性精度為0.02%FS,設(shè)置拉線傳感器的采樣頻率為10 Hz。
1.斗桿長(zhǎng) 2.動(dòng)臂長(zhǎng) 3.回轉(zhuǎn)平臺(tái) 4.拉線傳感器 5.鏟斗長(zhǎng) 6.鏟斗末端 7.BDS雙天線
1.The length of excavator stick 2.The length of excavator boom 3.Rotary platform 4.Cable sensor 5.The length of excavator bucket 6.The end of excavator bucket 7.BDS dual antenna
注:車體坐標(biāo)系軸指向正東,軸指向正北,軸垂直于平面向上;導(dǎo)軌滑塊平臺(tái)縱向分別與車體、、軸平行。
Note:Theaxis of the vehicle body coordinate system points to the east, theaxis points to the north, theaxis perpendicular toplane and upward. Make the longitudinal direction of the slide rail platform parallel to the,andaxes of the vehicle body, respectively.
圖3 挖掘機(jī)模型試驗(yàn)平臺(tái)
Fig.3 Model test platform of excavator
2)其他材料
BDS雙天線系統(tǒng)(司南導(dǎo)航K726定位板卡,靜態(tài)差分精度為水平面2.5 mm、高程5 mm,輸出頻率為10 Hz,航向角測(cè)量精度為0.2°/。其中,為雙天線基線長(zhǎng),m)、DTU(型號(hào):CM510-71F)、HWT605傳感器(角度精度:、軸靜態(tài)0.05°,動(dòng)態(tài)0.1°,輸出頻率為0.2~200 Hz可調(diào))、5 V直流穩(wěn)壓電源、NI myRIO模塊、PCAN-USB 模塊、USB 轉(zhuǎn)串口線、筆記本計(jì)算機(jī)、多串口卡、Labview 軟件和Matlab 軟件。
靜態(tài)試驗(yàn)以車體坐標(biāo)系軸指向東西南北4個(gè)方向且挖掘機(jī)機(jī)械臂在不同姿態(tài)的情況下,每個(gè)方向各進(jìn)行3組試驗(yàn)。用BDS設(shè)備測(cè)量并記錄鏟斗末端三維坐標(biāo),轉(zhuǎn)換到施工本地坐標(biāo)系下,與鏟斗位姿測(cè)量算法解算值計(jì)算3個(gè)軸向偏差。
動(dòng)態(tài)試驗(yàn)采用直線導(dǎo)軌滑塊平臺(tái)實(shí)現(xiàn)3個(gè)軸向動(dòng)態(tài)變化模擬真實(shí)挖掘機(jī)運(yùn)動(dòng)時(shí)鏟斗末端三維坐標(biāo)的變化,如圖4所示。采用BDS設(shè)備以10 Hz的采樣頻率測(cè)量并記錄導(dǎo)軌滑塊平臺(tái)的起始點(diǎn)的定位信息后,由導(dǎo)軌平臺(tái)本身的幾何特性及位移傳感器的測(cè)量值推算此時(shí)鏟斗末端三維坐標(biāo)的真實(shí)值。試驗(yàn)選擇施工本地坐標(biāo)系下的、、3個(gè)軸向來(lái)觀察鏟斗末端真實(shí)值與算法解算值的偏差。
圖4 挖掘機(jī)模型平臺(tái)動(dòng)態(tài)試驗(yàn)
2.3.1 靜態(tài)試驗(yàn)
統(tǒng)計(jì)各組試驗(yàn)偏差:由鏟斗位姿測(cè)量算法獲取解算值,計(jì)算算法解算值與鏟斗末端真實(shí)值兩坐標(biāo)點(diǎn)間的距離偏差和、、3個(gè)軸向偏差,結(jié)果如表1所示。
表1 鏟斗末端三維坐標(biāo)的靜態(tài)試驗(yàn)結(jié)果
通過(guò)試驗(yàn)數(shù)據(jù)可知,在各種姿態(tài)下,測(cè)得、、3個(gè)軸向的最大絕對(duì)偏差分別為15.15、15.48和23.57 mm,均小于30 mm。解算值與真實(shí)值(驗(yàn)證值)兩坐標(biāo)點(diǎn)間的距離最小偏差為11.94 mm、最大偏差為29.03 mm、平均偏差為19.55 mm。
2.3.2 動(dòng)態(tài)試驗(yàn)
統(tǒng)計(jì)6組試驗(yàn)偏差,根據(jù)挖掘機(jī)正常工作經(jīng)驗(yàn)速度和試驗(yàn)?zāi)P统叽缇C合考慮,試驗(yàn)挖掘機(jī)鏟斗末端分別沿、、3個(gè)軸向以0.1和0.2 m/s水平運(yùn)動(dòng)進(jìn)行2組試驗(yàn),試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表2所示。
表2 挖掘機(jī)模型平臺(tái)鏟斗末端三維坐標(biāo)動(dòng)態(tài)試驗(yàn)結(jié)果
由于每組試驗(yàn)認(rèn)為只有當(dāng)前坐標(biāo)軸變化,所以試驗(yàn)結(jié)果中的偏差均為解算點(diǎn)與真實(shí)點(diǎn)之間的偏差。通過(guò)、、3個(gè)軸向的兩組試驗(yàn)數(shù)據(jù)可知,解算值與真實(shí)值(驗(yàn)證值)之間的平均絕對(duì)偏差分別為8.81、14.87和16.37 mm,均方根偏差分別為10.74、18.15和18.85 mm,均小于20 mm;軸和軸的最大絕對(duì)偏差分別達(dá)到42.33和47.45 mm,這是因?yàn)橥诰驒C(jī)模型關(guān)節(jié)間運(yùn)動(dòng)時(shí)存在間隙,從而產(chǎn)生更大的偏差。
試驗(yàn)采用山河swe40UF智能挖掘機(jī)、BDS雙天線系統(tǒng)、HWT605姿態(tài)傳感器、Android車載終端。試驗(yàn)中,采用徠卡MS60高速影像全站掃描儀(測(cè)量精度:1 mm,追蹤運(yùn)動(dòng)軌跡輸出頻率為10 Hz)動(dòng)態(tài)測(cè)量鏟斗末端三維坐標(biāo)。
如圖5所示,將基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量系統(tǒng)安裝在挖掘機(jī)上,在挖掘機(jī)車頂上安裝雙天線北斗衛(wèi)星系統(tǒng)(BDS)以10 Hz的采樣頻率獲取定位和航向角信息,并保證雙天線間連線與駕駛室和各臂方向保持垂直;在車體上安裝HWT605姿態(tài)傳感器以50 Hz的采樣頻率讀取車體橫滾角與俯仰角;在挖掘機(jī)的動(dòng)臂、斗桿、鏟斗合適處安裝HWT605姿態(tài)傳感器獲取各機(jī)械臂姿態(tài)角信息;在駕駛室內(nèi)安裝Android車載終端并連接BDS雙天線和姿態(tài)傳感器,以鏟斗棱鏡放置處為測(cè)量點(diǎn),讀取實(shí)時(shí)信息解算鏟斗末端三維坐標(biāo)。依據(jù)《建筑地基基礎(chǔ)工程施工質(zhì)量驗(yàn)收規(guī)范》(GB50202-2018)的場(chǎng)地平整土方開(kāi)挖≤50 mm、填土≤30 mm和《高標(biāo)準(zhǔn)基本農(nóng)田建設(shè)標(biāo)準(zhǔn)》(TD/T 1033-2012)田面高差應(yīng)小于±30 mm的要求統(tǒng)計(jì)試驗(yàn)結(jié)果絕對(duì)偏差≤30 mm的數(shù)據(jù)占比。試驗(yàn)分為靜態(tài)試驗(yàn)和動(dòng)態(tài)試驗(yàn)。
圖5 挖掘機(jī)動(dòng)作試驗(yàn)現(xiàn)場(chǎng)圖
靜態(tài)試驗(yàn)時(shí),挖掘機(jī)車體和機(jī)械臂在不同航向角和姿態(tài)為一組試驗(yàn),采用全站儀連續(xù)采集每組試驗(yàn)動(dòng)作下挖掘機(jī)鏟斗處棱鏡的三維坐標(biāo),計(jì)算與鏟斗位姿測(cè)量算法實(shí)時(shí)解算值之間的偏差。
動(dòng)態(tài)試驗(yàn)針對(duì)挖掘機(jī)施工作業(yè)中深挖、整平、刷坡等作業(yè)場(chǎng)景,操作挖掘機(jī)分別以試驗(yàn)組1:車身航向不動(dòng),各機(jī)構(gòu)臂動(dòng)作;試驗(yàn)組2:車身航向轉(zhuǎn)動(dòng),各機(jī)構(gòu)臂不動(dòng);試驗(yàn)組3:車身航向和各機(jī)構(gòu)臂同時(shí)動(dòng)作,3種試驗(yàn)動(dòng)作來(lái)模擬實(shí)際施工場(chǎng)景。采用全站儀以10 Hz的采樣頻率自動(dòng)追蹤放置于鏟斗的棱鏡實(shí)時(shí)采集鏟斗的三維坐標(biāo)來(lái)驗(yàn)證與解算值之間的偏差。
3.3.1 靜態(tài)試驗(yàn)
靜態(tài)試驗(yàn)統(tǒng)計(jì)10組試驗(yàn)數(shù)據(jù),求取每組試驗(yàn)數(shù)據(jù)平均值,數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表3所示。
表3 挖掘機(jī)鏟斗末端三維坐標(biāo)靜態(tài)試驗(yàn)結(jié)果
由表3可知,在不同姿態(tài)動(dòng)作下,測(cè)量點(diǎn)、、3個(gè)軸向最大絕對(duì)偏差分別為17.69、14.99和11.68 mm,均小于20 mm;解算值與真實(shí)值(驗(yàn)證值)兩坐標(biāo)點(diǎn)間的距離最小偏差為7.40 mm、最大偏差為20.65 mm、平均偏差為13.57 mm。
3.3.2 動(dòng)態(tài)試驗(yàn)
以動(dòng)態(tài)試驗(yàn)方案模擬挖掘機(jī)進(jìn)行3組作業(yè)場(chǎng)景試驗(yàn),試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)結(jié)果如表4所示。
從表4中3組試驗(yàn)數(shù)據(jù)可以看出,在不同的試驗(yàn)動(dòng)作下,、、3個(gè)軸向坐標(biāo)的解算值與真實(shí)值(驗(yàn)證值)之間的平均絕對(duì)偏差和均方根偏差均小于20 mm,且絕對(duì)偏差≤30 mm的數(shù)據(jù)占比均不低于95.35%。同一時(shí)刻,解算值與真實(shí)值(驗(yàn)證值)兩坐標(biāo)點(diǎn)間的距離均方根偏差分別為27.49、26.30和23.50 mm,均小于30 mm。
如圖6所示,為挖掘機(jī)鏟斗測(cè)量點(diǎn)在動(dòng)態(tài)試驗(yàn)組1動(dòng)作過(guò)程中,由鏟斗測(cè)量點(diǎn)的三維坐標(biāo)解算值和真實(shí)值(驗(yàn)證值)擬合成的三維空運(yùn)動(dòng)間軌跡圖,挖掘機(jī)鏟斗末端三維坐標(biāo)解算值與全站儀實(shí)測(cè)值的運(yùn)動(dòng)軌跡變化一致。
表4 挖掘機(jī)鏟斗末端三維坐標(biāo)動(dòng)態(tài)試驗(yàn)結(jié)果
圖6 鏟斗末端測(cè)量點(diǎn)空間軌跡圖
試驗(yàn)結(jié)果表明基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量方法能準(zhǔn)確測(cè)量鏟斗位姿,、、3個(gè)軸向均方根誤差均小于20 mm,解算值與真實(shí)值兩坐標(biāo)點(diǎn)間的距離均方根誤差均小于30 mm,在實(shí)現(xiàn)智能化、自動(dòng)化作業(yè)的同時(shí)滿足機(jī)械挖土施工要求和高標(biāo)準(zhǔn)農(nóng)田建設(shè)標(biāo)準(zhǔn)要求。
1)提出了一種基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量方法,利用雙天線BDS和IMU傳感器測(cè)量車體的位姿,采用IMU測(cè)量挖掘機(jī)各執(zhí)行機(jī)構(gòu)的姿態(tài)角信息,設(shè)計(jì)了挖掘機(jī)鏟斗位姿測(cè)量系統(tǒng)。
2)設(shè)計(jì)了一種基于BDS和IMU的挖掘機(jī)鏟斗位姿解算算法,并基于雙天線BDS和IMU的卡爾曼濾波融合算法獲取車體的位置和姿態(tài),建立姿態(tài)旋轉(zhuǎn)矩陣解算得到基于施工本地坐標(biāo)系下鏟斗末端的三維坐標(biāo)。
3)以山河swe40UF智能挖掘機(jī)進(jìn)行試驗(yàn),將解算值與全站儀實(shí)測(cè)值比較,結(jié)果表明挖掘機(jī)鏟斗末端三維坐標(biāo)解算值與全站儀實(shí)測(cè)值的運(yùn)動(dòng)軌跡變化一致,同一時(shí)刻空間兩坐標(biāo)點(diǎn)距離均方根偏差小于30 mm,3個(gè)軸向坐標(biāo)的動(dòng)態(tài)測(cè)量均方根偏差均在20 mm內(nèi),絕對(duì)偏差≤30 mm的數(shù)據(jù)占比不低于95.35%,該方法可為挖掘機(jī)鏟斗三維坐標(biāo)實(shí)時(shí)解算和精準(zhǔn)施工提供精確測(cè)量和智能引導(dǎo),滿足工程機(jī)械挖填土施工質(zhì)量驗(yàn)收中國(guó)國(guó)家標(biāo)準(zhǔn)要求和高標(biāo)準(zhǔn)基本農(nóng)田建設(shè)標(biāo)準(zhǔn)要求。
[1] 葛磊,董致新,李運(yùn)華,等. 系列化液壓挖掘機(jī)數(shù)字樣機(jī)研究[J]. 機(jī)械工程學(xué)報(bào),2019,55(14):186-196.
Ge Lei, Dong Zhixin, Li Yunhua, et al. Research on digital prototypes of serial hydraulic excavators[J]. Journal of Mechanical Engineering, 2019, 55(14): 186-196. (in Chinese with English abstract)
[2] Lee S U, Chang P H. Control of a heavy-duty robotic excavator using time delay control with integral sliding surface[J]. Control Engineering Practice, 2002, 10(7): 697-711.
[3] Papadopoulos E, Mu B, Frenette R. On modeling, identification, and control of a heavy-duty electrohydraulic harvester manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(2): 178-187.
[4] Yusof A A, Saadun M, Khairi M M, et al. Position control mathematical modelling and operational evaluation of tele-operated electro-hydraulic actuator (T-EHA)[J]. Applied Mechanics and Materials, 2015, 4014(773-774).
[5] 李傲傲. 挖掘機(jī)姿態(tài)檢測(cè)系統(tǒng)研究[D]. 泉州:華僑大學(xué),2019.
Li Ao'ao. The Research on Attitude Detection System of Excavator[D]. Quanzhou: Huaqiao University, 2019. (in Chinese with English abstract)
[6] 李運(yùn)華,范茹軍,楊麗曼,等. 智能化挖掘機(jī)的研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 機(jī)械工程學(xué)報(bào),2020,56(13):165-178.
Li Yunhua, Fan Rujun, Yang Liman, et al. Research Status and Development Trend of Intelligent Excavators [J]. Journal of Mechanical Engineering, 2020, 56(13): 165-178. (in Chinese with English abstract)
[7] Liang C J, Lundeen K M, Mcgee W, et al. A vision-based marker-less pose estimation system for articulated construction robots[J]. Automation in Construction, 2019, 104: 80-94.
[8] Yamamoto H, Moteki M, Ootuki T, et al. Development of the autonomous hydraulic excavator prototype using 3-D information for motion planning and control[J]. Transactions of the Society of Instrument and Control Engineers, 2012, 48(8): 488-497.
[9] Gu J, Ma X D, Ni J F. Linear and nonlinear control of a robotic excavator[J]. Journal of Central South University, 2012, 19(7): 1823-1831.
[10] 牛大偉. 基于MEMS傳感器的挖掘機(jī)姿態(tài)檢測(cè)系統(tǒng)的研究[D]. 泉州:華僑大學(xué), 2015.
Niu Dawei. The Research of the Excavator Attitude Detection System Based on MEMS Sensor[D]. Quanzhou: Huaqiao University, 2015. (in Chinese with English abstract)
[11] 李海虹,解晶琳,鄒久禮,等. 液壓傳動(dòng)機(jī)構(gòu)位姿檢測(cè)方法研究[J]. 實(shí)驗(yàn)技術(shù)與管理,2015,32(4):33-35.
Li Haihong, Xie Jinglin, Zou Jiuli, et al. Study on position and orientation measurement for a hydraulic transmission mechanism[J].Experimental Technology and Management, 2015, 32(4): 33-35. (in Chinese with English abstract)
[12] 倪佳敏,馬偉,童欣,等. 基于視覺(jué)的挖掘機(jī)位姿測(cè)量虛擬傳感器研究[J]. 電子測(cè)量技術(shù),2022,45(9):44-49.
Ni Jiamin, Ma Wei, Tong Xin, et al. Vision-based virtual sensor research for excavator position measurement[J].Electronic Measurement Technology, 2022, 45(9): 44-49. (in Chinese with English abstract)
[13] Xu J Q, Yoon H S. Vision-based estimation of excavator manipulator pose for automated grading control[J]. Automation in Construction, 2019, 98: 122-131.
[14] Mulligan I J, Mackworth A K, Lawrence P D. A model-based vision system for manipulator position sensing[C]. Workshop on Interpretation of 3D Scenes, Austin, TX, USA, 1989.
[15] 王海波,鄒海龍,張如照. 基于視覺(jué)測(cè)量的挖掘機(jī)工作裝置姿態(tài)測(cè)量系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):302-308.
Wang Haibo, Zou Hailong, Zhang Ruzhao. Attitude measurement system for excavator’s manipulator based on vision measurement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 302-308. (in Chinese with English abstract)
[16] 朱建新,沈東羽,吳鈧. 基于激光點(diǎn)云的智能挖掘機(jī)目標(biāo)識(shí)別[J]. 計(jì)算機(jī)工程,2017,43(1):297-302.
Zhu Jianxin, Shen Dongyu, Wu Kang. Target recognition for intelligent excavator based on laser point cloud[J]. Computer Engineering, 2017, 43(1): 297-302. (in Chinese with English abstract)
[17] 周云成,許童羽,鄧寒冰,等. 基于自監(jiān)督學(xué)習(xí)的溫室移動(dòng)機(jī)器人位姿跟蹤[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(9):263-274.
Zhou Yuncheng, Xu Tongyu, Deng Hanbing, et al. Self-supervised pose estimation method for a mobile robot in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 263-274. (in Chinese with English abstract)
[18] 李晨陽(yáng),彭程,張振乾,等. 融合里程計(jì)信息的農(nóng)業(yè)機(jī)器人定位與地圖構(gòu)建方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(21):16-23.
Li Chenyang, Peng Cheng, Zhang Zhenqian, et al. Positioning and map construction for agricultural robots integrating odometer information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 16-23. (in Chinese with English abstract)
[19] 班朝,任國(guó)營(yíng),王斌銳, 等. 基于IMU的機(jī)器人姿態(tài)自適應(yīng)EKF測(cè)量算法研究[J]. 儀器儀表學(xué)報(bào),2020,41(2):33-39.
Ban Zhao, Ren Guoying, Wang Binrui, et al. Research on self-adaptive EKF algorithm for robot attitude measurement based on IMU[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 33-39. (in Chinese with English abstract)
[20] 趙自雨,馮仲科,田藝,等. UWB定位攝影測(cè)樹(shù)儀設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):167-173.
Zhao Ziyu, Feng Zhongke, Tian Yi, et al. Design and test of photographic dendrometer based on Ultra Wide Band (UWB) positioning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 167-173. (in Chinese with English abstract)
[21] 戴厚德,曾現(xiàn)萍,游鴻修,等. 基于光學(xué)運(yùn)動(dòng)跟蹤系統(tǒng)的機(jī)器人末端位姿測(cè)量與誤差補(bǔ)償[J]. 機(jī)器人,2019,41(2):206-215.
Dai Houde, Zeng Xianping, You Hongxiu, et al. Pose measurement and error compensation of the robot end-effector based on an optical tracking system[J]. Robot, 2019, 41(2): 206-215. (in Chinese with English abstract)
[22] Mahmood B, Han S U, Seo J. Implementation experiments on convolutional neural network training using synthetic images for 3D pose estimation of an excavator on real images[J]. Automation in Construction, 2022, 133: 103996.
[23] 鐘銀,薛夢(mèng)琦,袁洪良. 智能農(nóng)機(jī)GNSS/INS組合導(dǎo)航系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(9):40-46.
Zhong Yin, Xue Mengqi, Yuan Hongliang. Design of the GNSS/INS integrated navigation system for intelligent agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 40-46.(in Chinese with English abstract)
[24] 趙福生,楊宏瑞,薛艷麗. GNSS與IMU集成原理及其改進(jìn)分析[J]. 測(cè)繪通報(bào),2016(6):60-63.
Zhao Fusheng, Yang Hongrui, Xue Yanli. GNSS and IMU integration principle and improvement analysis[J]. Bulletin of Surveying and Mapping, 2016(6): 60-63. (in Chinese with English abstract)
[25] Takai R, Yang L , Noguchi N. Development of crawler-type robot tractor based on GNSS and IMU[J]. IFAC Proceedings, 2013, 46(4): 95-98.
[26] 景云鵬,劉剛,金志坤. GNSS雙天線結(jié)合AHRS測(cè)量農(nóng)田地形[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(21):166-174.
Jing Yunpeng, Liu Gang, Jin Zhikun. Topographic survey of farmland based on GNSS dual antenna combined with AHRS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 166-174. (in Chinese with English abstract)
[27] 許江寧,朱濤,卞鴻巍. GPS姿態(tài)測(cè)量技術(shù)綜述[J]. 海軍工程大學(xué)學(xué)報(bào),2003,15(3):17-23.
Xu Jiang, Zhu Tao, Bian Hongwei. Review on GPS attitude determination[J]. Journal of Naval University of Engineering, 2003, 15(3): 17-23. (in Chinese with English abstract)
[28] 陳云, 何艷. 基于GNSS姿態(tài)與電機(jī)編碼器的農(nóng)機(jī)轉(zhuǎn)向角度測(cè)量系統(tǒng)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2021,37(10):10-17.
Chen Yun, He Yan. Development of agricultural machinery steering wheel angle measuring system based on GNSS attitude and motor encoder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(10):10-17.(in Chinese with English abstract)
[29] He J, Luo X W, Zhang Z G, et al. Positioning correction method for rice transplanters based on the attitude of the implement[J]. Computers and Electronics in Agriculture, 2020, 176: 105598.
[30] Hu L, Yang W W, He J, et al. Roll angle estimation using low cost MEMS sensors for paddy field machine[J]. Computers and Electronics in Agriculture, 2019,158: 183-188.
Method and experiments of excavator bucket position and attitude measurement using BDS and IMU
Hu Lian1,2, Peng Jingyi1,2, Lai Sangyu1, Feng Dawen1,2, Chen Gaolong1,2, Wang Chenyang1,2, Luo Xiwen1,2※
(1.,,510642,; 2.,510642,)
High precision and intelligent degree of excavator construction can be perferred in farmland reconstruction in modern agriculture. It is a high demand to real-time acquire the bucket position and attitude for the intelligent and accurate operation of excavator. In this study, a series of approaches were proposed to measure the bucket position and attitude of excavator using BeiDou Navigation Satellite System (BDS) and Inertial Measurement Unit (IMU). A real-time solution model was established for the three-dimensional coordinates of the excavator bucket end: Firstly, the body parameters of excavator were measured to establish the body coordinate system. The IMU attitude sensors were installed at the appropriate positions of the boom, stick, and bucket of the excavator, in order to measure the attitude angle information of each actuator in the excavator. The data was finally collected to obtain the three-dimensional coordinates of the bucket end under the excavator body coordinate system; Then, the BDS dual antenna was installed on the roof to obtain the yawing angle of vehicle body and spatial position. The IMU attitude sensor was also installed on the vehicle body for the rolling angle and pitching angle of the vehicle body. Then, the Kalman filtering algorithm is used to fuse the dual antenna BDS and IMU output high-frequency and high-precision position and attitude information to construct attitude rotation matrix. Among them, the three-dimensional coordinates of the excavator bucket end under the vehicle body coordinate system were rotated to the local construction coordinate system. Static and dynamic tests were carried out to simulate the actual construction scene of the excavator. In the static test, the three-dimensional coordinates of the prism were continuously collected at the excavator bucket under each group of test actions by the total station under different heading angles and attitudes of the simulated operating excavator body and mechanical arm. The deviation was then calculated between the measured of total station and solution of bucket pose measurement. The results show that the new model performed better to accurately measure the three-dimensional coordinates at the end of the excavator bucket. The maximum absolute deviations were 17.69, 14.99, and 11.68 mm (all less than 20 mm) in the,, andaxial coordinates of bucket measuring points, respectively. The minimum deviation, maximum deviation and average deviation of the distance between the two coordinate points of the calculated and the real value (verification value) were 7.40, 20.65, and 13.57 mm, respectively. In the dynamic test, the excavator was operated in test group 1: where the body heading remained still, as each mechanism arm acted; Test group 2: the vehicle body rotated in the heading, and each mechanism arm remained still; Test group 3: The body heading and each mechanism arm acted at the same time, in order to simulate the actual construction operation scene, such as deep excavation, leveling, and slope brushing in the excavator construction. The total station was used to automatically follow the prism on the bucket. The three-dimensional coordinates of the bucket were collected in real time to verify the three-dimensional coordinate calculation of the bucket end. The results show that the average absolute deviation and root mean square deviation were less than 20 mm between the calculated values of the,,three axial coordinates and the real value under different test actions. The proportion of the data with the absolute deviation less than 30 mm were not less than 95.35%. The calculated three-dimensional coordinates at the end of the excavator bucket were better consistent with the movement track change of the measured total station. The root mean square deviations of the distance between the two coordinate points of the calculated and the real value were 27.49, 26.30, and 23.50 mm, respectively, which were less than 30 mm. The accurate measurement for the position and posture of the excavator bucket can provide a practical basis for the intelligent guidance of the precise construction of the excavator.
agricultural machinery; excavator; BDS; IMU; coordinate transformation; position and attitude measurement
10.11975/j.issn.1002-6819.2022.23.002
TU621; S222.5
A
1002-6819(2022)-23-0012-08
胡煉,彭靖怡,賴桑愉,等. 基于BDS和IMU的挖掘機(jī)鏟斗位姿測(cè)量方法與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(23):12-19.doi:10.11975/j.issn.1002-6819.2022.23.002 http://www.tcsae.org
Hu Lian, Peng Jingyi, Lai Sangyu, et al. Method and experiments of excavator bucket position and attitude measurement using BDS and IMU[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 12-19. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.23.002 http://www.tcsae.org
2022-09-25
2022-11-22
嶺南現(xiàn)代農(nóng)業(yè)科學(xué)與技術(shù)廣東省實(shí)驗(yàn)室科研項(xiàng)目(NT2021009);廣東省科技計(jì)劃項(xiàng)目(2021B1212040009);國(guó)家自然科學(xué)基金項(xiàng)目(32101623)
胡煉,博士,青年教授,研究方向?yàn)橹悄苻r(nóng)機(jī)裝備和無(wú)人農(nóng)場(chǎng)。Email:lianhu@scau.edu.cn
羅錫文,教授,中國(guó)工程院院士,研究方向?yàn)橹悄苻r(nóng)機(jī)裝備研究。Email:xwluo@scau.edu.cn