• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      荷葉鐵線蕨孢子體解剖結(jié)構(gòu)和組織化學(xué)特征研究

      2022-03-17 01:05:46李林寶黃桂云張國禹吳笛吳錦華梁前艷楊蘭芳陳會員汪婷楊朝東
      廣西植物 2022年1期

      李林寶 黃桂云 張國禹 吳笛 吳錦華 梁前艷 楊蘭芳 陳會員 汪婷 楊朝東

      摘 要:? 荷葉鐵線蕨為巖生珍稀蕨類植物,分布在中國重慶市萬州、涪陵等極少地區(qū)。為揭示荷葉鐵線蕨生長特性,采集栽培在種質(zhì)資源圃中的荷葉鐵線蕨根樣、根狀莖、在陽光下生長和在陰暗環(huán)境下生長的葉片,固定于甲醛-酒精-乙酸溶液中,用雙面刀片進行徒手切片,分別用三種0.1%蘇丹紅、0.1%硫酸氫黃連素-苯胺蘭、0.05%甲苯胺藍染色劑染色,之后在萊卡光學(xué)顯微鏡、熒光顯微鏡下觀察,研究荷葉鐵線蕨適應(yīng)生長的環(huán)境解剖學(xué)和組織化學(xué)特征。結(jié)果表明:(1)荷葉鐵線蕨孢子體具初生結(jié)構(gòu),不定根內(nèi)皮層具凱氏帶和栓質(zhì)化,厚壁組織層,皮層和表皮。(2)莖具網(wǎng)狀中柱,內(nèi)皮層具凱氏帶且栓質(zhì)化,厚壁組織層,皮層和薄的角質(zhì)層。(3)葉具內(nèi)皮層包圍維管束,周緣厚壁組織層,等面葉,木質(zhì)化表皮和薄角質(zhì)層。(4)該植物的網(wǎng)狀中柱、內(nèi)皮層、厚壁組織層和木質(zhì)化表皮等結(jié)構(gòu)表明荷葉鐵線蕨適應(yīng)旱生環(huán)境,而其薄的角質(zhì)層和等面葉則表明該植物適應(yīng)陰生環(huán)境。因此,荷葉鐵線蕨的解剖特征表明其適應(yīng)陰生、干旱的巖生環(huán)境。

      關(guān)鍵詞: 內(nèi)皮層, 網(wǎng)狀中柱, 厚壁組織層, 栓質(zhì)層, 薄角質(zhì)層

      中圖分類號:? Q944.5

      文獻標識碼:? A

      文章編號:? 1000-3142(2022)01-0090-10

      收稿日期:? 2021-01-28

      基金項目:? 中國長江三峽集團有限公司生態(tài)環(huán)?;穑╓WKY-2020-0257)[Supported by the Ecological Environmental Protection Fund of China Three Gorges Corporation (WWKY-2020-0257)]。

      第一作者: 李林寶(1991-),碩士,助理工程師,主要從事珍稀植物保護和分子遺傳育種研究,(E-mail)1239393556@qq.com。

      *通信作者:? 楊朝東,博士,碩士生導(dǎo)師,研究方向為濕地植物生理生態(tài),(E-mail)546728708@qq.com。

      Anatomical structure and histochemical features of Adiantum

      reniforme var. sinense sporophyte (Pteridaceae)

      LI Linbao1, HUANG Guiyun1, ZHANG Guoyu1,WU Di1, WU Jinhua1, LIANG Qianyan1,

      YANG Lanfang1, CHEN Huiyuan1, WANG Ting2, YANG Chaodong2*

      ( 1. China Three Gorges Corporation Yangtze River Rare Plant Research Institue,Yichang 44300, Hubei, China;

      2. Yangtze University College of Horticulture and Gardening, Jingzhou 434025, Hubei, China )

      Abstract:? The distribution of the rare perennial fern Adiantum reniforme var. sinense? (Pteridaceae) which is endemic to shady cliff environments is limited to small areas of Wanzhou and Fuling, Chongqing, China. In order to reveal the growth characteristics of A. reniforme var. sinense in the germplasm resource nursery,we observed the tissue structure of A. reniforme var. sinense, which including in the roots, rhizomes, leaves grown in the sun and in shade. First of all, the roots, rhizomes, leaves were collected and fixed in formaldehyde-alcohol-acetic acid solution, and we cut the tissue structure of the plant with a double-sided blade to make freehand sections, then the tissue were stained with three kinds of 0.1% Sudan red, 0.1% berberine bisulfate-aniline blue, and 0.05% toluidine blue, at last plant tissue sections were observed under the Lycra optical microscope and the fluorescence microscope. In this study, we used brightfield and epifluorescence microscopy to investigate the anatomical structures and histochemical features that may allow this species to thrive in shady, dry cliff environments. The results were as follows: (1) The A. reniforme var. sinense sporophyte had a primary structure, the roots had an endodermis with Casparian walls, suberin lamellae, a thickened sclerenchyma layer around the endodermis, a cortex, and a rhizodermis. (2) The stems had a dictyostele, an endodermis with Casparian walls and suberin lamellae, a thickened sclerenchyma layer around the endodermis, a cortex, and a thin cuticle. (3) The leaves had an endodermis surrounded the vascular bundles, a peripheral sclerenchyma layer, an isolateral mesophyll, a lignified epidermis and a thin cuticle. (4) The dictyostele, endodermis, sclerenchyma layers, and lignified epidermal walls reflected the drought tolerance of A. reniforme var. sinense, while its thin cuticle and isolateral mesophyll suggested tolerance of shady environments. Thus, according to the anatomical characteristics of A. reniforme var. sinense, it is concluded that A. reniforme var. sinense are consistent with adaptations to shady, dry cliff environments.

      Key words: endodermis, dictyostele, sclerenchyma layer, suberin lamellae, thin cuticle

      荷葉鐵線蕨(Adiantum reniforme var. sinense)是一種自然分布在中國重慶市萬州區(qū)、涪陵、石柱縣的覆有薄土陰暗的巖石上及石縫中的多年生蕨類植物,作為中藥材已有100多年歷史(Lin, 1980;張澤宏和吳小霞,2013;Rothfels & Schuettpelz, 2014;PPG, 2016;Pryer et al., 2016)。荷葉鐵線蕨與其近緣物種具有洲際間斷分布特點,A. reniforme分布于亞速爾群島,A. reniforme var. asarifolium分布于非洲中南部(Lin, 1980;張澤宏和吳小霞,2013;Wang et al., 2015)。為了更好地保護荷葉鐵線蕨,自2012年中國三峽大壩完工以后,荷葉鐵線蕨已被遷地保護在中國長江三峽集團有限公司和中國科學(xué)院武漢植物園的種質(zhì)資源苗圃中(周賽霞等,2008;吳金清,2012)。由于荷葉鐵線蕨瀕臨滅絕,分布范圍狹窄,遺傳多樣性低,因此被列為國家一級保護蕨類植物(Lin, 1980;徐天全等,1987;Fu & Jin, 1992;Liu et al., 2007;Zhang et al., 2013;Wang et al., 2015)。

      蕨類植物已進化出各種形態(tài)解剖學(xué)結(jié)構(gòu)來適應(yīng)陸生、旱生、附生、巖生和水生環(huán)境(Wylie, 1949;Zhang et al., 2013;Neira et al., 2017;Srbu et al., 2017;Wetzel et al., 2017)。蕨類植物根狀莖常具有網(wǎng)狀中柱;不定根具初生木質(zhì)部和初生韌皮部,皮層具內(nèi)皮層和外皮層或者皮下層,或者中間皮層木質(zhì)化;葉具內(nèi)皮層、厚壁組織層和角質(zhì)層(Jeffreys, 1903;Wardlaw, 1944;Chapple & Peterson, 1987;Damus et al., 1997;Schneider, 1997;Ribeiro et al., 2007;De los ?ngeles Lagoria et al., 2018;Mahley et al., 2018;Palacios-Rios et al., 2019)。陽生葉和陰生葉的形態(tài)特征明顯不同,陰生植物的葉片大、細胞大、葉肉組織少、氣孔和葉脈密度少(Boardman, 1977;Ribeiro et al., 2007;張澤宏和吳小霞,2013;Neira et al., 2017;Dematteis et al., 2019;Shah et al., 2019;Baer et al., 2020)。

      鐵線蕨屬植物(Adiantum)的系統(tǒng)發(fā)育和遺傳親緣關(guān)系是以解剖學(xué)特征為基礎(chǔ),特別是葉片中的網(wǎng)狀中柱(Wylie, 1949;Imaichi, 1988;Huiet et al., 2018)。然而,近年來的分子遺傳學(xué)分析認為,荷葉鐵線蕨與A. nelumboides相似程度高而合并為同一個物種,經(jīng)典形態(tài)分類學(xué)則認為是兩個物種(Lin, 1980;Zhang et al., 2013;Wang et al., 2015)。因此,荷葉鐵線蕨在鐵線蕨屬的分類學(xué)、進化學(xué)和系統(tǒng)發(fā)育多樣性地位等方面還需要進一步探討(Kato & Imaichi, 1997;Li et al., 2013;Vasco et al., 2013;Plackett et al., 2015;Harrison & Morris, 2017;Huiet et al., 2018)。目前對荷葉鐵線蕨孢子體解剖結(jié)構(gòu)特征研究很少(Wu et al., 2011)。

      本文主要研究荷葉鐵線蕨孢子體的解剖結(jié)構(gòu)和組織化學(xué)特征,以確定哪些結(jié)構(gòu)特征使其能適應(yīng)于陰暗干旱的巖生環(huán)境。實驗采集了荷葉鐵線蕨孢子體的陽生葉和陰生葉,研究其適應(yīng)陰生環(huán)境的形態(tài)學(xué)和解剖學(xué)特征,其葉片是否表現(xiàn)出與其他陰生植物相同的特征。這些適應(yīng)性特征有助于解釋荷葉鐵線蕨對陰暗、干旱巖生環(huán)境的適應(yīng)能力。本研究結(jié)果也為今后荷葉鐵線蕨及其近緣種的遷地保護、分類學(xué)、進化和系統(tǒng)發(fā)育等方面的研究提供參考依據(jù)。

      1 材料與方法

      1.1 植物材料的收集與處理

      因為三峽庫區(qū)蓄水淹沒了荷葉鐵線蕨原有生態(tài)環(huán)境,所以現(xiàn)有它的種質(zhì)資源都為遷地保護群落。本研究于2019年10月在湖北宜昌中國三峽集團公司種質(zhì)資源苗圃,采集了該物種的孢子體材料。從5棵植物中收集了10個根樣品(長度為70~130 mm),8個根狀莖樣品(長度為40~60 mm)。從10棵植株中分別采集5片在強光下生長的成年葉片(光照強度約為4 840 lx,濕度為51.6%)和5片在陰暗環(huán)境下生長的成年葉片(光照強度約為805.5 lx;濕度為49.5%)。將采集的新鮮樣品立即固定于甲醛-酒精-乙酸(FAA)溶液中(Ruzin, 1999)。

      1.2 解剖結(jié)構(gòu)和組織化學(xué)特征

      在立體解剖鏡下(JNOEC JSZ6,中國),用雙面刀片在距根尖5、10、20 mm部位進行徒手切片。根狀莖切片位置:幼嫩部分(距莖尖約10 mm,表面呈白色)和成熟部分(距莖尖約30 mm,表面呈棕色)。葉柄切片位置:幼嫩部分(表面白色)和成熟部分(表面黑色)。在健康葉片中心位置進行切片以確定組織厚度及其各結(jié)構(gòu)。將切片分為三組,每組包含3~6個切片(從不同的樣本中獲得),分別代表距離根尖不同位置特征,幼嫩和成熟的根狀莖、葉柄不同位置特征,葉片的中心和邊緣不同位置特征。

      每組切片分別用以下三種染色劑染色:0.1%蘇丹紅7B (SR7B)用于檢測栓質(zhì)化細胞壁(Brundrett et al., 1991),0.1%(m/V)硫酸氫黃連素-苯胺蘭(BAB)對染切片檢驗凱氏帶和木質(zhì)化細胞壁(Brundrett et al., 1988;Seago et al., 1999),0.05%甲苯胺蘭(TBO)用于更清晰地觀察組織器官的結(jié)構(gòu)(Feder & O’Brien, 1968;Peterson et al., 2008)。所有樣本染色后均用無菌水清洗2~3次,并滴加無菌水蓋片,在萊卡光學(xué)顯微鏡(Leica DME,德國)下觀察,用數(shù)碼相機和測微尺(Nikon E5400,日本)拍照記錄。硫酸氫黃連素-苯胺蘭染色的切片在熒光顯微鏡(Olympus IX71)紫外光下用激發(fā)濾光片G 365 nm、吸收濾光片U-WB(藍光)、雙色鏡DM 500、補償激發(fā)濾光片BP 450-480、補償吸收濾光片BA 515觀察,并用數(shù)碼相機和測微尺(RZ200C-21,中國)拍照記錄(Yang et al., 2011)。

      2 結(jié)果與分析

      2.1 不定根的解剖結(jié)構(gòu)

      不定根中柱為二原對稱型并具原生木質(zhì)部(圖版I:A-I)。在距根尖5 mm處,不定根內(nèi)皮層中有微弱的凱氏帶,其周圍有一層細胞的厚壁組織層,根表面有表皮(圖版I:A,B)。在距根尖10 mm處,側(cè)根從中柱鞘伸出,此時中柱具有顯著的原生木質(zhì)部和原生韌皮部(圖版I:C-F)。此外,內(nèi)皮層具完整的栓質(zhì)層細胞壁和少數(shù)通道細胞,與通道細胞和原生木質(zhì)部不同的是,厚壁組織層具較厚的細胞壁(圖版I:C-F)。在距根基部20 mm處,中柱具完整初生木質(zhì)部和初生韌皮部組織,內(nèi)皮層具較厚的栓質(zhì)化細胞壁,厚壁組織層進一步增厚(圖版I:G-Ⅰ)。

      2.2 根狀莖的解剖結(jié)構(gòu)

      幼嫩和成熟的根狀莖中都有被厚壁組織層包圍著的網(wǎng)狀中柱。網(wǎng)狀中柱包含葉柄維管束,其中部有顯著的原生木質(zhì)部(圖版Ⅱ:A-H)。每個維管束中都有內(nèi)皮層并具凱氏帶(圖版Ⅱ:B,D,E,G),并在成熟時栓質(zhì)化(圖版Ⅱ:D,E,G,H)。根狀莖皮層為薄壁組織,其表面具薄的角質(zhì)層和褐色鱗葉(圖版Ⅱ:A,C,F(xiàn),I)。葉柄維管束來源于根狀莖(圖版Ⅱ:A-E)。

      2.3 不同光強下葉的解剖結(jié)構(gòu)

      幼嫩和成熟的葉柄中有單個維管束,中央具內(nèi)皮層、皮層、周緣厚壁組織層和表皮(圖版Ⅲ:A-C)。成熟時,內(nèi)皮層具凱氏帶且栓質(zhì)化(圖版Ⅲ:B)。葉柄表面具薄角質(zhì)層(圖版Ⅲ:C)。荷葉鐵線蕨的葉片面積、組織厚度、組織密度和表皮等主要特征見表1。陽生和陰生環(huán)境中的葉片均具表皮,等面葉和二叉葉脈具厚壁組織層(圖版Ⅲ:D-I,表1);二叉葉脈的內(nèi)皮層具凱氏帶且栓質(zhì)化(圖版Ⅲ:E, F, H, I)。氣孔僅存在于下表皮(圖版Ⅲ:J, K);與陽生葉相比,陰生葉的氣孔更少且更大(表1)。與陰生葉相比,陽生葉的正面和背面角質(zhì)層相對較厚(圖版Ⅲ:D-I,表1)。葉片表皮細胞具厚壁層(圖版Ⅲ:D-I)。與陰生葉相比,陽生葉片的中部葉肉更厚(圖版Ⅲ:D-I,表1)。

      3 討論與結(jié)論

      本文研究了荷葉鐵線蕨孢子體不同部位的形態(tài)特征和解剖結(jié)構(gòu),這些特征有利于其在干旱、陰暗的環(huán)境中成功繁衍。荷葉鐵線蕨的不定根、根狀莖和葉中都具有內(nèi)皮層,并具凱氏帶且栓質(zhì)化,周圍有厚壁組織層。這些特征與其他維管植物的組織和器官存在較多的共同之處(Ogura, 1972;Fahn, 1990;Lersten, 1997;Enstone et al., 2003;Evert, 2006;Crang et al., 2018)。陸生植物Asplenium sp.和附生植物Pleopeltis macrocarpa與荷葉鐵線蕨相似,在整個植物的維管束周圍分布著內(nèi)皮層和厚壁組織層(Wetzel et al., 2017;De los ?ngeles Lagoria et al., 2018)。蕨類植物內(nèi)皮層和厚壁組織層支撐并保護維管植物,這些結(jié)構(gòu)表明了荷葉鐵線蕨能在干旱的巖生環(huán)境中生存(Chapple & Peterson, 1987;Fahn, 1990;Lersten, 1997;Enstone et al., 2003;Evert, 2006;Neira et al., 2017;Wetzel et al., 2017;Crang et al., 2018;De los ?ngeles Lagoria et al., 2018)。

      許多蕨類植物的不定根中具有內(nèi)皮層和厚壁組織層,其中包括陸生植物鹿角蕨(Platycerium bifurcatum)(Chapple & Peterson, 1987)、Asplenium sp. (Schneider, 1997;Leroux et al., 2011;Wetzel et al., 2017)、玉柏石松(Lycopodium obscururn)、Selaginella sp.(Damus et al., 1997)、蜈蚣草(Pteris vittata)(Bondada et al., 2006;Sridhar et al., 2011)、Pleopeltis sp. (Hernández et al., 2013;De los ?ngeles Lagoria et al., 2018)和Doryopteris triphylla (Neira et al., 2017)。這些植物的根與荷葉鐵線蕨的根也有其他相似之處,如鹿角蕨的內(nèi)皮層栓質(zhì)化(Chapple & Peterson, 1987);在鹿角蕨和Pleopeltis macrocarpa的厚壁組織層中存在具薄細胞壁的泡狀細胞(Chapple & Peterson, 1987;De los ?ngeles Lagoria et al., 2018);Selaginella sp.的根具內(nèi)皮層和木質(zhì)化皮層細胞壁(Damus et al., 1997);鹿角蕨、Pleopeltis sp.和Doryopteris triphylla的根中具2層或多層細胞的厚壁層(Chapple & Peterson, 1987;Hernández et al., 2013;Neira et al.,2017;De los ?ngeles Lagoria et al., 2018);Asplenium sp.的根表皮細胞壁具螺旋狀增厚(Wetzel et al., 2017)。與這些旱生植物相比,荷葉鐵線蕨的根對干旱環(huán)境的適應(yīng)性較弱(Chapple & Peterson, 1987;Damus et al., 1997;Hernández et al., 2013;Neira et al., 2017;Wetzel et al., 2017;De los ?ngeles Lagoria et al., 2018)。

      荷葉鐵線蕨根狀莖具網(wǎng)狀中柱、內(nèi)皮層、厚壁組織層和薄角質(zhì)層,這些結(jié)構(gòu)特征與其他陸生蕨類植物相似,例如球子蕨(Onoclea sensibilis)(Wardlaw, 1944)、Polypodium sp. (Srivastava & Chandra, 2009)、蜈蚣草(Sridhar et al., 2011)、Ceradenia sp. (Deroin & Rakotondrainibe, 2015)、Blotiella lindeniana (Becari-Viana & Schwartsburd, 2017)和Doryopteris triphylla (Neira et al., 2017)。附生植物和旱生植物如Asplenium sp、Pleopeltis macrocarpa和貼生石韋(Niphobolus adnascens),這些植物根狀莖的表皮下均有周緣機械厚壁組織層。因此,這些植物比陰生的荷葉鐵線蕨更適應(yīng)旱生環(huán)境(Pande, 1935;Wetzel et al., 2017;De los ?ngeles Lagoria et al., 2018)。

      荷葉鐵線蕨的葉柄表皮下有內(nèi)皮層和周緣厚壁層,這與其他蕨類植物相似(Hernandez-Hernandez et al., 2012),如Anemia (Ribeiro et al., 2007)、Pteris (Bondada et al., 2006;Sridhar et al., 2011;Martínez & Vilte, 2012;Palacios-Rios et al., 2019)、Davallia (Ummu-Hani et al., 2013)、Blechnum (Noraini et al., 2014)、Asplenium (Wetzel et al., 2017)、Doryopteris triphylla (Neira et al., 2017)和Pleopeltis macrocarpa (De los ?ngeles Lagoria et al., 2018)。在Asplenium植物中,葉柄內(nèi)皮層有一層厚壁組織層包圍(Wetzel et al., 2017),而在Doryopteris triphylla中,葉柄表皮層具厚角質(zhì)層(Neira et al., 2017)。

      荷葉鐵線蕨的葉具栓質(zhì)化內(nèi)皮層,葉脈周圍具凱氏帶和表皮細胞具厚壁層(Mahley et al., 2018)。這些結(jié)構(gòu)與Anemia sp.相似(Ribeiro et al., 2007;Mahley et al., 2018),表明荷葉鐵線蕨適應(yīng)于陸生環(huán)境。荷葉鐵線蕨具等面葉,這在黃連(Coptis chinensis)、Doryopteris pentagona、海金沙(Lygodium japonicum)、井欄邊草(Pteris multifida)、腎蕨(Nephrolepis cordifolia)、Adiantum capillus-veneris和白羽鳳尾蕨(Pteris ensiformis cv. victoriae)中也能觀察到(袁王俊等,2007;張澤宏和吳小霞,2013;Dematteis et al., 2019)。荷葉鐵線蕨葉片的角質(zhì)層薄,這類似于其他陰生蕨類植物,如海金沙、井欄邊草、腎蕨、Adiantum capillus-veneris、白羽鳳尾蕨和Doryopteris pentagona (張澤宏和吳小霞,2013;Dematteis et al., 2019)。與具厚角質(zhì)層的陽生或旱生蕨類植物Cheilanthes glauca 和Doryopteris triphylla相比,具薄角質(zhì)層的荷葉鐵線蕨適應(yīng)于陰生環(huán)境(張澤宏和吳小霞,2013;Neira et al., 2017;Dematteis et al., 2019;Shah et al., 2019)。在荷葉鐵線蕨中,與陽生葉片相比,陰生葉具更薄的等面葉和較低的氣孔密度,表明這種植物在不同環(huán)境條件下可塑性和適應(yīng)不同環(huán)境條件的能力(Ribeiro et al., 2007;Santos-Silva et al., 2011;Neira et al., 2017;Dematteis et al., 2019;Shah et al., 2019;Baer et al., 2020)。

      荷葉鐵線蕨的不定根、葉柄和根狀莖具有適應(yīng)干旱環(huán)境的結(jié)構(gòu),其中內(nèi)皮層、厚壁機械組織層和表皮細胞厚壁層是適應(yīng)干旱環(huán)境的重要結(jié)構(gòu)特征(Chapple & Peterson, 1987;Neira et al., 2017;Wetzel et al., 2017;De los ?ngeles Lagoria et al., 2018)。然而,像許多適應(yīng)陰生環(huán)境的蕨類植物一樣(Evert, 2006;袁王俊等,2007;張澤宏和吳小霞,2013;Crang et al., 2018),荷葉鐵線蕨也具有薄的角質(zhì)層和等面葉,這表明了對陰生環(huán)境的適應(yīng)性。相反,附生和旱生蕨類植物更適應(yīng)于干旱環(huán)境,它們的根具外皮層,有多層細胞的厚壁組織層,且表皮細胞壁具螺旋增厚(Chapple & Peterson, 1987;Damus et al., 1997;Neira et al., 2017;Wetzel et al., 2017;De los ?ngeles Lagoria et al., 2018);根狀莖具周緣厚壁層(Wetzel et al., 2017;De los ?ngeles Lagoria et al., 2018);葉具厚角質(zhì)層(Neira et al., 2017)。因此,荷葉鐵線蕨的解剖結(jié)構(gòu)和組織化學(xué)特征表明該植物適應(yīng)于干旱、陰暗的巖生環(huán)境。

      參考文獻:

      BAER A, WHEELER JK, PITTERMANN J, 2020. Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum (L.) Kuhn to variable light [J]. Ann Bot, 125(4): 691-700.

      BECARI-VIANA I, SCHWARTSBURD PB, 2017. Morpho-anatomical studies and evolutionary interpretations of the rhizomes of extant dennstaedtiaceae [J]. Am Fern J, 107(3): 105-123.

      BOARDMAN NK, 1977. Comparative photosynthesis of sun and shade plant [J]. Ann Rev Plant Phys, 28(1): 355-357.

      BONDADA B, TU C, MA L, 2006. Surface structure and anatomical aspects of Chinese brake fern (Pteris vittata; Pteridaceae) [J]. Brittonia, 58(3): 217-228.

      BRUNDRETT MC, ENSTONE DE, PETERSON CA, 1988. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue [J]. Protoplasma, 146(2-3): 133-142.

      BRUNDRETT MC, KENDRICK B, PETERSON CA, 1991. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethlene glycol-glycerol [J]. Biot Hist, 66(3): 111-116.

      CHAPPLE CCS, PETERSON RL, 1987. Root structure in the fern Platycerium bifurcatum (Cav. ) C. Chr. (Polypodiaceae) [J]. Bot Gaz, 148(2): 180-187.

      CRANG R, LYONS-SOBASKI S, WISE R, 2018. Plantanatomy [M]. Gewerbestrasse, Switzerland: Springer International Publishing.

      DAMUS M, PETERSON RL, ENSTONE DE, et al., 1997. Modifications of cortical cell walls in roots of seedless vascular plants [J]. Bot Acta, 110(2): 190-195.

      DE LOS ?NGELES LAGORIA M, AVILA G, NEIRA DA, et al., 2018. Morphoanatomical and histochemical characteristics of the epiphytic fern Pleopeltis macrocarpa (Polypodiaceae) [J]. Braz J Bot, 41(3): 739-750.

      DEMATTEIS B, SOLS SM, YESILYURT JC, et al., 2019. Comparative anatomy in four Cheilanthoid ferns [J]. Bol de la Soc Arg Bot, 54(2): 203-214.

      DEROIN T, RAKOTONDRAINIBE F, 2015. Comparative rhizome anatomy of some species of Ceradenia LE Bishop and Zygophlebia LE Bishop (Polypodiaceae, formerly Grammitidaceae) from Madagascar [J]. Mod Phyt, 7: 5-12.

      ENSTONE DE, PETERSON CA, MA F, 2003. Root endodermis and exodermis: structure, function, and responses to the environment [J]. J Plant Growth Reg, 21(4): 335-351.

      EVERT RF, 2006. Esau’s plant anatomy: meristems, cells, and tissues of the plant body [M]. Hoboken, New Jersey, USA: Wiley Interscience, John Wiley & Sons.

      FAHN A, 1990. Plant Anatomy? [M]. 4th ed. Oxford, UK: Pergamon Press.

      FEDER N, O’BRIEN TP, 1968. Plant microtechnique: some principles and new methods [J]. Am J Bot, 55(1): 123-142.

      FU LK, JIN JM, 1992. China plant red data book-rare and endangered plant [M]. Beijing: Science Press.

      HARRISON CJ, MORRIS JL, 2017. The origin and early evolution of vascular plant shoots and leaves [J]. Phil Trans R Soc B: Biol Sci, 373(1739): 20160496.

      HERN NDEZ MA, TERAN L, MATA M, et al., 2013. Helical cell wall thickenings in root cortical cells of Polypodiaceae species from Northwestern Argentina [J]. Am Fern J, 103(4): 225-240.

      HERNANDEZ-HERNANDEZ V, TERRAZAS T, MEHLTRETER K, et al., 2012. Studies of petiolar anatomy in ferns: structural diversity and systematic significance of the circumendodermal band [J]. Bot J Linn Soc, 169(4): 596-610.

      HUIET L, LI FW, KAO TT, et al., 2018. A worldwide phylogeny of Adiantum (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture [J]. Taxon, 67(3): 488-502.

      IMAICHI R, 1988. Developmental anatomy of the shoot apex of leptosporangiate ferns. II. Leaf ontogeny of Adiantum capillus-veneris (Adiantaceae) [J]. CAN J Bot, 66(9): 1729-1733.

      JEFFREYS EC, 1903. The structure and development of stem in pteridophyta and gymnosperms [J]. Phil Trans Royal Soc B Biol Sci, 195(60): 119-146.

      KATO M, IMAICHI R, 1997. Morphological diversity and evolution of vegetative organs in pteridophytes [M]//Evolution and diversification of land plants. Tokyo: Springer, 1997: 27-43.

      LEROUX O, BAGNIEWSKA-ZADWORNA A, RAMBE SK, et al., 2011. Non-lignified helical cell wall thickenings in root cortical cells of Aspleniaceae (Polypodiales): histology and taxonomical significance [J]. Ann Bot, 107(2): 195-207.

      LERSTEN NR, 1997. Occurrence of endodermis with a casparian strip in stem and leaf [J]. Bot Rev, 63(3): 265-272.

      LI X, FANG YH, YANG J, et al., 2013. Overview of the morphology, anatomy, and ontogeny of Adiantum capillus-veneris: an experimental system to study the development to ferns [J]. J Syst Evol, 51(5): 499-510.

      LIN YX, 1980. New taxa of Adiantum L. in China [J]. Acta Phyt Sin, 18: 102.

      LIU XQ, GITURU RW, CHEN LQ, 2007. Genetic variation in the endangered fern Adiantum reinforme var. sinense (Adiantaceae) in China [J]. Ann Bot Fenn, 44(1): 25-32.

      MAHLEY JN, PITTERMANN J, ROWE N, et al., 2018. Geometry, allometry and biomechanics of fern leaf petioles: their significance for the evolution of functional and ecological diversity within the Pteridaceae [J]. Front Plant Sci, 9: 197.

      MARTNEZ OG, VILTE I, 2012. The structure of petioles in Pteris (Pteridaceae) [J]. Am Fern J, 102(1): 1-11.

      NEIRA DA, ANDRADA AR, P EZ VDL , et al., 2017. Anatomical, histochemical and cytogenetic features of Doryopteris triphylla (Pteridaceae) [J]. Am J Plant Sci, 8: 907-920.

      NORAINI T, AMIRUL-AIMAN AJ, JAMAN R, et al., 2014. Systematic significance of stipe anatomy in peninsular Malaysian Blechnum L. (blechnaceae) species [J]. Mal Appl Biol J, 43(2): 119-125.

      OGURA Y, 1972. Comparative anatomy of vegetative organs of the Pteridophytes [M]. Berlin, Germany: Gebruder Borntraeger, pp. 1-39.

      PALACIOS-RIOS M, GALAN JMGY, PRADA C, et al., 2019. Structure of the petioles and costae of Mexican and Central American species of Pteris (Polypodiopsida, Pteridaceae) [J]. Phytotaxa, 401(2): 101-116.

      PANDE SK, 1935. Notes on the anatomy of a xerophytic fern Niphobolus adnascens from the Malay Peninsula [J]. Proc Ind Acad Sci-Sect A Part 3 Mathemat Sci, 1(9): 556-564.

      PETERSON RL, PETERSON CA, MELVILLE LH, 2008. Teaching plant anatomy through creative laboratory exercise [M]. Ottawa Ontartio: N.P C. Press.

      PLACKETT ARG, DI STILIO VS, LANGDALE JA, 2015. Ferns: the missing link in shoot evolution and development [J]. Front Plant Sci, 6: 972.

      PPG I, 2016. A community-derived classification for extant lycophytes and ferns [J]. J Syst Evol, 54: 563-603.

      PRYER KM, HUIET L, LI FWEI, et al., 2016. Maidenhair ferns, Adiantum, are indeed monophyletic and sister to shoestring ferns, Vittarioids (Pteridaceae) [J]. Syst Bot, 41(1): 17-23.

      RIBEIRO MLRC, SANTOS MG, MORAES MG, 2007. Leaf anatomy of two Anemia Sw. species(Schizaeaceae-Pteridophyte) from a rocky outcrop in Niterói, Rio de Janeiro, Brazil [J]. Braz J Bot, 30(4): 695-702.

      ROTHFELS CJ, SCHUETTPELZ E, 2014. Accelerated rate of molecular evolution for vittarioid ferns is strong and not driven by selection [J]. Syst Biol, 63: 31-54.

      RUZIN SE, 1999. Plant microtechnique and microscopy [M].? New York: Oxford University Press.

      SANTOS-SILVA F, MASTROBERTI AA, DE ARAUJO MARIATH JE, 2011. Development of the epidermal cells of the pinnules of Adiantum raddianum C. Presl (Pteridaceae): environmental adaptive plastidial characteristics [J]. Am Fern J, 101(3): 172-181.

      SRBU A, SMARANDACHE D, MARINESCU AT, et al., 2017. Anatomical-histological observations conducted on aquatic ferns In the Danube Delta [J]. J Plant Dev, 24: 3-21.

      SCHNEIDER H, 1997. Root anatomy of Aspleniaceae and the implications for systematics of the fern family [J]. Fern Gaz, 15: 160-168.

      SEAGO JR JL, PETERSON CA, ENSTONE DE, et al., 1999. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angust ifolia L. roots [J]. CAN J Bot, 77(1): 122-134.

      SHAH SN, AHMAD M, ZAFAR M, et al., 2019. Leaf micromorphological adaptations of resurrection ferns in Northern Pakistan [J]. Flora, 255(6): 1-10.

      SRIDHAR BBM, HAN FX, DIEHL SV, et al., 2011. Effect of phytoaccumulation of arsenic and chromium on structural and ultrastructural changes of brake fern (Pteris vittata) [J]. Braz J Plant Phys, 23(4): 285-293.

      SRIVASTAVA A, CHANDRA S, 2009. Structure and organization of the rhizome vascular system of four Polypodium species [J]. Am Fern J, 99(3): 182-193.

      UMMU-HANI B, NORAINI T, MAIDEEN H, et al., 2013. Taxonomic value of the stipe anatomy in Davallia (Davalliaceae) in Peninsular Malaysia [J]. Mal Nat J, 65(2-3): 130-144.

      VASCO A, MORAN RC, AMBROSE BA, 2013. The evolution, morphology, and development of fern leaves [J]. Front Plant Sci, 4: 345.

      WANG AH, SUN Y, SCHNEIDER H, et al., 2015. Identification of the relationship between Chinese Adiantum reniforme var. sinense and Canary Adiantum reniforme [J]. BMC Plant Biol, 15(1): 36.

      WARDLAW CW, 1944. Experimental and analytical studies of pteridophytes: IV. Stelar morphology: Experimental observations on the relation between leaf development and stelar morphology in species of Dryopteris and Onoclea [J]. Ann Bot, 8(32): 387-399.

      WETZEL MLR, SYLVESTRE LDS, BARROS CF, et al., 2017. Vegetative anatomy of Aspleniaceae newman from Brazilian Atlantic rainforest and its application in taxonomy [J]. Flora, 233: 118-126.

      WU JQ, 2012. Key rare and endangered species in Three Gorges Reservoir Area [J]. Chin Three Gorg Constr, 5: 26-34.? [吳金清, 2012. 三峽庫區(qū)重點珍稀瀕危植物物種 [J]. 中國三峽, 5: 26-34.]

      WU H, CHEN PT, YUAN L, et al., 2011. Study on the technique of making paraffin section of fern [J]. Hubei Agric Sci, 50(18): 3767-3769.? [吳華, 陳聘婷, 袁玲, 等, 2011. 蕨類植物石蠟切片制作技術(shù)探討 [J]. 湖北農(nóng)業(yè)科學(xué), 50(18): 3767-3769.]

      WYLIE RB, 1949. Variations in leaf structure among Adiantum pedatum plants growing in a rock cavern [J]. Am J Bot, 36(3): 282-287.

      XU TQ, ZHENG Z, JIN YX, 1987. On the distribution characteristic of the variety Adiantun reinforme var. sinense [J]. J Wuhan Bot Res, 3: 247-252.? [徐天全, 鄭重, 金義興, 1987. 論荷葉鐵線蕨的分布特點 [J]. 武漢植物學(xué)研究, 5: 247-252.]

      YANG C, ZHANG X, ZHOU C, et al., 2011. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China [J]. Flora, 206(7): 653-661.

      YUAN WJ, ZHANG WR, SHANG FD, 2007. Study on the anatomical structure of vegetative organs of Coptis chinensis and its pertinence to sciophyte conditions [J]. J Henan Agric Univ (Nat Sci Ed), 37(2): 184-186.? [袁王俊, 張維瑞, 尚富德, 2007. 黃連營養(yǎng)器官解剖結(jié)構(gòu)與其陰生環(huán)境相關(guān)性研究 [J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版), 37(2): 184-186.]

      ZHANG GM, LIAO WB, DING MY, et al., 2013. Pteridaceae [M]//WU ZY, RAVEN PH, HONG DY (eds.). Flora of China. Beijing: Science Press;St. Louis: Missouri Botanical Garden Press: 169-256.

      ZHANG ZH, WU XX, 2013. Study on the anatomy structure of five species of fern leaves and its adaptability to sciophyte environment [J]. J Huazhong Norm Univ (Nat Sci Ed), 47(6): 840-843.? [張澤宏, 吳小霞, 2013. 5種蕨類植物葉片解剖結(jié)構(gòu)及其對陰生環(huán)境的適應(yīng)性研究 [J]. 華中師范大學(xué)學(xué)報(自然科學(xué)版), 47(6): 840-843.]

      ZHOU SX, JIANG MX, HUANG HD, 2008. Spatial pattern of Adiantum reniform var. sinense, endemic to the Three Gorge Reservoir Region [J]. J Wuhan Bot Res, 26(1): 59-63.? [周賽霞, 江明喜, 黃漢東, 2008. 三峽庫區(qū)特有植物荷葉鐵線蕨種群分布格局研究 [J]. 武漢植物學(xué)研究, 26(1): 59-63.]

      (責(zé)任編輯 何永艷)

      2299501186303

      兴文县| 赤峰市| 枝江市| 闸北区| 沙雅县| 九寨沟县| 马尔康县| 嵊泗县| 肥城市| 龙门县| 和田市| 门源| 娱乐| 东丽区| 聂荣县| 琼中| 根河市| 宜川县| 涪陵区| 曲阜市| 抚宁县| 随州市| 汶上县| 香河县| 嘉鱼县| 高安市| 嫩江县| 会理县| 五寨县| 崇仁县| 卓尼县| 镇安县| 定兴县| 乌兰察布市| 炉霍县| 天峻县| 青州市| 东乡族自治县| 西畴县| 徐汇区| 双桥区|