• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      被子植物同域物種形成研究進(jìn)展

      2022-03-17 01:05:46汪章沛陳林王賢榮
      廣西植物 2022年1期

      汪章沛 陳林 王賢榮

      摘 要:? 同域物種形成是指在缺少地理隔離的情況下分化出新種,相比異域物種形成更為罕見,存在較多的研究空白。該文分析了近十年來與被子植物同域物種形成相關(guān)的國內(nèi)外研究,著重論述同域物種形成的影響因素和種對間的生殖隔離??紤]到歷史上的地理隔離難以確定,加之種對間親緣關(guān)系很近,同域物種的判定容易引發(fā)爭議。其成因可分為生態(tài)因素和突變因素:生態(tài)因素即特殊小生境產(chǎn)生的分化選擇壓,促使原始群體分化出差異顯著的偏好,并借助資源競爭和協(xié)同演化不斷加強(qiáng);突變因素涉及雜交和多倍化,以異源多倍體成種的貢獻(xiàn)最大,而同倍體雜交成種和同源多倍體成種雖廣泛發(fā)生但少見成功案例。生殖隔離是影響物種形成的重要因素之一,可分為前隔離和后隔離,其中以花期隔離和傳粉者隔離為主的前隔離起主導(dǎo)作用,而花粉競爭、配子不親和以及雜種不活、不育和雜種衰退等后隔離會帶來高額的生殖成本,從而加速前隔離或自交的演化。同域物種的形成是各方因素共同作用的結(jié)果,種間通常同時存在著較強(qiáng)的生殖隔離和一定的基因交流,以生態(tài)位競爭為前提,尤其是在充足的分化選擇壓下,即使基因流較為頻繁也能分化形成同域物種。

      關(guān)鍵詞: 被子植物, 同域物種形成, 分化選擇模型, 生殖隔離

      中圖分類號:? Q111.2

      文獻(xiàn)標(biāo)識碼:? A

      文章編號:? 1000-3142(2022)01-0014-11

      基金項(xiàng)目:? 國家自然科學(xué)基金(31300558, 32071782);江蘇省基礎(chǔ)研究計(jì)劃項(xiàng)目(BK20130972);江蘇省高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD);江蘇高校品牌專業(yè)建設(shè)工程資助項(xiàng)目(TAPP)? [Supported by National Natural Science Foundation of China (31300558, 32071782); Basic Research Plan Foundation of Jiangsu Province (BK20130972); Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD); Top-notch Academic Program Project of Jiangsu Higher Education Institution (TAPP)]。

      第一作者: 汪章沛(1997-),碩士研究生,研究方向?yàn)槟鞠瑢僦参镔Y源的保護(hù)與利用,(E-mail) 447549052@qq.com。

      *通信作者:? 陳林,博士,副教授,研究方向?yàn)橹参锓N質(zhì)資源的保護(hù)、開發(fā)與利用,(E-mail) clinechen@njfu.edu.cn。

      Research progress of angiosperms sympatric speciation

      WANG Zhangpei1,2, CHEN Lin1,2*, WANG Xianrong1,2

      ( 1. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,? China;

      2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037,? China )

      Abstract:? Sympatric speciation means that new species ignore the absence of geographic isolation. Compared with allopatric speciation, there are more blanks that need to be filled because of rarity. This paper analyzes the researches about angiosperms sympatric speciation in the past ten years, and focuses on the origin factors and reproductive isolation. Judging seems to be more difficult because of the uncertain historic geographic and close relationship between related species. The origin can be divided into ecological factors that mean destructive selection from special niches and gene factors that include hybridization and polyploids. The former drives ancestor into subgroups with different preferences and strengthened by resource competition and co-evolution. The latter creates species faster in places where the allopolyploid has most contribution, the homoploid hybrid and autopolyploid seem to be wide, but insignificant to the speciation. Similarly, reproductive isolation can be divided into the prezygotic and the postzygotic. The former plays a leading role, with more important flowering isolation and pollinator isolation, while the pollen competition, gamete incompatibility and the later that includes hybrid defect such as abortion, infertility and decline are slight and will accelerate the evolution of prezygotic as well as selfing because of high reproductive costs. In short, sympatric speciation requires the cooperation of various factors and the reproductive isolation can conexist with gene flow, which is driven by the niche competition, especially when the destructive selection is strong enough, sympatric speciation can continue even if the gene flow is frequent.

      Key words: angiosperms, sympatric speciation, disruptive selection model, reproductive isolation

      物種是生物學(xué)研究的基石和構(gòu)成生物多樣性的基礎(chǔ)核心單元。它不僅是遺傳信息在生物個體上的直接表達(dá)和遺傳多樣性的載體,而且也是構(gòu)成群落和生態(tài)系統(tǒng)以及在宏觀尺度上體現(xiàn)生物多樣性的基本功能單位(呂昊敏等,2015;謝平,2016)。長期以來,物種的概念爭議不斷,一般來說物種作為一個獨(dú)立演化的遺傳譜系,其種內(nèi)群體間的生殖隔離應(yīng)遠(yuǎn)遠(yuǎn)小于種間群體,同時有著不同于其他物種的生態(tài)位和形態(tài)特征(龔佐山等,2012;李琪等,2014;劉健全,2016)。物種形成是新物種從舊物種中分化而出的過程,以種內(nèi)變異為起點(diǎn),進(jìn)一步產(chǎn)生適應(yīng)性變異群體,最終產(chǎn)生新種。主要有4種模式,即異域物種形成、邊域物種形成、鄰域物種形成和同域物種形成(Darwin, 1859; Coyne, 2004)。其中,強(qiáng)調(diào)地理因素阻礙種間基因流(gene flow among species),以及伴隨生境變化的選擇壓差異的異域物種形成最為常見。而同域物種形成作為進(jìn)化論的補(bǔ)充,主要強(qiáng)調(diào)小生境或傳粉者等帶來的分化選擇壓(disruptive selection pressure),結(jié)合基因突變或基因重組,促使原始群體在缺少地理隔離的情況下分化成不同物種,相比異域物種形成,同域物種形成尚有更多的空白有待研究(Dieckmann et al., 1999; 魏美才等,2010; Feder et al., 2013)。

      被子植物豐富的多樣性使得其物種演化機(jī)制不盡相同,現(xiàn)有的模型難以全面解釋不同物種的形成機(jī)制,探究同域物種的形成模式可為物種形成機(jī)制研究提供新的方向和角度(Soltis et al., 2009; Michel et al., 2010; Bird et al., 2012)。同域物種判定標(biāo)準(zhǔn)嚴(yán)格:(1)演化過程中一直處于同一區(qū)域,允許存在一定距離(根據(jù)物種特性而定);(2)親緣關(guān)系很近,必須是單系起源(Feder et al., 2013; Marques et al., 2019)。但是,由于形成條件苛刻,被子植物中的同域物種遠(yuǎn)比異域物種稀少,并且常是成對出現(xiàn),以目前的技術(shù)難以確定歷史上的地理隔離,因此孤島上的姊妹種成為同域物種形成研究的熱點(diǎn)(Wu et al., 2000)。另外,由于同域物種間的差異較小,加之基因流較為頻繁,因此對是否應(yīng)該合并成一個種也時有爭議(Bolnick et al., 2007)。

      同域物種的研究可分為兩大類:一類側(cè)重于生態(tài)因素尤其是分化選擇(disruptive selection)的影響;另一類側(cè)重于群體內(nèi)部尤其是多倍化及雜交導(dǎo)致的基因重組,考慮到缺少地理隔離,遺傳漂變和均一選擇(uniform selection)的影響非常小(Schluter, 2009; McPeek, 2016)。此外,種間的生殖隔離機(jī)制也是研究熱點(diǎn)之一,一般來說前隔離起主導(dǎo)作用,包括花期隔離、傳粉者隔離、花粉競爭及配子不親和;后隔離作為輔助,包括雜種不活、不育及雜種衰退。本文總結(jié)了近年來被子植物同域物種形成的研究進(jìn)展,并對爭議點(diǎn)和研究趨勢進(jìn)行了總結(jié)。

      1 同域物種形成的影響因素

      1.1 生態(tài)因素

      Thoday & Gibosn(1962)提出了分化選擇模型,強(qiáng)調(diào)在特殊的生境下,選擇壓只有利于居群中兩種具有極端性狀的個體,中間性狀的反而難以存活,倘若此時性狀的改變也會影響生殖,同域物種便分化而成。如澳大利亞西海岸豪勛爵島上的棕櫚科姊妹種卷葉豪威椰(Howea belmoreana)和垂羽豪威椰(H. forsteriana)的花期相差六周,同為二倍體卻少有自然雜交(Babik et al., 2009; Hipperson et al., 2016);同時,原始群體在200萬年前受島上酸性和堿性土壤鑲嵌分布的影響,分化出不同的耐鹽和耐旱基因,使得前者喜酸后者喜堿并進(jìn)一步影響了花期,最終分化成不同物種(Papadopulos et al., 2019; Calabrese et al., 2020)。近年來的研究表明,即使處于同一區(qū)域,群體為了減少競爭也會朝著不同的生態(tài)位演化。如南美碧冬茄屬的Petunia axillaris和P. exserta,前者花冠白色、多生于向陽處、具芳香并由蛾類傳粉,后者花冠紅色、多生于巖洞內(nèi)、無香味并由蜂鳥傳粉,這種與傳粉者建立的特化關(guān)系有助于降低生殖成本,從而成為同域物種形成的推力之一(Bird, 2012; Schnitzler et al., 2020)??偟膩碚f,作為一種特殊的生態(tài)成種理論,分化選擇模型強(qiáng)調(diào)外界存在差異顯著且勢均力敵的小生境,誘發(fā)物種分化的一兩個基因突變,在適應(yīng)選擇壓的同時恰好影響了花期或授粉,進(jìn)而阻礙了基因交流并不斷強(qiáng)化各自的偏好直至分化完成(Feder et al., 2013; Marques et al., 2019)。

      除土壤酸堿性、傳粉者外,地形、地貌等小生境與共生菌等因素均會影響同域演化。如透骨草科的Mimulus guttatus和M. laciniatus,前者喜生于草甸,受到食草動物的影響演化出較大的體型,后者喜生于花崗巖地帶,受到旱境的影響演化出較小的體型和淺裂葉。進(jìn)一步的研究表明,M. guttatus起源于富含銅礦的地區(qū),其銅耐受性由兩個連鎖的基因座控制,從而導(dǎo)致了雜種的耐受性差,在競爭中處于劣勢(Wright et al., 2013; Ferris & Willis, 2018)。以色列卡梅爾山谷的野生小麥(Triticum turgidum ssp. dicoccoides)受南北坡太陽輻射強(qiáng)度的影響(南坡是北坡的2~8倍),約一萬年前分化成了三個小群體(SFS1, SFS2, NFS),其中NFS在北坡濕潤的環(huán)境中演化并獲得了對該地區(qū)多種真菌的抗性,另兩個在南坡干旱的環(huán)境中演化,SFS1的花期推遲以避免紫外線傷害,SFS2則進(jìn)化出了更有效的活性氧清除能力(Wang et al., 2020)。同時,共生菌是許多植物生長必不可少的條件,菌根較快的演化速度,可能對共生種的演化有促進(jìn)作用。如在北京松山的七種舌唇蘭中,由于菌根群落的明顯差異,細(xì)距舌唇蘭(Platanthera bifolia)喜生于酸性土壤,二葉舌唇蘭(P. chlorantha)喜生于堿性土壤,雜交種類似前者,因此在混合區(qū)域的競爭中處于劣勢(Pena et al., 2018; Chen et al., 2019);手參(Gymnadenia conopsea)有三種倍性(2x、3x、4x),其中2x和4x菌根的細(xì)菌種類和活性差異明顯,推測是由于多倍體的細(xì)胞更大、代謝更緩慢,而3x的菌根則類似前者,雖然不具優(yōu)勢但性狀更加穩(wěn)定(Těitelová et al., 2013)。另外,小生境的差異可對共生菌的種類、活性及菌根的擴(kuò)散等產(chǎn)生明顯影響。如前文的垂羽豪威椰雖然能在酸性土壤中生長,但菌根會嚴(yán)重受損,從而促進(jìn)不同物種對環(huán)境的適應(yīng)性進(jìn)化(Osborne et al., 2018)。

      Dieckmann & Doebeli于1999年完善了分化選擇模型,認(rèn)為資源競爭本身會使物種演化出不同的性狀,進(jìn)而形成同域種,其中對傳粉者的競爭是最常見的方式。如蛾類傳粉的Petunia axillaris和蜂鳥傳粉的P. exserta(Bird, 2012; Schnitzler et al., 2020),大黃蜂傳粉的Roscoea tumjensis和長舌蠅傳粉的R. purpurea(Paudel et al., 2018)等均在花期上有所差異,推測其祖先起初分化為早開花和晚開花的兩個群體,之后形成了各自的傳粉組合并通過協(xié)同演化不斷強(qiáng)化(Dieckmann & Doebeli, 1999)。而蜂類、蜂鳥和蛾類等傳粉者口器(或嘴)的長短分化促使了耬斗菜屬(Aquilegia)不同種的距長產(chǎn)生從短(原始)到長(進(jìn)化)的明顯分化,表明傳粉者的偏好產(chǎn)生了分化選擇壓,促使植物分化出同域種(Bastid et al., 2010)。

      此外,植食性昆蟲、人為采集和寄主植物都有可能加強(qiáng)分化選擇,但相關(guān)案例較少。如用蛾類Greya politella侵染Heuchera grossulariifolia二倍體和四倍體的種子,發(fā)現(xiàn)經(jīng)多代篩選之后,四倍體傾向于提早開花且縮短花莖,二倍體則剛好相反(Nuismer & Ridenhour, 2008)。梭砂貝母(Fritillaria delavayi)作為一種中藥材長期被當(dāng)?shù)厝瞬杉?,其植株顏色開始從綠色演化為和生長環(huán)境相似的棕灰色,從而加大被發(fā)現(xiàn)的難度(Niu et al., 2020)。槲寄生屬的Struthanthus flexicaulis多寄生于落葉植物,在寄主的落葉期會同步落葉,因此與寄生于常綠植物的同域種S. martianus表現(xiàn)出了近乎相反的花期和果期(Teixeira-Costa et al., 2017)。以上三個案例都較為特殊,有待進(jìn)一步的研究加以闡明。

      1.2 突變因素

      相比生態(tài)因素,突變因素主導(dǎo)的同域物種形成涉及雜交和多倍化,成種速度更快,發(fā)生范圍更廣。研究表明,約25%的植物在演化過程中發(fā)生過雜交,而雜種結(jié)合了不同譜系的遺傳變異,進(jìn)而產(chǎn)生一系列的新表型,雖然難以和親本競爭舊有的生態(tài)位,但有助于適應(yīng)多變的環(huán)境(Mallet, 2005; Sanghera et al., 2011);同時,幾乎所有的被子植物都經(jīng)歷過多倍化(約30%又退回了原有的倍性),使植株變得更高大,抗逆性增強(qiáng),從而在發(fā)生環(huán)境災(zāi)變時提高生存幾率(Comal, 2005; Jiao et al., 2011)。上述優(yōu)勢結(jié)合生境變化,共同推動同域物種的分化,具體來說可分為異源多倍體成種(allopolyploid speciation)、同源多倍體成種(autopolyploid speciation)和同倍體雜交成種(homoploid hybrid speciation)。

      異源多倍體成種是在雜交的同時發(fā)生了染色體加倍,子代和親本間存在強(qiáng)烈的生殖隔離,是最常見的成種模式之一。常見的作物如煙草(Nicotiana tabacum)、小麥(Triticum aestivum等都是由此起源,其中煙草由林煙草(Nicotiana sylvestris)和茸毛煙草(N. tomentosiformis)雜交產(chǎn)生,而小麥則經(jīng)過了兩輪雜交,先由烏拉爾圖小麥(Triticum urartu)和擬山羊草(Aegilops speltoides)雜交產(chǎn)生二粒小麥(Triticum turgidum),經(jīng)過人工馴化后又和節(jié)節(jié)麥(Aegilops tauschii)雜交(Clarkson, 2010; Marcussen, 2014)。由于親本差異較大,剛誕生的異源多倍體往往會經(jīng)歷轉(zhuǎn)錄子休克(transcriptomic shock),需要重排染色體以達(dá)成新的平衡,過程中也伴隨染色體片段的交換、重復(fù)基因的丟失以及大量的基因沉默(Lashermes, 2016)。一般來說,雜種的性狀會偏向親本中的一方,如來自二粒小麥的基因組(負(fù)責(zé)調(diào)控小麥的整體發(fā)育)就比來自節(jié)節(jié)麥的(負(fù)責(zé)提高小麥的環(huán)境適應(yīng)性)更加活躍(Li et al., 2014);由林煙草做母本和歐布特斯煙草(Nicotiana obtusifolia)做父本雜交產(chǎn)生的N. nesophila在演化過程中,母本的基因組加倍并侵占了父本的位置,導(dǎo)致后者只留下零星的染色體片段(Parisod et al., 2012)。雖然偏向性的機(jī)制尚且不明,但親本自身的特性肯定會產(chǎn)生影響,如薺菜(Capsella bursa-pastoris)由C. grandiflora(多異交)和C. orientalis(多自交)雜交而來,前者的基因組負(fù)責(zé)調(diào)控花器官的發(fā)育而后者的負(fù)責(zé)調(diào)控根和葉(Kryvokhyzha et al., 2019)??偟膩碚f,這一途徑的成種速度極快,不乏千年以內(nèi)的案例,但研究表明雜種后代的變化很大,需要較長時間的演化以達(dá)成最終平衡。如紫萼路邊青(Geum rivale)和歐亞路邊青(G. urbanum)兩個異源六倍體起源于1 700萬年前,前者演化出下垂的花朵以適應(yīng)傳粉者,而后者演化出直立的花朵以適應(yīng)自交,這一分歧導(dǎo)致種間基因流大大降低從而保證了分化(Ramsey, 2002; Jordan et al., 2018)。

      同源多倍體成種即增加的染色體來自同一物種,或加倍染色體保留同源性,在減數(shù)分裂時形成多價體(multivalent),或染色體重構(gòu)丟失不同部位的基因致使無法配對(Doyle et al., 2008)。和異源多倍體相比,其后代的多樣性雖然更低,但也享有染色體加倍帶來的優(yōu)勢。如許多蘭科植物的四倍體比二倍體有著更大的花和不同的花香,繁殖成功率也更高(Gross & Schiestl, 2015);忍冬科植物Knautia arvensis存在兩種倍性,研究表明混合區(qū)域主要是四倍體,而二倍體處于劣勢(Hanzl et al., 2014)??偟膩碚f,雖然細(xì)胞體型增大且容易產(chǎn)生生殖隔離,但大部分同源多倍體在植株表型上和親本差異不大。如美國常見的藍(lán)莖草(Andropogon gerardii)同時存在六倍體和九倍體(Keeler et al., 1999; Soltis et al., 2007);而一些異源多倍體,如虎耳草科由Lithophragma bolanderi(2n=14)和L. glabrum(2n=14)融合形成的L. bolanderi(2n=28)雖與母本L. bolanderi形態(tài)非常相似,但在基因?qū)用嫔弦呀?jīng)符合了新種的要求(Keeler & Davis, 1999; Soltis et al., 2007)。

      同倍體雜交成種即單純地雜交而不經(jīng)過染色體加倍的成種模式,其判定標(biāo)準(zhǔn)較為嚴(yán)格,不僅要求雜種和親本間存在較強(qiáng)的生殖隔離,而且還需要試驗(yàn)證實(shí)隔離源自雜交而非其他演化因素(如異源多倍體通過丟失基因組退回原有倍性),加之親本的配對染色體在減數(shù)分裂時難以正常分離致使雜種不育,這一途徑雖然廣泛發(fā)生但成功案例較少(Schumer et al., 2014)。其中,以菊科的Senecio squalidus為代表,其親本S. aethnensis和S. chrysanthemifolius分別有著各自的連鎖基因座,雜交重排后產(chǎn)生了類似多倍體的生殖隔離(Hegarty et al., 2008);而柳葉菜科月見草屬(Oenothera)八個雜交起源種由于核質(zhì)不相容失去了有性生殖能力,只能依賴無性繁殖,自然也隔離了種間基因流(Hollister et al., 2019)。同倍體雜種沒有多倍體的強(qiáng)壯優(yōu)勢,在舊有的生態(tài)位競爭中也弱于親本,只能借助新分化的生態(tài)位進(jìn)行擴(kuò)張。如對多個向日葵遠(yuǎn)古雜交種的研究表明,基因重組使它們能夠在旱境中生長從而避免了和親本競爭(Donovan et al., 2010)。不僅如此,同倍體雜種也會表現(xiàn)出親本偏向性。如由錐栗(Castanea henryi)和板栗(C. mollissima)雜交而來的峨眉錐栗(C. henryi var. omeiensis)的植株形態(tài)以及花果期都和錐栗近似(Sun et al., 2020);基因證據(jù)表明大別山冬青(Ilex dabieshanensis)為枸骨(I. cornuta)和大葉冬青(I. latifolia)的雜交種,與親本間的生殖隔離不明顯,應(yīng)當(dāng)降低分類等級(Shi et al., 2016)。可見,雜交成種對親本的要求較高,過于頻繁的基因流會導(dǎo)致兩者融合成一個種,只有親緣關(guān)系適中時(雜交發(fā)生的穩(wěn)定且緩慢)才有可能形成新種。但是,當(dāng)兩物種的雜交后代與親本之一反復(fù)回交,把某一親本的基因片段帶入另一親本產(chǎn)生基因漸滲(introgression)時,容易導(dǎo)致物種同化。如野生稻(Oryza rufipogon)受到了栽培稻(O. sativa)的同化并在中國臺灣、泰國等地瀕臨滅絕(Akimoto et al., 1999; McPeek, 2016)。

      2 同域物種種對間的生殖隔離

      根據(jù)是否受精可將生殖隔離分為前隔離和后隔離。對同域分布的被子植物而言,前隔離可以阻礙95%以上的基因流,甚至發(fā)生于多倍體同域種間,推測可能是因?yàn)榉只跗诜N間差異很小,只有建立有效的前隔離才能繼續(xù)分化并不斷加強(qiáng),同時后隔離會帶來高額的生殖成本,特別是對剛誕生的多倍體而言,親本龐大的數(shù)量會使其處于嚴(yán)重劣勢(Silvia et al., 2011; Shafer & Wolf, 2013)。

      2.1 花期隔離

      花期隔離即錯開開花高峰期,直接避免錯誤授粉導(dǎo)致的基因流。青藏高原具有較長花冠管的麻花艽(Gentiana straminea)與花冠管較短的管花秦艽(G. siphonantha)雖然都由蘇氏熊蜂(Bombus sushikini)傳粉,但前者開花高峰為8月中旬,后者為9月中旬,兩者花期完美相錯,保證了傳粉的效率和有效性(侯勤正等,2008)。天南星科同域種全緣燈臺蓮(Arisaema sikokianum)和A. tosaense,前者花期約39 d,后者約52 d,雖然有約10 d的重疊,但在后者處于開花高峰期時前者的授粉就已基本完成(Matsumoto et al., 2019)。而前文提到的卷葉豪威椰和垂羽豪威椰間的隔離也主要來自錯開的花期(Babik et al., 2009)。然而,由于適宜開花的時期有限,因此花期隔離對非熱帶地區(qū)分布的植物并不是一個很好的選擇。

      2.2 傳粉者隔離

      傳粉者隔離包括?;瘋鞣壅撸╯pecialist pollinator)和忠實(shí)性傳粉者(faithful pollinator)。?;瘋鞣壅咧傅氖遣煌锓N對不同傳粉者的適應(yīng)性演化,如仙人掌科植物Eriosyce subgibbosa和另外三個同域種相比,為獨(dú)享蜂鳥和一種小蜜蜂的傳粉,演化出了對應(yīng)的花部結(jié)構(gòu)(Guerrero et al., 2019);Penstemon roseus和P. gentianoides雜交產(chǎn)生的兩個不同花色的同域種,紫紅色吸引蜂鳥,而藍(lán)色更吸引大黃蜂(Juliana et al., 2020)。蘭科植物常通過特定的分泌物或不同比例的組合來吸引不同的傳粉者,如Ophrys insectifera和O. aymoninii花期相似,后者的分泌物中具有獨(dú)特的烯烴和蠟酯(Murúa et al., 2017; Gervasi et al., 2017)。類似的,O. fusca和O. bilunulata的分泌物中烷烴的組合類似而烯烴的差異很大,能夠吸引兩種不同的蜂類傳粉(Carmona-Díaz & Garcia-Franco, 2009; Ayasse et al., 2011);而倒距蘭屬(Anacamptis)四種蘭花依靠烯烴和醛的不同比例吸引來不同的傳粉者(Pegoraro et al., 2016)。

      特化的傳粉關(guān)系是蘭科植物多樣性高的因素之一,特別是大量同域種的形成,有時只需分泌物的簡單改動就能切換不同的傳粉者(Dearnaley et al., 2016)。特化的傳粉關(guān)系能大量節(jié)省花蜜生產(chǎn)成本,加上花粉塊的結(jié)構(gòu)差異,使蘭科植物的同域種間少有自然雜交,雖能保持種間隔離的穩(wěn)定性,但一旦雜交成功就會不斷滲透并破壞其穩(wěn)定性。如Bulbophyllum macranthum和B. praetervisum分別使用姜油酮、甲基丁香酚和覆盆子酮來模擬雄果蠅的分泌物吸引雌果蠅傳粉。然而,由于姜油酮能同時吸引兩種果蠅傳粉,打破了隔離,因此使兩者產(chǎn)生了較多的天然雜交種(Katte et al., 2019)。類似的,Mandevilla pentlandiana和M. laxa有著不同的花型,前者靠夜間活動的蛾類傳粉而后者靠蜂鳥傳粉,兩者存在較多的自然雜交種,其花型處于中間態(tài),雖然花距與蛾類喙長吻合,卻主要靠蜂鳥傳粉(Nakahira et al., 2018)。除蘭科外,榕屬(Ficus)也有著類似的特化傳粉關(guān)系,其雌花能釋放不同比例組合的揮發(fā)物來吸引不同的傳粉者(Souto-Vilarós et al., 2018),而Ficus bernaysii、F. auriculata等六種榕屬植物的花柱長與特定榕小蜂的產(chǎn)卵器長度一一對應(yīng),從而有效避免了種間的自然雜交(Wang Gang et al., 2016; 黃建峰等,2018)。

      忠實(shí)性傳粉者即雖然共享傳粉者,但能通過不同的花結(jié)構(gòu)來減少錯誤授粉,如喜馬拉雅地區(qū)的四種報(bào)春花屬(Primula)同域種則靠異長花柱來保證正確授粉(Li et al., 2018);舌瓣鼠尾草(Salvia liguliloba)和南丹參(S. bowleyana)均以三條熊蜂(Bombus trifasciatus)作為傳粉者,但前者花更小,上下唇瓣更短,熊蜂直接靠近冠筒取蜜,使得花粉粘在其額部,后者則借助杠桿機(jī)制,熊蜂落在下唇取蜜,使得花粉粘在其背部(黃艷波等,2015);而早春開花的毛茛科植物Helleborus foetidus花球狀閉合,底部微開,傳粉者需探入頭部才能沾上花粉,同屬H. bocconei的花則碗狀開放,通過傳粉者腹部即可沾上花粉進(jìn)行授粉(Luis & Ettore, 2009)。此外,不同形態(tài)的花序也會對授粉者的行動產(chǎn)生影響(Ambroise et al., 2019)。

      傳粉者雖然會促使同域物種的花部特征產(chǎn)生分化,但有些類群過于明顯的花部特征分化可能還有其他因素參與。如馬先篙屬(Pedicularis)植物都由蘇氏熊蜂傳粉,但近2/3的種類集中于喜馬拉雅橫斷山脈地區(qū),花冠形態(tài)和冠管長度的變化很大,從黃色到藍(lán)色,從管長1 cm到10 cm及以上(Liu et al., 2016),可能是山脈運(yùn)動發(fā)生過地理隔離,異域演化后擴(kuò)張到了一起。

      2.3 花粉競爭

      花粉競爭表現(xiàn)為異種花粉無法萌發(fā)或花粉管難以正常生長,如玉蜀黍(Zea mays)的馴化種和野生種在Tcb1和Ga1基因上存在差異,使雌蕊分泌的果膠脫脂酶的量不同,造成異種花粉難以萌發(fā)(Lu, 2019);仙人掌科的Opuntia elata和O. retrorsa共享傳粉者,異種花粉雖然可以萌發(fā)但卻無法穿過柱頭(Fachardo & Sigrist, 2019);黃帚橐吾(Ligularia virgaurea)和箭葉橐吾(L. sagitta)少數(shù)萌發(fā)的花粉管會在12 h后產(chǎn)生胼胝質(zhì)限制花粉管進(jìn)一步伸長,或使正常萌發(fā)的花粉管伸長方向散亂而無法順利抵達(dá)胚珠(王焱寧等,2018)等。對碧冬茄屬(Petunia)、茄屬(Solanum)及煙草屬(Nicotiana)的多對同域種的研究表明,HD-AGPs基因雖能控制胞外基質(zhì)運(yùn)輸而影響花粉萌發(fā),但此基因的活躍度不同從而影響了同域種的分化(Callaway & Singh-Cundy, 2019)。如伊比利亞半島的Gladiolus communis,其四倍體和八倍體同域種的花期重疊,花部結(jié)構(gòu)類似且共享傳粉者,由于倍性的緣故,因此異種花粉會被強(qiáng)烈排斥,從而阻斷基因交流,即花粉競爭的總體貢獻(xiàn)雖然較小,但在多倍體植物中有時也會起主導(dǎo)作用(Castro et al., 2020)。

      2.4 其他

      自交是一種對后隔離的響應(yīng),由于自交容易導(dǎo)致有害基因的積累,因此多作為輔助策略幫助植物繁衍。如Gladiolus communis的四倍體和八倍體間存在強(qiáng)烈的花粉競爭,提高了各自的生殖成本,從而分別演化出不同程度的自交(Castro et al., 2020)。提前自交可以減少生殖成本,如相比Collinsia linearis更易吸引傳粉者的C. rattanii會通過提前自交來降低高達(dá)40%的錯誤授粉率(Randle et al., 2018)。同時,在人工授粉實(shí)驗(yàn)中有時可以觀察到配子不親和及后隔離現(xiàn)象。如秘魯?shù)囊吧裺ection Lycopersicon的同域種對雜交雖能成功受精但在球形胚階段死亡,不能形成正常果實(shí)(Baek et al., 2016);透骨草科Mimulus guttatus和M. nudatus的雜種胚乳敗育形成小而空的種子(Oneal et al., 2016);卷葉豪威椰和垂羽豪威椰的少量天然雜交種無法活到成年(Babik et al., 2009)等。另外,親緣關(guān)系很近的同域種間雜交能產(chǎn)生可育后代。如牛耳朵(Primulina eburnea)和馬壩報(bào)春苣苔(P. mabaensis)(張小龍等,2017);偏花報(bào)春(Primula secundifora)和海仙報(bào)春(P. poissonii)(謝艷萍等,2017)等。需要注意的是,后隔離的高成本會加速同域物種形成更強(qiáng)的前隔離,如小天藍(lán)繡球(Phlox drummondii)和P. cuspidata的花朵都是淡藍(lán)色,但混生區(qū)的P. cuspidata演化出了紅色的花朵以減少錯誤授粉。進(jìn)一步研究表明雜交頻率比雜交成本更能推動前隔離的形成,如Phlox roemeriana與兩者間的生殖隔離雖然更強(qiáng),但由于雜交帶較小因此響應(yīng)得更慢(Suni & Hopkins, 2018)。

      同域物種間的生殖隔離常常是不對稱的,優(yōu)先加固隔離的一方多是由于個體數(shù)量較少或倍性差異,或是由于花期、花部結(jié)構(gòu)等因素而處于劣勢,如云南蠅子草(Silene yunnanensis)的花期較晚且雄蕊先熟,使其可以為掌脈蠅子草(S. asclepiadea)授粉而不受對方花粉的影響(Zhang et al., 2016);而對報(bào)春花科的研究表明來自短花柱植物的花粉難以順利進(jìn)入長花柱植物的子房(唐星林等,2014)。

      總的來說,雖然單個因子足以阻礙大部分基因交流,但自然條件下常常是多個因子綜合作用的結(jié)果,并且當(dāng)選擇壓足夠強(qiáng)時,即使存在頻繁的基因流也能成功分化,這在旋花科的Ipomoea cordatotriloba和I. lacunosa,桃金娘科的多型鐵心木(Metrosideros polymorpha)等物種中得到了證實(shí)(Smadjia & Butlin, 2011; Rifkin et al., 2018; Ekar et al., 2019)。此外,在同域物種形成的相關(guān)基因中還有著很多空白有待研究,目前僅在擬南芥和橐吾屬(Ligularia)等的研究中發(fā)現(xiàn)SPDS1、FCLY、Tic21和BGLU25等基因可以調(diào)控RNA編輯和ABA信號傳導(dǎo),光保護(hù)反應(yīng)、碳水化合物代謝以及調(diào)節(jié)花期的光敏受體基因可能對同域物種的分化存在影響(Yang et al., 2012; Qian et al., 2018)。

      3 總結(jié)與展望

      和異域物種相比,同域物種的數(shù)量十分稀少,在被子植物中的占比不明且多為蟲媒植物。其成因可分為兩大類:一類側(cè)重于差異顯著且勢均力敵的小生境(不同的土壤酸堿性、地形、共生菌、傳粉者), 促使原始群體分化出不同的偏好并借助資源競爭和協(xié)同演化逐漸加強(qiáng);另一類側(cè)重于群體自身的遺傳變異(雜交和多倍化),其中異源多倍體的貢獻(xiàn)最大,而同倍體雜種和同源多倍體雖然廣泛發(fā)生但罕有成種案例(Schluter, 2009; Schumer et al., 2014)。雖然側(cè)重點(diǎn)不同,但兩類因素常常是共同作用且以生態(tài)位的競爭為前提,尤其是在分化選擇壓足夠強(qiáng)大的前提下,即使基因流較為頻繁也能分化成功。

      被子植物同域物種間的生殖隔離常常是不對稱的,一般來說前隔離起主導(dǎo)作用,其中蟲媒植物多借助傳粉者隔離,或通過不同的花部特征和分泌物來吸引不同的傳粉者,或通過花序、上下唇瓣等結(jié)構(gòu)使花粉落在同一傳粉者的不同部位;風(fēng)媒植物多借助花期隔離,作為一個通用選擇,其也常被蟲媒植物所采用,尤其是缺乏傳粉者的高山植物和可以全年生長的熱帶植物(Silvia et al., 2011; Babik et al., 2009)。前隔離占主導(dǎo)的原因有三個:一是許多同域種受傳粉者的選擇而分化;二是分化初期難以建立有效的后隔離;三是后隔離和前隔離中的花粉競爭、配子不親和會大大提高生殖成本,而異源多倍體由于基因重組容易產(chǎn)生不同的花部特征從而形成前隔離,對剛分化出的個體而言,由于親本龐大的數(shù)量會使其陷入嚴(yán)重劣勢,因此以前隔離為主。盡管如此,由于親緣關(guān)系很近加之分化時間較晚,同域種間容易發(fā)生天然雜交,而雜交本身就會加固前隔離,其中雜交頻率比雜交成本的影響更大,而自交大多是作為一種輔助手段。

      總的來說,在同域物種的判定上存在3處爭議:(1) 通過無性繁殖形成居群的雜交種是否需要劃出,類似的和親本生殖隔離較弱的雜交種是否需要降級;(2) 以馬先蒿屬為主的高山植物是否因山脈運(yùn)動發(fā)生過異域演化,否則在共享傳粉者的情況下是如何演化出如此豐富的表型多樣性;(3)表型差異不大的同源多倍體同域種是否需要劃出。在同域物種的形成機(jī)制上有7點(diǎn)需要進(jìn)一步研究:(1)一些同域物種是如何在較強(qiáng)的基因流下完成分化的;(2)連鎖基因座以及基因重組對同倍體雜交成種的影響;(3)雜交成種中親本偏向性的具體機(jī)制;(4)傳粉者在同域物種分化初期是如何作用的;(5)共生菌對同域物種形成的貢獻(xiàn)有多大;(6)一些小眾因素如植食性昆蟲、礦質(zhì)元素及寄主植物的影響;(7)多倍體同域種是如何建立初期優(yōu)勢從而不因數(shù)量稀少消亡的。在穩(wěn)定機(jī)制上則有6點(diǎn)需要進(jìn)一步研究:(1)對多倍體同域物種而言,花粉競爭的貢獻(xiàn)是否很大;(2)不對稱生殖隔離(如較晚開花)往往會使其中一方處于劣勢,同域物種是如何就此進(jìn)行博弈的;(3)在一些不缺乏傳粉者的地區(qū)也會出現(xiàn)采用忠實(shí)性傳粉者的情況,兩種策略間的利弊;(4)自交雖然能減少種間基因流,但也會造成自身基因多樣性的減少,其平衡點(diǎn)在何處;(5)一些同域物種間的基因交流過于頻繁,是否會在未來融合成一個種;(6)控制隔離的關(guān)鍵基因(如花部特征)具體有哪些。

      參考文獻(xiàn):

      AKIMOTO M, SHIMAMOTO Y, MORISHIMA H, 1999. The extinction of genetic resources of Asian wild rice,Oryza rufipogon Griff.: A case study in Thailand [J]. Genet Resour Crop Evol, 46: 419-425.

      AMBROISE V, ESPOSITO F, SCOPECE G, et al., 2019. Can phenotypic selection on floral traits explain the presence of enigmatic intermediate individuals in sympatric populations of Platanthera bifolia and P. Chlorantha (Orchidaceae)? [J]. Plant Spec Biol, 35(1): 59-71.

      AYASSE M, STOKL J, FRANCKE W, 2011. Chemical ecology and pollinatordriven speciation in sexually deceptive orchids [J]. Phytochemistry, 72(3): 1667-1677.

      BABIK W, BUTLIN RK, BAKER WJ, et al., 2009. How sympatric is speciation in the Howea palms of Lord Howe Island? [J]. Mol Ecol, 18(17): 3629-3638.

      BAEK YS, ROYER SM, BROZ AK, 2016. Interspecific reproductive barriers between sympatric populations of wild tomato species(Solanum section Lycopersicon) [J]. Amer J Bot, 103(11): 1964-1978.

      BASTID JM, ALCANTARA JM, REY PJ, et al., 2010. Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations [J]. Plant Syst Evol, 284(26): 171-185.

      BIRD CE, FERNANDEZ-SILVA I, SKILLINGS DJ, et al., 2012. Sympatric speciation in the post “Modern Synthesis” era of evolutionary biology [J]. Evol Biol, 39(2): 158-180.

      BOLNICK DI, FITZPATRICK BM, 2007. Sympatric speciation: models and empirical evidence [J]. Ann Rev Ecol Syst, 38(1): 459-487.

      CALABRESE GM, PFENNING KS, 2020. Reinforcement and the proliferation of species [J]. J Hered, 111(1): 138-146.

      CALLAWAY TD, SINGH-CUNDY A, 2019.HD-AGPs as speciation genes: positive selection on a proline-rich domain in non-hybridizing species of Petunia, Solanum, and Nicotiana [J]. Plants, 8(7): 211.

      CARMONA-DAZ G, GARCIA-FRANCO JG, 2009. Reproductive success in the Mexican rewardless Oncidium cosymbephorum (Orchidaceae) facilitated by the oil-rewarding Malpighia glabra (Malpighiaceae) [J]. Plant Ecol, 20(3): 253-261.

      CASTRO M, LOUREIRO J, HUSBAND BC, et al., 2020. The role of multiple reproductive barriers: strong post-pollination interactions govern cytotype isolation in a tetraploid-octoploid contact zone [J]. Ann Bot, 22(4): 159-167.

      CHEN Y, GAO Y, SONG LI, et al., 2019. Mycorrhizal fungal community composition in seven orchid species inhabiting Song Mountain, Beijing, China [J]. Sci Chin Life Sci, 62(6): 838-847.

      CLARKSON JJ, KELLY LJ, LEITCH AR, et al., 2010. Nuclear glutamine synthetase evolution in Nicotiana: Phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids [J]. Mol Phylogenet Evol, 55(1): 99-112.

      COMAL L, 2005. The advantages and disadvantages of being polyploid [J]. Nat Rev Genet, 6(11): 836-46.

      COYNE J, 2004.Speciation [M]. Sunderland: Sinauer Associates: 120-140.

      DARWIN CR, 1859. The origin of species [M]. London: John Murray: 200-210.

      DEARNALEY J, 2016. Structure and development of orchid mycorrhizas [M]. Berlin Heidelberg: Springer: 63-68.

      DIECKMANN U, DOEBELI M, 1999. On the origin of species by sympatric speciation [J]. Nature, 400(6742): 354-357.

      DONOVAN LA, ROSENTHAL DR, SANCHEZ VM, et al., 2010. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? [J]. J Evol Biol, 23(4): 805-816.

      DOYLE JJ, FLAGEL LE, PATERSON AH, et al., 2008. Evolutionary genetics of genome merger and doubling in plants [J]. Ann Rev Genet, 42(4): 43-61.

      EKAR JM, PRICE DK, JOHNSON MA, et al., 2019. Varieties of the highly dispersible and hypervariable tree, Metrosideros polymorpha, differ in response to mechanical stress and light across a sharp ecotone [J]. Botany, 106(8): 1106-1115.

      FACHARDO ALS, SIGRIST MR, 2019. Pre-zygotic reproductive isolation between two synchronopatricOpuntia (Cactaceae) species in the Brazilian Chaco [J]. Plant Biol, 22(3): 487-493.

      FEDER JL, FLAXMAN SM, EGAN SP, et al., 2013. Geographic mode of speciation and genomic divergence [J]. Ann Rev Ecol Syst, 44(1): 73-97.

      FERRIS KG, WILLIS JH, 2018. Differential adaptation to a harsh granite outcrop habitat between sympatricMimulus species [J]. Evolution, 72(6): 1225-1241.

      GERVASI DDL, SELOSSE MA, SAUVE M, et al., 2017. Floral scent and species divergence in a pair of sexually deceptive orchids [J]. Ecol Evol, 7(15): 6023-6034.

      GONG ZS, MAIMAITIMING-SLM, 2012. The median means of species concepts and speciesdelimitation [J]. Guihaia, 32(2): 274-279.? [龔佐山, 買買提明·蘇萊曼, 2012. 物種概念及其界定 [J]. 廣西植物, 32(2): 274-279.]

      GROSS K, SCHIESTL FP, 2015. Are tetraploids more successful?floral signals, reproductive success and floral isolation in mixed-ploidy populations of a terrestrial orchid [J]. Ann Bot, 115(2): 263-273.

      GUERRERO PC, ANTINAO CA, VILLAGRA CA, et al., 2019. Bees may drive the reproduction of four sympatric cacti in a vanishing coastal mediterranean-type ecosystem [J]. Ecology, 10(1): 771-784.

      HANZL M, KOLAR F, NOVAKOVA D, et al., 2014. Nonadaptive processes governing early stages of polyploid evolution:Insights from a primary contact zone of relict serpentine Knautia arvensis (Caprifoliaceae) [J]. Am J Bot, 101(6): 935-945.

      HEGARTY M, BARKER GL, BRENNAN CE, et al., 2008. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio [J]. Philos Trans R Soc Lond B Biol Sci, 363(1506): 3055-3069.

      HIPPERSON H, DUNNING LT, BAKER WJ, et al., 2016. Ecological speciation in sympatric palms: 2 Pre- and post-zygotic isolation [J]. J Evol Biol, 29(11): 2143-2156.

      HOLLISTER JD, GREINER S, JOHNSON MT, et al., 2019. Hybridization and a loss of sex shape genome-wide diversity and the origin of species in the evening primroses (Oenothera, Onagraceae) [J]. New Phytol, 224(3): 1372-1380.

      HOU QZ, MENG LH, YANG HL, 2008. Pollination ecology of Gentiana siphonantha (Gentianaceae) and a further comparison with its sympatric congener species [J]. Acta Phytotax Sin, 7(4): 554-562.? [侯勤正, 孟麗華, 楊慧玲, 2008. 管花秦艽的傳粉生態(tài)學(xué)研究——兼與同域分布近緣種的比較 [J]. 植物分類學(xué)報(bào), 7(4): 554-562.]

      HUANG JF, XU R, PENG YQ, 2018. Progress on the breakdown of one-to-one rule in symbiosis of figs and their pollinating wasps [J]. Biodivers Sci, 26(3): 295-303.? [黃建峰, 徐睿, 彭艷瓊, 2018. 榕–傳粉榕小蜂非一對一共生關(guān)系的研究進(jìn)展 [J]. 生物多樣性, 26(3): 295-303.]

      HUANG YB, WEI YK, WANG Q, et al., 2015. Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever-like stamens [J]. Chin J Plant Ecol, 39(7): 753-761.? [黃艷波, 魏宇昆, 王琦, 等, 2015. 舌瓣鼠尾草退化杠桿雄蕊的相關(guān)花部特征及傳粉機(jī)制 [J]. 植物生態(tài)學(xué)報(bào), 39(7): 753-761.]

      JIAO Y, WICKETT NJ, AYYAMPALAYAM S, et al., 2011. Ancestral polyploidy in seed plants and angiosperms [J]. Nature, 473(7345): 97-100.

      JORDAN CY, LOHSE K, TURNER F, et al., 2018. Maintaining their genetic distance: Little evidence for introgression between widely hybridizing species of Geum with contrasting mating systems [J]. Mol Ecol, 27(5): 1214-1228.

      JULIANA C, CARLOS L, JUAN FO, 2020. Pollinator divergence and pollination isolation between hybrids with different floral color and morphology in two sympatricPenstemon species [J]. Sci Reports, 10: 8126.

      KATTE T, TAN KH, SU ZH, et al., 2019. Floral fragrances in two closely related fruit fly orchids, Bulbophyllum hortorum and B. macranthoides (Orchidaceae): assortments of phenylbutanoids to attract tephritid fruit fly males [J]. Appl Entomol Zool, 55(1): 55-64.

      KEELER KH, DAVIS GA, 1999. Comparison of common cytotypes ofAndropogon gerardii (Andropogoneae, Poaceae) [J]. Amer J of Bot, 86(7): 974-979.

      KRYVOKHYZHA D, MILESI P, DUAN T, et al., 2019. Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris) [J]. Plos Genet, 15(5): 215-225.

      LASHERMES P, HUEBER Y, COMBES MC, et al., 2016. Inter-genomic DNA exchanges and homeologous gene silencing shaped the nascent allopolyploid coffee genome (Coffea arabica L.) [J]. G3 (Bethesda), 6(9): 2937-2948.

      LI A, LIU D, WU J, et al., 2014. MRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat [J]. Plant Cell, 26(5): 1878-1900.

      LI HD, REN ZX, ZHOU W, et al., 2018. Comparative intra- and interspecific sexual organ reciprocity in four distylous Primula species in the Himalaya-Hengduan Mountains [J]. Plant Biol (Stuttg), 20(4): 643-653.

      LI Q, LIU J, KONG LF, 2014. Speciesconcept, species delimitation and species identification [J]. Per Ocean Univ Chin(Nat Sci Ed), 44(10): 57-64.? [李琪, 劉君, 孔令鋒, 2014. 種的概念及種的界定與鑒定 [J]. 中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 44(10): 57-64.]

      LIU JQ, 2016. “The integrative species concept” and “species on the speciation way”? [J]. Biodivers Sci, 24(9): 1004-1008.? [劉建全, 2016. “整合物種概念”和“分化路上的物種” [J]. 生物多樣性, 24(9): 1004-1008.]

      LIU YN, LI Y, YANG FS, et al., 2016. Floral nectary, nectar production dynamics, and floral reproductive isolation among closely related species of Pedicularis [J]. J Integr Plant Biol, 58(2): 78-87.

      LI ZH, LIU ZL, WANG ML, et al., 2014. A review on studies of speciation in the presence of gene flow: evolution of reproductive isolation [J]. Biodivers Sci, 22(1): 88-96.? [李忠虎, 劉占林, 王瑪麗, 等, 2014. 基因流存在條件下的物種形成研究述評: 生殖隔離機(jī)制進(jìn)化 [J]. 生物多樣性, 22(1): 88-96.]

      LUIS VJ, ETTORE P, 2009. Pollination ecology in sympatric winter floweringHelleborus (Ranunculaceae) [J]. Flora, 10(2): 33-45.

      LU YX, HOKIN SA, KERMICLE JL, et al., 2019. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays [J]. Nat Commun, 10(1): 2304.

      LYU HM, ZHOU RH, SHI SH, 2015. Recent advances in the study of ecological speciation [J]. Biodivers Sci, 23(3): 398-407.? [呂昊敏, 周仁超, 施蘇華, 2015. 生態(tài)物種形成及其研究進(jìn)展 [J]. 生物多樣性, 23(3): 398-407.]

      MALLET J, 2005. Hybridization as an invasion of the genome [J]. Trend Ecol Evolut, 20(5): 229-237.

      MARCUSSEN T, SANDVE SR, HEIER L, 2014. Ancient hybridizations among the ancestral genomes of bread wheat [J]. Science, 345(6194): 1250092.

      MARQUES DA, Meier JI, Seehausen O, 2019. A combinatorial view on speciation and adaptive radiation. Trend Ecol Evolut, 34(6): 531-544.

      MATSUMOTO T K, MIYAZAKI Y, SUEYOSHI M, et al., 2019. Pre-pollination barriers between two sympatric Arisaema species in northern Shikoku Island, Japan [J]. Amer J Bot, 106(12): 1612-1621.

      MCPEEK MA, BRONSTEIN JL, 2016. Theecological dynamics of natural selection: Traits and the coevolution of community structure [J]. Am Nat, 189(5): 77-94.

      MICHEL AP, SIM S, POWELL THQ, et al., 2010. Widespread genomic divergence during sympatric speciation [J]. Proc Nat Acad Sci USA, 107(21): 9724-9729.

      MURA M,ESPINDOLA A, MEDEL R, et al., 2017. Pollinators and crossability as reproductive isolation barriers in two sympatric oil-rewarding Calceolaria (Calceolariaceae) species [J]. Evol Ecol, 31(4): 421-434.

      NAKAHIRA M, ONO H, WEE SL, et al., 2018. Floral synomone diversification of sibling Bulbophyllum species (Orchidaceae) attracting fruit fly pollinators [J]. Biochem Syst Ecol, 81(3): 86-95.

      NIU Y, STEVENS M, SUN H, 2020. Commercialharvesting has driven the evolution of camouflage in an alpine plant [J]. Curr Bio, 31(2): 446-449.

      NUISMER SL, RIDENHOUR BJ, 2008. The contribution of parasitism to selection on floral traits inHeuchera grossulariifolia [J]. Evol Biol, 21(4): 958-965.

      ONEAL E, WILLIS HJ, Franks RG, 2016. Disruption ofendosperm development is a major cause of hybrid seed inviability between Mimulus Guttatus and Mimulus Nudatus [J]. New Phytol, 201(3): 1107-1120.

      OSBORNE OG, DE-KAYNE R, BIDARTONDO MI, et al., 2018. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island [J]. New Phytol, 217(3): 1254-1266.

      PAPADOPULOS AST, IGEA J, DUNNING LT, et al., 2019. Ecological speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species divergence in Howea [J]. Evolution, 73(9): 1986-1995.

      PARISOD C, MHIRI C, LIM KY, et al., 2012. Differential dynamics of transposable elements during long-term diploidization of Nicotiana section Repandae (Solanaceae) allopolyploid genomes [J]. PLoS ONE, 7(11): e50352.

      PAUDEL BR, BURD M, SHRESTHA M, et al., 2018. Reproductive isolation in alpine gingers: How do coexisting Roscoea (R. purpurea and R. tumjensis) conserve species integrity?? [J]. Evolution, 72(9): 1840-1850.

      PEGORARO L, CAFASSO D, RINALDI R, et al., 2016. Habitat preference and flowering-time variation contribute to reproductive isolation between diploid and autotetraploid Anacamptis pyramidalis [J]. J Evol Biol, 29(10): 2070-2082.

      PENA TC, FEDOROVA E, PUEYO JJ, 2018. The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? [J]. Front Plant Sci, 8(10): 22-29.

      QIAN CJ, YAN X, YIN HX, et al., 2018. Transcriptomes divergence of Ricotia lunaria between the two micro-climatic divergent slopes at “Evolution Canyon” I, Israel [J]. Front Genet,? 9(4): 422-510.

      RAMSEY J, SCHEMSKE DW, 2002. Neopolyploidy inflowering plants [J]. Ann Rev Ecol Syst, 33: 589-639.

      RANDLE AM, SPIGLER RB, KALISZ S, 2018. Shifts to earlier selfing in sympatry may reduce costs of pollinator sharing [J]. Evolution, 72(8): 1587-1599.

      RIFKIN JL, CASTILLO AS, LIAO IT, et al., 2018. Gene flow, divergent selection and resistance to introgression in two species of morning glories (Ipomoea) [J]. Mol Biol Evol, 28(7): 1709-1729.

      SANGHERA GS, WANI SH, HUSSAIN W, et al., 2011. The magic of heterosis: New tools and complexities [J]. Nat Sci, 9(11): 42-53.

      SCHLUTER D, 2009. Evidence for ecological speciation and its alternative [J]. Science, 9(15): 737-741.

      SCHNITZLER CK, TURCHETTO C, TEIXEIRA MC, et al., 2020. What could be the fate of secondary contact zones between closely related plant species? [J]. Genet Mol Biol, 12(7): 28-45.

      SHAFER ABA, WOLF JBW, 2013. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology [J]. Ecol Lett, 16(7): 940-950.

      SHI L, LI NW, WANG SQ, et al., 2016. Molecular evidence for the hybrid origin of Ilex dabieshanensis (Aquifoliaceae) [J]. PLoS ONE, 11(1): e0147825.

      SCHUMER M, ROSENTHAL GG, ANDOLFATTO P, 2014. How common is homoploid hybrid speciation? [J]. Evolution, 68(6): 1553-1560.

      SMADJIA CM, BUTLIN RK, 2011. A framework for comparing processes of speciation in the presence of gene flow [J]. Mol Ecol, 20(24): 5123-5140.

      SOLTIS DE, ALBERT VA, LEEBENS-MACK J, et al., 2009. Polyploidy and angiosperm diversification [J], Amer J Bot, 96(1): 336-348.

      SOLTIS DE, SOLTIS PS, SCHEMSKE DW, et al., 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? [J]. Taxon, 56(1): 13-30.

      SOUTO-VILARS D, PROFFIT M, BUATOIS B, et al., 2018. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism [J]. J Ecol, 106(6): 2256-2273.

      SUNI SS, HOPKINS R, 2018. The relationship between postmating reproductive isolation and reinforcement in Phlox [J]. Evolution, 72(7): 1387-1398.

      SUN YS,LU Z, ZHU X, et al., 2020. Genomic basis of homoploid hybrid speciation within chestnut trees [J]. Nat Comm, 11: 3375.

      TANG XL, LIU YM, PAN HT, et al., 2014. Intergeneric cross-compatibility between Primula forbesii (section Monocarpicae) and Primula saxatilis (section Cortusoides) [J]. Acta Bot Boreal-Occident Sin, 34(2): 270-275.? [唐星林, 劉艷梅, 潘會堂, 等, 2014. 小報(bào)春與巖生報(bào)春種間雜交親和性研究 [J].西北植物學(xué)報(bào), 34(2): 270-275.]

      TEIXEIRA-COSTA L, COELHO FM, CECCANTINI G, et al., 2017. Comparative phenology of mistletoes shows effect of different host species and temporal niche partitioning [J]. Botany, 95(3): 271-282.

      TITELOV T,JERSAKOVA J, ROY L, et al., 2013. Ploidy-specific symbiotic interactions:divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae) [J]. New Phytol, 199(4): 1022-1033.

      THODAY JM, GIBSON JB, 1962. Isolation by disruptive selection [J]. Nature, 193(4821): 1164-1176.

      WANG G, CHARLES C, CHEN J, 2016. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa [J]. Proc Roy Soc Edinburgh Sect B, 283(1828): 29-63.

      WANG HW, YIN HY, JIAO CZ, et al., 2020. Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements [J]. Proc Nat Acad Sci USA, 117(11): 5955-5963.

      WANG Y, WANG BS, HOU QZ, et al., 2018. Prezygotic reproductive isolation of two sympatric species of Ligularia weeds in eastern Qinghai-Tibet Plateau, China [J]. Chin J Appl Ecol, 29(11): 3587-3595.? [王焱寧, 王柏森, 侯勤正, 等, 2018. 青藏高原東緣同域分布的2種橐吾屬雜草的合子前生殖隔離 [J]. 應(yīng)用生態(tài)學(xué)報(bào), 29(11): 3587-3595.]

      WEI MC, NIE HY, NIU GY, 2010. Sympatric speciation:a principal pattern of speciation? [J]. J Cent S Univ For Technol, 30(3): 1-11.? [魏美才, 聶海燕, 牛耕耘, 2010. 同域物種形成: 物種演化和形成的基本模式? [J]. 中南林業(yè)科技大學(xué)學(xué)報(bào), 30(3): 1-11.]

      WRIGHT KM, LLOYD D, LOWRY DB, et al., 2013. Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus [J]. Plos Biol, 11(2): e1001498.

      WU CI, 2000. Genetics of species differentiation, in evolutionary biology: limits to knowledge in evolutionary genetics [M]. Boston: Springer: 239-248.

      XIE P, 2016. A brief review on the historical changes in the concept of species [J]. Biodivers Sci, 24(9): 1014-1019.? [謝平, 2016. 淺析物種概念的演變歷史 [J]. 生物多樣性, 24(9): 1014-1019.]

      XIE YP, ZHAO JL, ZHU XF, et al., 2017. Asymmetric hybridization of Primula secundiflora and P. poissonii in three sympatric populations [J]. Biodivers Sci, 25(6): 647-653.? [謝艷萍, 趙建立, 朱興福, 等, 2017. 偏花報(bào)春和海仙報(bào)春3個同域居群的不對稱雜交 [J]. 生物多樣性, 25(6): 647-653.]

      YANG ZY, YI TS, PAN YZ, et al., 2012. Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains [J]. J Syst Evol, 50(4): 316-324.

      ZHANG JJ, MONTGOMERY BR, HUANG SQ, 2016. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species [J]. AoB Plants, 8: plw032.

      ZHANG XL, YANG LH, KANG M, 2017.Post-pollination reproductive isolation of sympatric populations of Primulina eburnea and P. mabaensis (Gesneriaceae) [J]. Biodivers Sci, 25(6): 615-620.? [張小龍, 楊麗華, 康明, 2017. 牛耳朵和馬壩報(bào)春苣苔同域種群授粉后的生殖隔離 [J]. 生物多樣性, 25(6): 615-620.]

      (責(zé)任編輯 蔣巧媛)

      2150501186324

      永靖县| 马关县| 景东| 闵行区| 行唐县| 兴文县| 麟游县| 盐山县| 合肥市| 湖州市| 旌德县| 定南县| 潜江市| 洪江市| 丽江市| 双柏县| 红原县| 大渡口区| 武宣县| 慈利县| 连江县| 凉城县| 山西省| 额敏县| 肃北| 桐乡市| 彭州市| 邵东县| 通榆县| 奇台县| 中宁县| 凤翔县| 景谷| 长春市| 和田市| 岳西县| 鹤庆县| 从化市| 永年县| 兴山县| 札达县|