• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite

    2022-04-12 03:48:18JiaoHongHuang黃焦宏YingDeZhang張英德NaiKunSun孫乃坤YangZhang張揚(yáng)XinGuoZhao趙新國(guó)andZhiDongZhang張志東
    Chinese Physics B 2022年4期
    關(guān)鍵詞:英德張揚(yáng)

    Jiao-Hong Huang(黃焦宏) Ying-De Zhang(張英德) Nai-Kun Sun(孫乃坤) Yang Zhang(張揚(yáng))Xin-Guo Zhao(趙新國(guó)) and Zhi-Dong Zhang(張志東)

    1State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization,Baotou Research Institute of Rare Earths,Baotou 014030,China

    2School of Science,Shenyang Ligong University,Shenyang 110159,China

    3Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords: ball milling,mechanical behavior,room-temperature magnetic refrigeration,La(Fe,Si)13

    1. Introduction

    La(Fe,Si)13-based hydrides have demonstrated a great potential for applications in room-temperature magnetic refrigeration by virtue of their large magnetic entropy change, abundant constituent elements and cascading of magnetic transition temperature across the near room-temperature range by Mn substitution or adjustment of the hydrogen content.[1,2]However, due to the hydrogen embrittlement effect, La(Fe,Si)13-based hydrides can only exist in powder form, which poses a challenge for shaping these materials into bulk magnetocaloric refrigerants for various regenerator configurations.Recently, a metal-bonding approach was employed for bulk formation of La(Fe,Si)13hydrides and this had the simultaneous effect of enhancing the mechanical and thermal conduction properties.[3-5]Compared with other metal bonders,such as Cu,Bi,In and Sn,metal Al possesses a better comprehensive performance with a unique combination of strength and corrosion resistance,non-toxicity and low cost,and high ductility and thermal conductivity.[6]In first-order transition of giant magnetocaloric materials, substitution or addition of B could reduce the lattice volume discontinuities at the transition temperature, thereby reducing the hysteresis loss[7]and improving mechanical stability.[8]

    In our previous works,[9,10]a series of La(Fe,Si)13bulk hydrides were prepared by sintering under high hydrogen pressure. Unfavorably, in these sintered hydrides, a large number of micropores were distributed in the main phase matrix,substantially reducing the compressive strength and thermal conductivity. Considering these aforementioned factors,in this work we employ metal Al as a bonder to produce La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al bulk composites. Hydrogenation and compactness shaping of the magnetocaloric composites were fulfilled in one step via a high-pressure sintering process. The comprehensive performance associated with application in magnetic refrigeration was systematically explored.

    2. Experiment

    The parent compounds of LaFe11.4Si1.56and La0.5Pr0.5Fe11.4Si1.6B0.2were prepared by melting starting materials with purity of≥99.9 wt.% using a mediumfrequency induction furnace, as described in detail in Ref. [11]. The ball milling method was employed to homogeneously mix the La(Fe,Si)13-based compounds with metal Al according to weight ratios of 60:1, 10:1, and 5:1; the resultant composites are referred to as 1.6 wt.% Al, 9 wt.%Al, and 16.7% wt.% Al samples, respectively. The materials were sealed in a hardened steel vial in a high-purity argon atmosphere and then ball milled for 30 min. The ball-milled powders were cold-pressed into thin plates (12.6-mm diameter, 1-mm thick) and sintered for 10 min at 290°C in a high-pressure H2atmosphere of 50 MPa for hydrogenation and compaction. Subsequent annealing was conducted at 200°C for 2 h to reduce interface defects.Importantly,a highpressure atmosphere was retained during the whole annealing and cooling process to suppress hydrogen desorption.

    X-ray diffraction (XRD) analysis was carried out using Cu-Kαradiation in a Rigaku D/Max-γA diffractometer. The microstructure and elemental composition of the composites were characterized by means of a FEI Quanta 200 F scanning electron microscope (SEM) equipped with an energydispersed x-ray(EDX)spectrometer. The compressive strainstress curve was measured with a universal testing machine.The magnetic properties were measured with a superconducting quantum interference device magnetometer using the reciprocating sample option as the measurement mode. The adiabatic temperature changes ΔTadwere directly measured using a self-made setup.[11]A laser flash thermal conductivity apparatus(LFA 457)was employed for measuring the thermal conductivityλalong the vertical direction of the sintered thin plates by directly measuring the thermal diffusivity,D,and indirectly deriving the specific capacityCpusing a representative Cu sample.

    3. Results and discussion

    For a good compactness effect, with the premise of ensuring stability of the 1:13 main phase, the sintering temperature should be as high as possible. To explore the optimum sintering temperature, we first sintered the ballmilled LaFe11.4Si1.56/Al composite at 500°C for 2 h. The XRD pattern shows a strong combined reflection peak of the Fe3Al0.5Si0.5phase andα-Fe at~45°and an intermetallic phase, Fe2Al5, is also formed. Notably, upon hydrogenation the reflections of the cubic NaZn13-type structure unexpectedly shift to higher angles, indicating substantial decomposition of the 1:13 main phase (Fig. 1(a)). After checking the phase constitutions of the sintered composites, the optimum sintering temperature and time were determined to be 290°C and 10 min,respectively.Selected XRD patterns of asprepared La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites are shown in Fig. 1(b). For the 1.6 wt.% Al sample, the reflection peak of pure Al is not detected,and with increase in the Al content to 9 wt.%and 16.7 wt.%,an apparent reflection peak of pure Al is observed. Small reflection peaks were identified to correspond toθ-Al2O3and FeAl9Si3, indicating that Al is easy to oxidize in the ball milling process.

    Figures 2(a)-2(c)illustrate the fracture and surface morphology of the 9 wt.%Al sample. An EDX study was carried out in eight typical areasA-Hfor analyzing the Al distribution and phase compositions. The grey areaAon the fracture surface has a small concentration of Al (2.5 at.%) and a predominant concentration of the 1:13 main phase. The elemental compositions in the dark areaBare mostly Al (28 at.%)and O(71 at.%)with small concentration of Fe(0.6 at.%)and Si (0.2 at.%), indicating that this kind of grey area predominantly consists of Al2O3. AreaC, corresponding to a single large La0.5Pr0.5Fe11.4Si1.6B0.2Hyparticle, has the smallest Al concentration of 1.5 at.% and areasDandEcontain an Al concentration of 10 at.%-15 at.%. The surface morphology in Fig. 2(c) clearly shows three typical areas, a white areaF, a grey areaGand a dark grey areaH. The Al concentrations for areasFandGare 15 at.% and 1 at.%, respectively. AreaHcontains 41 at.%O and 13 at.%Al,indicating that this kind of dark grey area on the surface is mainly composed of Al2O3.

    Fig.1. Selected XRD patterns of(a)LaFe11.4Si1.56 and LaFe11.4Si1.56Hy/Al(4 wt.%)composite and(b)La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    From the expanded view of fracture morphology(Fig.2(b))and surface morphology(Fig.2(c)),we can clearly observe that the particles have a large size distribution ranging from submicron to~10 microns with a predominant number of particles having sizes of several microns; this can be ascribed to the ball milling process. In contrast, La(Fe,Si)13-based bulk hydrides prepared by other methods generally have much larger particle sizes of tens of microns.[12,13]Together,the results of XRD and EDX analyses indicate that upon ball milling, aluminum oxides fill up the gaps and pure Al, Fe-Al-Si alloys andα-Fe are distributed in the 1:13 main phase particles;these cannot be individually identified.

    Fig.2. SEM images of(a)and(b)fracture morphology and(c)surface morphology of La0.5Pr0.5Fe11.4Hy/Al(9 wt.%).

    The distribution of ductile Al bonder in the 1:13 phase matrix as well as the fact that the gaps are filled up with Al2O3should remarkably enhance the mechanical and thermal conduction properties. As shown in Fig. 3, the compressive strength of 42 MPa for the 1.6 wt.% Al-bonded composite is in a similar range of magnitude to the sintered(36 MPa-46 MPa)[9]and epoxy-resin-bonded La(Fe,Si)13hydrides (52 MPa).[13]Moreover, these bulk hydrides prepared by different methods all show a similar shape of the stressstrain curve associated with the mechanical behavior of brittle materials. As the Al content increases to 9 wt.%, the stress-strain diagram demonstrates typical characteristic of ductile materials, with a long yielding stage beginning at the yield strength of~44 MPa followed by a strain hardening process. This ductile mechanical behavior has not previously been observed in La(Fe,Si)13composites bonded by other ductile metals such as In,[4]Sn,[14]and Bi,[15]and is also absent in a LaFe11Co0.8Si1.2/10 wt.% Al composite prepared by the hot-pressing method.[6]The present 16.7 wt.% Al sample demonstrates an ultimate compressive strength of 388 MPa,much higher than the values for the hotpressed LaFe11Co0.8Si1.2/10 wt.% Al composite (186 MPa)and 20 wt.% Cu-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2(248 MPa).[12]Consolidated alumina powder bodies show particle size-dependent plastic to brittle transition due to the fact that, for a given applied pressure, larger forces exist between larger particles as a result of the smaller number of contacts per unit volume.[16]Smaller wood particle sizes correspond to a higher ultimate compression strength in woodbased composites, as the larger surface area for smaller particles could act as an adhesive factor in the composite system and lead to a more efficient stress transfer.[17]It has been observed in SiC particle-reinforced Al-Cu alloy composites that a small particle size of several microns and uniform distribution of the reinforcing phase corresponded to the highest yield strength and ultimate tensile strength.[18]According to these previous results, the high compressive strength and mechanical behavior of ductile materials in the present La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composite can be ascribed to the fact that the ball milling results in Al particles being distributed in the whole matrix as well as the small particle size of the composites.

    Fig. 3. Compressive stress-strain curves for La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    Next, we evaluate the magnetocaloric properties of the Al-bonded composites. The thermomagnetic curves of the composites in a field of 0.01 T are shown in Fig. 4(a). The Curie temperature,TC,defined as the minimum of the dM/dTversusTcurves, is~320 K for the 1.6 wt.% Al sample and~324 K for the two samples with higher Al contents.The temperature dependence of ΔSm(T,B) calculated from the isothermal magnetization data (Figs. 4(b)-4(d)) using the Maxwell relationship is shown in Fig. 5(a). The maximum value of ΔSmof the La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites is reduced by approximately fivefold to~1.2 J/kg·K-1.5 J/kg·K for a magnetic field change of 1.5 T compared with(La,Pr)(Fe,Si)13-based hydrides.[19-21]This can be mainly ascribed to the small particle size[22]due to the ball milling process as well as the existence of non-magnetocaloric phases of Fe-Al-Si alloys and pure Al. The directly measured adiabatic temperature change ΔTadis represented in Fig.5(b). The peak value of ΔTadfor a field change of 1.5 T is 0.54 K at 322 K,0.48 K at 330 K and 0.45 K at 325 K for the 1.6 wt.% Al,9 wt.%Al,and 16.7 wt.%Al composites,respectively.

    Fig. 5. The temperature dependence of ΔSm (a) and ΔTad (b) for La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    High thermal conductivity of magnetocaloric materials is desirable for application in a refrigerant device in order to afford efficient heat transfer to the heat exchange fluid.Hot-pressing or sintering cannot ensure uniform distribution of thermal conductive metal particles in La(Fe,Si)13hydride matrices, making theλvalues lower than expected, such as 2 W/K·m-3 W/K·m for the 4 wt.% Cu bonded,[3]5 W/K·m for the 15 wt.% silver-epoxy bonded[23]and 6.8 W/K·m for the 25 wt.%Sn bonded[14]composites.Figure 6 represents the thermal conductivity of La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites in the temperature range covering the phase transition temperature. Theλvalues in the paramagnetic state are generally a little higher than those in the ferromagnetic state. The room-temperatureλin the cross-plane direction of the sintered plates is 1.9 W/K·m, 3.7 W/K·m, and 11.1 W/K·m for the 1.6 wt.%,9 wt.%,and 16.7 wt.%Albonded composites,respectively,indicating that metal Al has a similar effect on thermal conductive improvement of La(Fe,Si)13hydrides to metal In.[4]A plastically deformed La(Fe,Si)13plate demonstrated significant anisotropic thermal conductivity in cross-plane and in-plane directions mainly due to the in-plane elongation ofα-Fe and the 1:13 phase grains caused by open-die forging.[24]The present composites prepared by ball milling and shortduration sintering do not exhibit an apparent anisotropic microstructure,so we expect no substantial directional difference inλfor the Al-bonded La-Fe-Si composites.

    Fig. 6. Thermal conductivity of La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites at temperatures across the phase transition temperature.

    4. Conclusion

    We have developed a novel route for the fabrication of La(Fe,Si)13hydride-based bulk materials via ballmilling mixing and sintering at high hydrogen pressure.Upon incorporating 9 wt.%-16.7 wt.% Al, the as-prepared La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites demonstrate the mechanical behavior of ductile materials with a yield strength of 44 MPa and ultimate strength of 269 MPa-388 MPa. The 16.7 wt.%Al-bonded composite has a high thermal conductivity of 11.1 W/K·m,which is comparable to the effect of metal In bonding. The ball milling process facilitates the homogeneous distribution of metal Al in the matrix, but simultaneously reduces the particle size even to the submicron range,leading to a substantial decrease in the magnetocaloric effect.

    Acknowledgments

    Project supported by the Open Research Project of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization and the National Natural Science Foundation of China (Grant Nos. 51771197 and 52171187).

    猜你喜歡
    英德張揚(yáng)
    盧英德:百事可樂女王
    愛,無須張揚(yáng)
    小讀者(2021年2期)2021-03-29 05:03:48
    The Brief History of the Ancient Olympic Games
    魔高一丈 就要張揚(yáng) Ducati XDiavel
    車迷(2020年7期)2020-08-10 06:41:00
    凸顯理念,學(xué)也張揚(yáng)
    不與對(duì)手正面交鋒
    幸福(2019年11期)2019-05-13 09:44:34
    激戰(zhàn)長(zhǎng)空之英德怒戰(zhàn)
    對(duì)弗萊克斯納現(xiàn)代大學(xué)職能觀的理解——《現(xiàn)代大學(xué)論——美英德大學(xué)研究》讀后感
    低調(diào)而不張揚(yáng)的七都
    蘇州雜志(2016年6期)2016-02-28 16:32:18
    英德瓊影
    源流(2016年10期)2016-02-13 08:09:04
    亚洲精品久久午夜乱码| 欧美亚洲日本最大视频资源| 另类精品久久| 国产亚洲精品第一综合不卡| 欧美黑人欧美精品刺激| 色94色欧美一区二区| 免费观看人在逋| www.av在线官网国产| 午夜精品国产一区二区电影| 精品酒店卫生间| 国产成人a∨麻豆精品| 精品国产一区二区久久| 免费观看av网站的网址| 精品人妻在线不人妻| 女人被躁到高潮嗷嗷叫费观| 99久久综合免费| 国产精品 欧美亚洲| 日本色播在线视频| 男女无遮挡免费网站观看| 黄色视频在线播放观看不卡| 中国国产av一级| 中文字幕色久视频| 最黄视频免费看| 91aial.com中文字幕在线观看| 亚洲国产成人一精品久久久| 美女国产高潮福利片在线看| 好男人视频免费观看在线| 日日爽夜夜爽网站| 黄片播放在线免费| 9色porny在线观看| 亚洲国产精品一区三区| √禁漫天堂资源中文www| 亚洲av电影在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 日韩av不卡免费在线播放| 国产女主播在线喷水免费视频网站| 精品国产露脸久久av麻豆| 国产一卡二卡三卡精品 | 色网站视频免费| 考比视频在线观看| 国产欧美日韩一区二区三区在线| 久久久久精品性色| 丁香六月欧美| 久久久久人妻精品一区果冻| 91aial.com中文字幕在线观看| 人成视频在线观看免费观看| 久久99一区二区三区| 亚洲熟女精品中文字幕| 国产亚洲最大av| 女人爽到高潮嗷嗷叫在线视频| 精品少妇一区二区三区视频日本电影 | 久久精品久久精品一区二区三区| 女人久久www免费人成看片| a级毛片黄视频| 欧美xxⅹ黑人| 国产精品.久久久| 久久久久久久久久久免费av| 男人爽女人下面视频在线观看| 亚洲国产av影院在线观看| 在线看a的网站| 成人午夜精彩视频在线观看| 亚洲精品国产av蜜桃| 悠悠久久av| 日本欧美国产在线视频| 成人影院久久| 又大又爽又粗| 国产精品.久久久| 欧美人与善性xxx| 日韩欧美一区视频在线观看| 午夜影院在线不卡| 美女脱内裤让男人舔精品视频| 亚洲精品日韩在线中文字幕| 欧美人与性动交α欧美精品济南到| 69精品国产乱码久久久| 免费观看a级毛片全部| 国产男女内射视频| 欧美国产精品va在线观看不卡| 热re99久久精品国产66热6| 国产精品麻豆人妻色哟哟久久| 99国产精品免费福利视频| 老鸭窝网址在线观看| 男人操女人黄网站| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av高清一级| 国产男人的电影天堂91| 国语对白做爰xxxⅹ性视频网站| 久久精品久久久久久久性| 国产精品二区激情视频| 这个男人来自地球电影免费观看 | 亚洲熟女毛片儿| 国产又爽黄色视频| 免费女性裸体啪啪无遮挡网站| 日韩伦理黄色片| 国产视频首页在线观看| 97人妻天天添夜夜摸| 国产亚洲精品第一综合不卡| 国产av精品麻豆| 欧美人与性动交α欧美精品济南到| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区四区五区乱码 | 国产精品.久久久| 国产爽快片一区二区三区| 韩国高清视频一区二区三区| 咕卡用的链子| 国产成人免费无遮挡视频| 国产精品欧美亚洲77777| 黄色 视频免费看| 亚洲欧洲国产日韩| 免费观看av网站的网址| 久久毛片免费看一区二区三区| 涩涩av久久男人的天堂| 三上悠亚av全集在线观看| 天堂8中文在线网| 好男人视频免费观看在线| 在线 av 中文字幕| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看| 国产高清不卡午夜福利| 欧美精品人与动牲交sv欧美| 亚洲国产av新网站| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 日韩电影二区| 男的添女的下面高潮视频| 中文字幕另类日韩欧美亚洲嫩草| 日韩大码丰满熟妇| 最近最新中文字幕大全免费视频 | 欧美老熟妇乱子伦牲交| 国产精品久久久人人做人人爽| 十八禁高潮呻吟视频| 精品国产一区二区三区四区第35| 亚洲成色77777| 亚洲激情五月婷婷啪啪| 国产日韩一区二区三区精品不卡| 亚洲三区欧美一区| 免费在线观看完整版高清| 51午夜福利影视在线观看| a级毛片在线看网站| 制服人妻中文乱码| 操出白浆在线播放| 国产女主播在线喷水免费视频网站| 肉色欧美久久久久久久蜜桃| 亚洲精品美女久久av网站| 中文字幕精品免费在线观看视频| 一区二区三区精品91| 中文天堂在线官网| 天天操日日干夜夜撸| 国产一卡二卡三卡精品 | 国产精品一区二区在线不卡| 亚洲自偷自拍图片 自拍| 黄网站色视频无遮挡免费观看| 精品卡一卡二卡四卡免费| 国产日韩一区二区三区精品不卡| 色94色欧美一区二区| 国产视频首页在线观看| 欧美日韩一级在线毛片| 欧美另类一区| 各种免费的搞黄视频| 黄频高清免费视频| 国产精品久久久av美女十八| 熟妇人妻不卡中文字幕| 久久久精品区二区三区| 亚洲情色 制服丝袜| 日韩中文字幕视频在线看片| 久久天躁狠狠躁夜夜2o2o | 韩国av在线不卡| 精品人妻在线不人妻| 51午夜福利影视在线观看| 欧美精品一区二区免费开放| 免费观看av网站的网址| 18禁国产床啪视频网站| 免费高清在线观看日韩| 汤姆久久久久久久影院中文字幕| 青春草亚洲视频在线观看| 国产成人免费无遮挡视频| 飞空精品影院首页| 18禁国产床啪视频网站| 日韩人妻精品一区2区三区| 国产国语露脸激情在线看| 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 国产精品二区激情视频| 久久精品久久久久久噜噜老黄| 成人国产麻豆网| 精品一区二区三区av网在线观看 | 日韩一区二区视频免费看| 在线天堂最新版资源| 国产国语露脸激情在线看| 女人精品久久久久毛片| 一级毛片 在线播放| 亚洲激情五月婷婷啪啪| 丰满少妇做爰视频| 一区二区三区四区激情视频| 久久 成人 亚洲| 精品久久蜜臀av无| 日本wwww免费看| 午夜激情久久久久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲激情五月婷婷啪啪| 亚洲av中文av极速乱| 亚洲国产毛片av蜜桃av| 美女中出高潮动态图| 国产av一区二区精品久久| 国产成人午夜福利电影在线观看| 只有这里有精品99| 免费观看性生交大片5| 美女视频免费永久观看网站| 男女床上黄色一级片免费看| 中文字幕人妻丝袜制服| 国产99久久九九免费精品| 美女扒开内裤让男人捅视频| 人人澡人人妻人| 男男h啪啪无遮挡| 亚洲成人一二三区av| 18禁国产床啪视频网站| 电影成人av| 各种免费的搞黄视频| 中文字幕高清在线视频| 国产精品久久久久久精品古装| 久热这里只有精品99| 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| av网站免费在线观看视频| 性少妇av在线| 女人久久www免费人成看片| 亚洲精品中文字幕在线视频| 丝袜脚勾引网站| 国产亚洲av高清不卡| 亚洲国产欧美日韩在线播放| 国产精品久久久久久久久免| 亚洲成人一二三区av| 国产亚洲欧美精品永久| 日本猛色少妇xxxxx猛交久久| 9色porny在线观看| 欧美日韩国产mv在线观看视频| 国产精品嫩草影院av在线观看| 日本一区二区免费在线视频| 亚洲综合精品二区| 中文字幕高清在线视频| 精品卡一卡二卡四卡免费| 国产乱人偷精品视频| 美女脱内裤让男人舔精品视频| 日韩伦理黄色片| 嫩草影院入口| netflix在线观看网站| www.精华液| 丝袜美足系列| 女人高潮潮喷娇喘18禁视频| 久久女婷五月综合色啪小说| 欧美中文综合在线视频| 亚洲精品中文字幕在线视频| 亚洲,欧美,日韩| 久久国产精品大桥未久av| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 中文字幕高清在线视频| 久久影院123| 丝袜在线中文字幕| 男女免费视频国产| 国产精品三级大全| 在线观看www视频免费| www.av在线官网国产| 精品久久久久久电影网| 超碰成人久久| 欧美激情 高清一区二区三区| 99香蕉大伊视频| av电影中文网址| 亚洲国产看品久久| 亚洲成人av在线免费| www.av在线官网国产| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 亚洲美女视频黄频| 午夜精品国产一区二区电影| 亚洲天堂av无毛| 国产成人a∨麻豆精品| 欧美97在线视频| 欧美日韩成人在线一区二区| 91精品伊人久久大香线蕉| 日本91视频免费播放| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美一区二区三区国产| 在线观看人妻少妇| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | 9191精品国产免费久久| 99久久人妻综合| av视频免费观看在线观看| 91aial.com中文字幕在线观看| 亚洲国产欧美网| 亚洲欧美色中文字幕在线| 捣出白浆h1v1| 制服丝袜香蕉在线| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 国产一卡二卡三卡精品 | 国产 精品1| a级片在线免费高清观看视频| 青草久久国产| 国产精品熟女久久久久浪| 亚洲少妇的诱惑av| 在线亚洲精品国产二区图片欧美| 久久久国产一区二区| 日日撸夜夜添| 黑人猛操日本美女一级片| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| 亚洲七黄色美女视频| 久久精品亚洲av国产电影网| 亚洲伊人久久精品综合| 免费观看性生交大片5| 欧美精品亚洲一区二区| 亚洲成人手机| 亚洲精品成人av观看孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 午夜福利视频精品| 久久精品aⅴ一区二区三区四区| 国产黄频视频在线观看| 精品国产国语对白av| 精品一品国产午夜福利视频| 一区二区av电影网| 9色porny在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区二区三区在线| 成人影院久久| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲日产国产| 日韩中文字幕欧美一区二区 | 一区二区三区乱码不卡18| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 99久国产av精品国产电影| 亚洲精品乱久久久久久| 亚洲精品美女久久av网站| 五月开心婷婷网| 制服诱惑二区| 伦理电影免费视频| 久热爱精品视频在线9| 久久久欧美国产精品| 一级毛片黄色毛片免费观看视频| 亚洲国产精品999| 在线观看免费视频网站a站| 久久精品久久久久久久性| 1024香蕉在线观看| 波野结衣二区三区在线| 亚洲国产av新网站| 亚洲欧美一区二区三区久久| 久久久久精品性色| 亚洲成人一二三区av| av线在线观看网站| 欧美最新免费一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 18禁观看日本| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三区在线| 亚洲成人av在线免费| 少妇猛男粗大的猛烈进出视频| 国产野战对白在线观看| 观看av在线不卡| 亚洲欧美激情在线| 纵有疾风起免费观看全集完整版| 91老司机精品| 亚洲精华国产精华液的使用体验| 极品人妻少妇av视频| a 毛片基地| 男女之事视频高清在线观看 | 最新在线观看一区二区三区 | 99香蕉大伊视频| 亚洲精品自拍成人| 99香蕉大伊视频| 啦啦啦中文免费视频观看日本| 在现免费观看毛片| 欧美精品亚洲一区二区| 国产免费又黄又爽又色| 欧美日韩综合久久久久久| 你懂的网址亚洲精品在线观看| 超色免费av| 亚洲av福利一区| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 99热国产这里只有精品6| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 久久久久精品人妻al黑| 久久久国产一区二区| 丝袜在线中文字幕| 天天操日日干夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品自产自拍| www.av在线官网国产| 国产一区二区三区av在线| 久久影院123| 免费黄色在线免费观看| 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 丝袜美足系列| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 777米奇影视久久| av在线播放精品| 69精品国产乱码久久久| 国产免费一区二区三区四区乱码| 尾随美女入室| 狠狠婷婷综合久久久久久88av| 日韩成人av中文字幕在线观看| 亚洲免费av在线视频| 日本欧美国产在线视频| av在线老鸭窝| 国产av精品麻豆| 日韩不卡一区二区三区视频在线| 日韩大片免费观看网站| xxxhd国产人妻xxx| 少妇 在线观看| 熟女av电影| 超色免费av| 黑人欧美特级aaaaaa片| 国产成人欧美| 亚洲av电影在线进入| 桃花免费在线播放| 黑人猛操日本美女一级片| 亚洲成人手机| 99国产精品免费福利视频| 在线观看三级黄色| 热99久久久久精品小说推荐| 亚洲成国产人片在线观看| 亚洲精品中文字幕在线视频| 国产极品天堂在线| 女性被躁到高潮视频| 啦啦啦 在线观看视频| 国产精品一区二区在线不卡| 国产亚洲av片在线观看秒播厂| 精品午夜福利在线看| www.自偷自拍.com| 两性夫妻黄色片| 老司机在亚洲福利影院| av.在线天堂| 亚洲欧美一区二区三区国产| av在线播放精品| 涩涩av久久男人的天堂| 人人妻人人澡人人看| 99久久人妻综合| 国产精品成人在线| 精品少妇一区二区三区视频日本电影 | 国产一卡二卡三卡精品 | 我要看黄色一级片免费的| 久久精品久久精品一区二区三区| 超碰成人久久| a级片在线免费高清观看视频| 一本—道久久a久久精品蜜桃钙片| 国产精品嫩草影院av在线观看| 蜜桃在线观看..| 国产麻豆69| 老司机亚洲免费影院| 考比视频在线观看| 国产福利在线免费观看视频| av电影中文网址| 国产又色又爽无遮挡免| 夫妻午夜视频| 日本黄色日本黄色录像| 天美传媒精品一区二区| 成年av动漫网址| 久久久久国产一级毛片高清牌| 新久久久久国产一级毛片| 欧美中文综合在线视频| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 欧美97在线视频| 可以免费在线观看a视频的电影网站 | 国产精品欧美亚洲77777| 最近手机中文字幕大全| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看人妻少妇| 一本色道久久久久久精品综合| 亚洲成人免费av在线播放| 日本猛色少妇xxxxx猛交久久| 久久国产精品男人的天堂亚洲| 亚洲精品国产一区二区精华液| 在线观看一区二区三区激情| 国产97色在线日韩免费| 亚洲人成网站在线观看播放| 久久午夜综合久久蜜桃| 久久国产精品大桥未久av| 国产成人a∨麻豆精品| 亚洲国产精品999| netflix在线观看网站| 国产免费现黄频在线看| 久久久久网色| 欧美精品一区二区大全| 如何舔出高潮| 欧美日韩视频精品一区| 丝袜脚勾引网站| av免费观看日本| 国产精品久久久久久精品电影小说| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 国产精品.久久久| 毛片一级片免费看久久久久| 免费在线观看完整版高清| 亚洲国产精品一区三区| 99精国产麻豆久久婷婷| 国语对白做爰xxxⅹ性视频网站| 欧美人与善性xxx| 最近手机中文字幕大全| 精品免费久久久久久久清纯 | 久久国产精品大桥未久av| 下体分泌物呈黄色| 久久久亚洲精品成人影院| av女优亚洲男人天堂| 欧美精品高潮呻吟av久久| 国产熟女午夜一区二区三区| 两性夫妻黄色片| 成人18禁高潮啪啪吃奶动态图| 秋霞在线观看毛片| 80岁老熟妇乱子伦牲交| 大话2 男鬼变身卡| 中文精品一卡2卡3卡4更新| 日韩 亚洲 欧美在线| 久久毛片免费看一区二区三区| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡 | 久久天堂一区二区三区四区| 午夜老司机福利片| 久久久久网色| 久久精品国产亚洲av高清一级| 国产老妇伦熟女老妇高清| 欧美在线一区亚洲| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 一区在线观看完整版| 一本久久精品| 超色免费av| 超碰97精品在线观看| 观看av在线不卡| 在线观看www视频免费| 狂野欧美激情性xxxx| 在线观看一区二区三区激情| 日韩av免费高清视频| 国产成人系列免费观看| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 亚洲国产欧美网| 亚洲av电影在线进入| 久热爱精品视频在线9| 亚洲精品日韩在线中文字幕| 丰满饥渴人妻一区二区三| 大香蕉久久成人网| 啦啦啦啦在线视频资源| 男人操女人黄网站| 熟妇人妻不卡中文字幕| 亚洲欧洲精品一区二区精品久久久 | 青青草视频在线视频观看| 亚洲,欧美,日韩| 丰满乱子伦码专区| 看免费成人av毛片| 啦啦啦在线免费观看视频4| 亚洲国产精品国产精品| 久久久精品94久久精品| 久久久欧美国产精品| 青春草亚洲视频在线观看| 免费看不卡的av| 一本大道久久a久久精品| 国产免费福利视频在线观看| 日韩欧美精品免费久久| 美女午夜性视频免费| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 久久久精品94久久精品| 宅男免费午夜| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 高清不卡的av网站| a级毛片在线看网站| 久久精品久久久久久久性| 国产极品天堂在线| 免费看av在线观看网站| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 天美传媒精品一区二区| 国产成人一区二区在线| 五月天丁香电影| av网站免费在线观看视频| 青春草国产在线视频| 国产黄色免费在线视频| 老司机在亚洲福利影院| 亚洲精品,欧美精品| 妹子高潮喷水视频| 日本色播在线视频| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 黄色视频不卡| 美国免费a级毛片| 最近中文字幕2019免费版| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 亚洲成人免费av在线播放| 免费久久久久久久精品成人欧美视频| videosex国产| 亚洲自偷自拍图片 自拍| 高清视频免费观看一区二区| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 曰老女人黄片|