• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      蘇南某區(qū)污染耕地農(nóng)產(chǎn)品鎘汞狀況調(diào)查及健康風(fēng)險(xiǎn)評(píng)價(jià)①

      2022-03-16 06:11:30張梓良冬明月董金龍段增強(qiáng)
      土壤 2022年1期
      關(guān)鍵詞:葉類秈稻粳稻

      張梓良,林 健,冬明月,董金龍,段增強(qiáng)*

      蘇南某區(qū)污染耕地農(nóng)產(chǎn)品鎘汞狀況調(diào)查及健康風(fēng)險(xiǎn)評(píng)價(jià)①

      張梓良1,2,林 健1,2,冬明月3,董金龍1,段增強(qiáng)1*

      (1土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008;2中國(guó)科學(xué)院大學(xué),北京 100049;3儀征市農(nóng)業(yè)環(huán)境與能源指導(dǎo)站,江蘇揚(yáng)州 211400)

      于2019年和2020年在蘇南某區(qū)污染耕地采集了302份水稻和97份蔬菜樣本,評(píng)估了農(nóng)作物可食部分鎘(Cd)和汞(Hg)的健康風(fēng)險(xiǎn)。結(jié)果表明:水稻籽粒中Cd和Hg含量均高于蔬菜,水稻籽粒和蔬菜Cd含量分別為59.5和50.7 μg/kg,超標(biāo)率為4.6% 和4.1%;水稻和蔬菜Hg含量分別為4.7和0.7 μg/kg,其中僅水稻籽粒Hg超標(biāo),超標(biāo)率為3.3%;水稻和蔬菜Cd和Hg日攝入量分別為0.371和0.239 μg/(kg·d);整體危害指數(shù)為0.680(<1)。食用研究區(qū)域水稻和蔬菜的重金屬健康風(fēng)險(xiǎn)較低。在整個(gè)研究區(qū)采樣和同點(diǎn)位不同農(nóng)作物采樣兩個(gè)尺度下,粳稻和根類蔬菜Cd含量均分別顯著低于秈稻和葉類蔬菜,但不同水稻和蔬菜品種間Hg含量無顯著差異。因此,本研究推薦種植和食用粳稻、根類蔬菜,從而降低污染耕地農(nóng)產(chǎn)品Cd和Hg對(duì)人體健康的潛在風(fēng)險(xiǎn)。

      重金屬污染;健康風(fēng)險(xiǎn);秈稻;粳稻;蔬菜

      重金屬主要來源于采礦、燃燒化石燃料、農(nóng)業(yè)活動(dòng)等人類活動(dòng)。由于重金屬元素可被植物根際活化吸收,并隨食物鏈在生態(tài)系統(tǒng)中富集傳遞至人體,由此引發(fā)健康問題如導(dǎo)致神經(jīng)和內(nèi)臟疾病等,越來越受到人們的關(guān)注與重視。日常飲食中食物攝入是除職業(yè)暴露途徑外的普通人群接觸重金屬的主要途徑[1]。其中水稻和蔬菜是日常飲食的主要構(gòu)成,而鎘(Cd)和汞(Hg)又是威脅人類健康的兩種主要重金屬[2-3],因此評(píng)估這兩種作物重金屬污染狀況及對(duì)人體的健康風(fēng)險(xiǎn)具有至關(guān)重要的意義。

      Cd容易被作物尤其是水稻等吸收累積在籽粒中,通過食用的方式遷移至人體并不斷累積而導(dǎo)致嚴(yán)重的疾病,如慢性腎臟和心血管疾病[4],比較知名的Cd污染事件是在日本發(fā)生的痛痛病。對(duì)于我國(guó)居民Cd的暴露主要通過谷物和蔬菜的食用[5-6]。我國(guó)主要水稻產(chǎn)區(qū)糙米Cd平均含量為120 μg/kg,相對(duì)偏高[7];國(guó)內(nèi)5個(gè)典型蔬菜產(chǎn)區(qū)的Cd平均含量低于35 μg/kg[8],較食用水稻的風(fēng)險(xiǎn)偏低。在我國(guó)境內(nèi),Cd污染風(fēng)險(xiǎn)最大的地區(qū)位于華南,比如湖南(342 μg/kg)[9]。

      Hg尤其是甲基汞對(duì)人體神經(jīng)系統(tǒng)的損害十分嚴(yán)重[10]。研究表明,食用水稻是Hg污染區(qū)人群接觸甲基汞的主要途徑[11]。南亞與印度、中國(guó)、孟加拉國(guó)和印度尼西亞通過水稻種植導(dǎo)致的Hg排放占全球總Hg排放的75%[12]。中國(guó)15個(gè)主要糧食主產(chǎn)省份的稻谷Hg含量在1.5 ~ 25.4 μg/kg[13],高于全球平均水平。Zhong等[14]通過對(duì)220篇文獻(xiàn)的總結(jié),發(fā)現(xiàn)我國(guó)蔬菜的平均Hg含量為8 μg/kg,蔬菜的Hg累積能力總體低于水稻。

      本研究以前期調(diào)查劃定的中輕度重金屬污染耕地為研究對(duì)象,其主要重金屬污染物是Cd和Hg,經(jīng)多年環(huán)保督查和污染源管控,該研究區(qū)及其周邊重點(diǎn)污染源目前已基本切斷,且地表水和農(nóng)業(yè)投入品監(jiān)測(cè)結(jié)果也支持該區(qū)域無新增污染的結(jié)論。基于此,本研究評(píng)估了目前該區(qū)域農(nóng)產(chǎn)品中Cd和Hg在當(dāng)?shù)刂饕魑镏械奈廴緺顩r,比較了不同種類和品種(水稻和蔬菜)的健康風(fēng)險(xiǎn),以為污染耕地的安全利用和當(dāng)?shù)禺a(chǎn)農(nóng)產(chǎn)品的安全食用提供科學(xué)建議。

      1 材料與方法

      1.1 樣品采集與分析

      調(diào)查于2019年和2020年收獲季節(jié)于蘇南某區(qū)污染農(nóng)田上進(jìn)行,采用五點(diǎn)采樣法,每2 000 m2采集500 g水稻籽粒樣品、1 000 g蔬菜可食部分樣品,共采集了302份稻谷樣品和97份蔬菜樣品。水稻樣品分為粳稻(245)和秈稻(57),而蔬菜樣品分為葉類蔬菜(77)和根類蔬菜(20)。葉類蔬菜包括韭菜(4)、蘆蒿(15)、白菜(2)、小白菜(45)、菜心(2)、茼蒿(4)、香菜(1)、菊花腦(2)和空心菜(2),而根類蔬菜為蘿卜(20)。采樣過程中發(fā)現(xiàn)部分點(diǎn)位方圓50 m內(nèi)同時(shí)存在兩種水稻或蔬菜,按上述采樣方法同時(shí)采集該點(diǎn)位上的兩種農(nóng)產(chǎn)品,共采集8對(duì)秈稻–粳稻和16對(duì)葉類–根類蔬菜樣品。

      水稻樣品置于干凈的室內(nèi)干燥,并用礱谷機(jī)去殼得到糙米。糙米首先用自來水沖洗一次,再用去離子水清洗兩次。蔬菜樣品于采樣當(dāng)天處理,在清理掉表面的明顯泥土后,記錄蔬菜樣品的鮮重,并按糙米清洗步驟清洗干凈。所有洗凈的樣品均在45℃下烘干至恒重,對(duì)于蔬菜樣品,烘干后記錄干重,以計(jì)算含水量。用粉碎機(jī)將糙米和蔬菜樣品磨成粉末用于消解,水稻重金屬含量以干基表示,蔬菜重金屬含量以鮮基表示。

      植株重金屬含量的測(cè)定參照GB 5009.268—2016[15]進(jìn)行。稱取谷物或蔬菜樣品(0.5 g),放置于消解罐中,添加5 ml HNO3(69%)和1 ml H2O2(30%),消解液經(jīng)定容后,元素As、Cd、Cr和Pb的測(cè)定采用ICP-MS,元素Hg的測(cè)定采用AFS。標(biāo)準(zhǔn)物質(zhì)GBW100348和GBW10014用于質(zhì)量控制,5種重金屬元素的回收率均在90% ~ 110%,符合質(zhì)控要求。

      1.2 數(shù)據(jù)分析

      試驗(yàn)數(shù)據(jù)采用R軟件進(jìn)行方差分析和T檢驗(yàn),采用Duncan新復(fù)極差法(SSR)進(jìn)行多重比較,顯著性水平為0.05。當(dāng)重金屬含量低于檢測(cè)(LOD)的限值時(shí)用1/2檢出限代替[16],Cd、Hg、As、Pb和Cr的檢出限為分別為0.90、0.16、0.39、0.39和10.8 μg/kg。

      采用美國(guó)環(huán)境保護(hù)署危害指數(shù)(HQ)評(píng)價(jià)方法評(píng)估食用農(nóng)作物帶來的重金屬攝入對(duì)人體的潛在健康風(fēng)險(xiǎn)[17],其計(jì)算公式為:

      式中:EDI為重金屬日攝入量(μg/(kg·d));BW為成人平均體重,設(shè)定為55.9 kg[18];CC為農(nóng)作物重金屬含量(μg/kg);IR為攝入量,水稻為323.0 g/d,蔬菜為260.8 g/d[19]。攝入某種重金屬對(duì)人體的危害程度用HQ表示:

      整體危害指數(shù)(THQ)為Cd和Hg的總和,THQ >1表示食用該種農(nóng)產(chǎn)品對(duì)人體有可能產(chǎn)生健康風(fēng)險(xiǎn)。

      式中:Cd和Hg的RfD值為1.0和0.3 μg/(kg·d)[20]。

      2 結(jié)果與討論

      水稻籽粒和蔬菜中5種重金屬的含量測(cè)定結(jié)果表明,重金屬Cd、Hg含量較高,有超標(biāo)和食用安全風(fēng)險(xiǎn)。但As、Cr和Pb的含量超標(biāo)情況相對(duì)較輕,安全風(fēng)險(xiǎn)極低,以下對(duì)這3種重金屬的結(jié)果不再具體分析。

      2.1 谷物和蔬菜中的鎘

      在調(diào)查區(qū),水稻籽粒的Cd含量范圍為5.4 ~ 801.0 μg/kg,平均值為59.5 μg/kg,中值為32.4 μg/kg(表1)。根據(jù)食品安全國(guó)家標(biāo)準(zhǔn)(GB2762—2017)[21],調(diào)查區(qū)4.6% 的水稻樣品超出限值,超標(biāo)率高于蘇南地區(qū)的調(diào)查結(jié)果(0%)[18],但低于珠江三角洲的29%[22]。超標(biāo)水稻樣品中,秈稻和粳稻的超標(biāo)率分別為10.5% 和3.3%,其中值分別為79.4和25.9 μg/kg。秈稻較粳稻超標(biāo)率和中值更高,表明秈稻更易吸收和累積Cd。從同一地點(diǎn)同時(shí)采集兩個(gè)品種水稻樣品時(shí),秈稻Cd含量(86.8 μg/kg)同樣高于粳稻(45.0 μg/kg),進(jìn)一步支持了該結(jié)果,且與其他研究的結(jié)果一致[23-24]。根據(jù)現(xiàn)場(chǎng)調(diào)查發(fā)現(xiàn),秈稻根系較大,生長(zhǎng)速度較快,能夠從土壤中吸收更多的Cd,這可能是秈稻較粳稻累積更多Cd的原因。

      與水稻相比,調(diào)查區(qū)蔬菜Cd含量相對(duì)較低,平均含量50.7 μg/kg(表1),低于其他研究結(jié)果[8,25]。葉類和根類蔬菜Cd含量范圍分別為4.8 ~ 345.0 μg/kg和1.7 ~ 27.1 μg/kg。與根類蔬菜相比,葉類蔬菜的食用部分積累的Cd較多,葉類蔬菜的超標(biāo)率比根類蔬菜(表1)高5.2%。根類蔬菜平均值和中值分別低于葉類蔬菜82.7% 和71.4%。在同一點(diǎn)位采集的葉類和根類蔬菜,也印證了葉類蔬菜Cd累積較多。有研究從山東、江蘇和云南采集葉類和根類蔬菜樣品進(jìn)行分析,其Cd的超標(biāo)率分別為8.0% 和0.6%[8];從孟加拉市場(chǎng)采集的葉類蔬菜樣品Cd含量為31 μg/kg,較非葉類蔬菜(7.6 μg/kg)高75.5%[26],本研究結(jié)果與之相同。葉類蔬菜Cd累積較多,可能是較大的葉片組織導(dǎo)致較高的蒸騰作用,從而促進(jìn)植株根部Cd向葉片轉(zhuǎn)移,進(jìn)而促進(jìn)葉片Cd的累積[27]。

      表1 水稻和蔬菜可食部分Cd和Hg含量(μg/kg)及超標(biāo)率(%)

      注:表中數(shù)據(jù)為均值±標(biāo)準(zhǔn)差;限值和超標(biāo)率根據(jù)GB2762—2017[21]計(jì)算,LOD代表檢出限。大寫字母表示作物大類水稻和蔬菜間的多重比較結(jié)果,小寫字母表示作物小類不同分類間的多重比較結(jié)果,不同字母表示差異顯著(<0.05)。

      表2 同一點(diǎn)位采集的不同品種水稻和不同類型蔬菜重金屬含量比較

      注:表中大寫字母表示秈稻和粳稻間的多重比較結(jié)果,小寫字母表示葉類蔬菜和根類蔬菜間的多重比較結(jié)果,不同字母表示差異顯著(<0.05)。

      2.2 谷物和蔬菜中的汞

      本研究區(qū)水稻籽粒Hg含量為0.1 ~ 39.0 μg/kg,中值為3.1 μg/kg,平均值為4.7 μg/kg(表1),對(duì)比1980—2013年間51篇文章中總結(jié)的從40個(gè)無污染點(diǎn)位采集的糙米樣品Hg含量平均值8.2 μg/kg,含量范圍1.0 ~ 45 μg/kg[28],本研究區(qū)Hg污染水平較低。相比之下,貴州Hg污染礦區(qū)的水稻Hg含量均高于食品安全國(guó)家標(biāo)準(zhǔn)中的20 μg/kg[29],較本研究區(qū)存在更高風(fēng)險(xiǎn)。

      此外,水稻籽粒Hg的超標(biāo)率大于蔬菜的超標(biāo)率。水稻總的超標(biāo)率為3.3%,其中秈稻為8.8%,粳稻為2.0%,而蔬菜樣品均未超過最大限值(表1)。盡管秈稻Hg含量的平均值和范圍均高于粳稻,但無論樣本是否來自同一點(diǎn)位(表1和表2),兩個(gè)水稻品種之間并沒有顯著差異,這一結(jié)果與Han等[30]的結(jié)果一致。有研究表明,葉類蔬菜Hg含量高于根類蔬菜[31-32],本研究在兩種尺度下的蔬菜采樣結(jié)果表現(xiàn)出同樣趨勢(shì)。

      2.3 作物的健康風(fēng)險(xiǎn)評(píng)估

      研究區(qū)農(nóng)作物平均膳食Cd攝入量(0.58 μg/(kg·d))與全國(guó)的攝入量0.53 μg/(kg·d)相近(表3)[6]。稻谷和蔬菜THQ都低于1,表明這些作物的食用風(fēng)險(xiǎn)較低。稻谷THQ大于蔬菜,表明食用水稻的健康風(fēng)險(xiǎn)大于蔬菜。因此,與蔬菜相比,需要更加注意當(dāng)?shù)厮镜臄z入,以降低重金屬攝入。此外,這兩種作物的重金屬HQ值均為Cd>Hg,即食用兩種作物具有的健康風(fēng)險(xiǎn)均為Cd高于Hg,故重金屬類型中,需要加強(qiáng)對(duì)Cd污染的管控。

      未來研究需進(jìn)一步明確具體水稻品種和蔬菜品種之間重金屬積累差異的根本機(jī)制,并可適當(dāng)增加其他農(nóng)作物,如水果和小麥等谷物的健康風(fēng)險(xiǎn)評(píng)估,以全面評(píng)估研究區(qū)域農(nóng)產(chǎn)品的重金屬污染程度和健康風(fēng)險(xiǎn)。

      表3 食用當(dāng)?shù)剞r(nóng)作物的Cd和Hg潛在風(fēng)險(xiǎn)

      注:EDI為重金屬日攝入量,HQ為危害指數(shù),THQ為整體危害指數(shù)。

      3 結(jié)論

      研究區(qū)Cd和Hg污染程度相對(duì)較高,且Cd污染程度高于Hg。采集的農(nóng)作物樣品中只有少數(shù)水稻和蔬菜樣品超過了標(biāo)準(zhǔn)限值。因此,食用這兩種農(nóng)作物的健康風(fēng)險(xiǎn)總體較低。秈稻和粳稻相比,秈稻更易累積Cd和Hg;而葉類蔬菜中的Cd含量高于根類蔬菜,但對(duì)Hg的累積并不顯著。研究推薦當(dāng)?shù)鼐用裨诜N植和食用水稻和蔬菜時(shí)優(yōu)先選擇粳稻和根類蔬菜,以降低Cd和Hg攝入對(duì)人體的潛在健康風(fēng)險(xiǎn)。

      [1] Roy M, McDonald L M. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils[J]. Land Degradation & Development, 2015, 26(8): 785–792.

      [2] Feng X B, Qiu G L. Mercury pollution in Guizhou, Southwestern China—An overview[J]. Science of the Total Environment, 2008, 400(1/2/3): 227–237.

      [3] Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750–759.

      [4] Riederer A M, Belova A, George B J, et al. Urinary cadmium in the 1999–2008 US national health and nutrition examination survey (NHANES)[J]. Environ-mental Science & Technology, 2013, 47(2): 1137–1147.

      [5] Chen H P, Yang X P, Wang P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, Southern China[J]. Science of the Total Environment, 2018, 639: 271–277.

      [6] Song Y, Wang Y, Mao W F, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5): e0177978.

      [7] Mu T T, Wu T Z, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373–381.

      [8] Hu W Y, Huang B, Borggaard O K, et al. Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: Implications for safe food production[J]. Environmental Pollution, 2018, 241: 922–929.

      [9] Chen H P, Tang Z, Wang P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482–490.

      [10] Karagas M R, Choi A L, Oken E, et al. Evidence on the human health effects of low-level methylmercury exposure[J]. Environmental Health Perspectives, 2012, 120(6): 799–806.

      [11] Li P, Feng X B, Yuan X B, et al. Rice consumption contributes to low level methylmercury exposure in Southern China[J]. Environment International, 2012, 49: 18–23.

      [12] Liu M D, Zhang Q R, Cheng M H, et al. Rice life cycle-based global mercury biotransport and human methylmercury exposure[J]. Nature Communications, 2019, 10: 5164.

      [13] Zhang H X, Wang D M, Zhang J L, et al. Total mercury in milled rice and brown rice from China and health risk evaluation[J]. Food Additives & Contaminants: Part B, 2014, 7(2): 141–146.

      [14] Zhong T Y, Xue D W, Zhao L M, et al. Concentration of heavy metals in vegetables and potential health risk assessment in China[J]. Environmental Geochemistry and Health, 2018, 40(1): 313–322.

      [15] 中華人民共和國(guó)國(guó)家衛(wèi)生與計(jì)劃生育委員會(huì), 國(guó)家食品藥品監(jiān)督管理總局. GB 5009.268—2016 食品安全國(guó)家標(biāo)準(zhǔn)食品中多元素的測(cè)定[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2016.

      [16] WHO. GEMS/Food-EURO workshop on reliable evaluation of low-level contamination of food: Report on a workshop in the frame of GEMS/Food-Euro, Kulmbach, Federal Republic of Germany 3-5MaRch 1994[R]. 1994.

      [17] Means B. Risk assessment guidance for superfund. Volume l. Human health evaluation manual (Part A). Interim report(Final)[R]. 1989.

      [18] Cao H B, Chen J J, Zhang J, et al. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China[J]. Journal of Environmental Sciences, 2010, 22(11): 1792–1799.

      [19] 國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒2020[M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2020.

      [20] Wang H X, Li X M, Chen Y, et al. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, Eastern China[J]. Science of the Total Environment, 2020, 729: 139058.

      [21] 中華人民共和國(guó)國(guó)家衛(wèi)生與計(jì)劃生育委員會(huì),國(guó)家食品藥品監(jiān)督管理總局. GB2762—2017 食品安全國(guó)家標(biāo)準(zhǔn)食品中污染物限量[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2017.

      [22] Zheng S N, Wang Q, Yuan Y Z, et al. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, 2020, 316: 126213.

      [23] Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5.

      [24] Sun L, Xu X X, Jiang Y R, et al. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice[J]. Frontiers in Plant Science, 2016, 7: 1407.

      [25] Li Q S, Chen Y, Fu H B, et al. Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China[J]. Journal of Hazardous Materials, 2012, 227/228: 148–154.

      [26] Al-Rmalli S W, Jenkins R O, Haris P I. Dietary intake of cadmium from Bangladeshi foods[J]. Journal of Food Science, 2012, 77(1): T26–T33.

      [27] Gan Y D, Wang L H, Yang G Q, et al. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China[J]. Chemosphere, 2017, 184: 1388–1395.

      [28] Rothenberg S E, Windham-Myers L, Creswell J E. Rice methylmercury exposure and mitigation: A comprehensive review[J]. Environmental Research, 2014, 133: 407–423.

      [29] Feng X B, Li P, Qiu G L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science & Technology, 2008, 42(1): 326–332.

      [30] Han J L, Chen Z, Pang J, et al. Health risk assessment of inorganic mercury and methylmercury via rice consumption in the urban city of Guiyang, southwest China[J]. International Journal of Environmental Research and Public Health, 2019, 16(2): E216.

      [31] Xu L, Lu A X, Wang J H, et al. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China[J]. Ecotoxicology and Environmental Safety, 2015, 122: 214–220.

      [32] Hu W Y, Huang B, Tian K, et al. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk[J]. Chemosphere, 2017, 167: 82–90.

      Survey of Cadmium and Mercury Pollution and Assessment of Health Risk of Crops in Polluted Farmland in Southern Jiangsu

      ZHANG Ziliang1,2, LIN Jian1,2, DONG Mingyue3, DONG Jinlong1, DUAN Zengqiang1*

      (1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Agricultural Environment and Energy Guidance Station of Yizheng, Yangzhou, Jiangsu 211400, China)

      In this study, 302 samples of rice grains and 97 samples of vegetables in the farmlands in Southern Jiangsu were collected in 2019 and 2020 and the health risks of cadmium (Cd) and mercury (Hg) in the edible portions of the plants were evaluated. The results showed that Cd and Hg concentrations in rice grains were greater than those in vegetables. The mean concentrations of Cd in rice grains and vegetables were 59.5 and 50.7 μg/kg, respectively, and 4.6% and 4.1% exceeding the national standards of China. The mean concentrations of Hg were 4.7 and 0.7 μg/kg, respectively, and 3.3% and 0% exceeding the national standards of China. The estimated daily intake (EDI) of Cd and Hg in rice grains and vegetables were 0.371 and 0.239 μg/kg, and the total hazard quotient (THQ) of rice grains and vegetables was 0.680 (lower than 1), indicating that the health risk of local crops was low. The accumulation differences of Cd and Hg in edible portions of different crop cultivars were further compared,rice and root vegetables accumulated less Cd in edible portions when compared torice and leaf vegetables, respectively. Cultivating and consuming more grains fromrice and root vegetables are recommended in order to decrease the potential health risk from Cd and Hg pollution and thus to alleviate the health risk from local crops.

      Heavy metal contamination; Health risk;rice;rice; Vegetable

      張梓良, 林健, 冬明月, 等. 蘇南某區(qū)污染耕地農(nóng)產(chǎn)品鎘汞狀況調(diào)查及健康風(fēng)險(xiǎn)評(píng)價(jià). 土壤, 2022, 54(1): 206–210.

      X56

      A

      10.13758/j.cnki.tr.2022.01.027

      國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0202002)和中國(guó)科學(xué)院美麗中國(guó)科技先導(dǎo)專項(xiàng)(XDA23020401)資助。

      (zqduan@issas.ac.cn)

      張梓良(1997—),男,湖北黃岡人,碩士研究生,主要從事設(shè)施農(nóng)業(yè)和重金屬污染農(nóng)田相關(guān)研究。E-mail: zhangziliang@issas.ac.cn

      猜你喜歡
      葉類秈稻粳稻
      從稻名演變看秈稻的起源
      2021年無為市優(yōu)質(zhì)中秈稻品種比較試驗(yàn)
      淺談葉類蔬菜收獲裝備技術(shù)的現(xiàn)狀及發(fā)展趨勢(shì)
      四川省葉類蔬菜機(jī)械化發(fā)展現(xiàn)狀及對(duì)策
      我國(guó)雙季早粳稻實(shí)現(xiàn)“零的突破”
      解讀粳稻品種南方種植播期
      我國(guó)莖葉類蔬菜有序收獲技術(shù)達(dá)國(guó)際領(lǐng)先水平
      北京葉類蔬菜生產(chǎn)現(xiàn)狀及其變動(dòng)趨勢(shì)分析
      豫南粳稻機(jī)械化適應(yīng)品種篩選及利用研究
      雜交秈稻花藥基部開裂性狀的遺傳研究
      信阳市| 临泽县| 昌都县| 湟源县| 土默特左旗| 正安县| 永修县| 响水县| 昌黎县| 昌邑市| 开封市| 德庆县| 离岛区| 德令哈市| 蒙阴县| 重庆市| 陆河县| 绥宁县| 金溪县| 朝阳市| 泰和县| 利川市| 恩施市| 辽阳市| 南昌县| 德州市| 洛南县| 陈巴尔虎旗| 织金县| 林西县| 曲松县| 莒南县| 关岭| 丽水市| 桃园县| 平顶山市| 乌兰浩特市| 七台河市| 玛多县| 灵山县| 宿迁市|