王 攀,楊鑫玉,鄭 義,任連海
廚余垃圾厭氧發(fā)酵失穩(wěn)調控及微生物群落分析
王 攀,楊鑫玉,鄭 義,任連海*
(北京工商大學生態(tài)環(huán)境學院,國家環(huán)境保護食品鏈污染防治重點實驗室,北京 100048)
針對廚余垃圾厭氧發(fā)酵過程中容易積累丙酸和丁酸導致反應體系酸化失穩(wěn)的問題,馴化了富集耐丙酸和耐丁酸厭氧發(fā)酵菌群的接種菌泥,探究利用其對廚余垃圾干式厭氧發(fā)酵酸化失穩(wěn)體系進行調控后對甲烷產量和微生物群落的影響.酸化失穩(wěn)厭氧體系中添加耐丙酸菌泥調控后,與空白對照組相比反應體系中丙酸濃度削減6900.81mg/L,累積甲烷產量提升了259%;添加耐丁酸菌泥調控后,反應體系中丁酸濃度削減5371.56mg/L,累積甲烷產量提高了210%.微生物多樣性分析表明,利用耐丙酸和耐丁酸菌群調控后,細菌種群豐富度明顯提高.細菌屬水平分析表明,投加耐丙酸馴化菌群后有利于和等揮發(fā)性脂肪酸降解菌相對豐度增加;投加耐丁酸馴化菌群后,與乙酸型產甲烷菌有協同作用的相對豐度有所增長.古菌屬水平分析表明耐丙酸和丁酸菌調控后,氫型產甲烷菌和乙酸型產甲烷菌的相對豐度明顯提高.
廚余垃圾;干式厭氧發(fā)酵;酸化失穩(wěn)調控;微生物群落
廚余垃圾是城市生活垃圾的重要組成部分[1],隨著全國垃圾分類工作的不斷推進,越來越多的廚余垃圾被分離出來需要妥善處理.廚余垃圾富含有機質,易被微生物降解,厭氧發(fā)酵技術逐漸成為處理處置廚余垃圾的主流技術[1].厭氧發(fā)酵包括濕式和干式發(fā)酵[2].干式厭氧發(fā)酵技術對原料預處理要求低、沼液產量低、耗能少、產氣率較高[3],但由于其高有機負荷運行,容易發(fā)生底物濃度過高,水解酸化速率過快,揮發(fā)性脂肪酸(VFAs)迅速積累,系統(tǒng)pH值降低,從而抑制產甲烷菌活性,導致厭氧發(fā)酵體系酸化失穩(wěn)等問題[4].
在酸化失穩(wěn)的厭氧發(fā)酵體系中,快速積累的VFAs主要有乙酸、丙酸、丁酸等,由于酸積累抑制微生物生長,從而影響系統(tǒng)穩(wěn)定性.丙酸、丁酸降解過程中所需的吉布斯自由能較高,不能自發(fā)進行[5-6].在目前的許多研究中,丙酸和丁酸被認為是引發(fā)酸抑制產生的重要原因[7-8].研究發(fā)現丙酸在非常低的濃度下會抑制厭氧發(fā)酵過程中甲烷生成,并且丙酸降解過程較為緩慢[8-9].此外,研究發(fā)現在厭氧發(fā)酵系統(tǒng)出現酸抑制現象時,VFAs主要由丁酸組成,占總VFAs的30%~40%[10].對于厭氧發(fā)酵酸化失穩(wěn)體系的調控手段主要有預處理[11]、酸堿化學調控[12]和生物調控的方法.有研究表明向有機負荷過載的酸抑制發(fā)酵體系連續(xù)投加丙酸降解菌群能快速降解積累的丙酸并提高產甲烷效率[13].Li等[14]利用耐酸的產甲烷菌對厭氧發(fā)酵體系進行生物調控可恢復了過載的厭氧發(fā)酵體系,并且加速了累積的VFAs尤其是乙酸和丁酸的降解,該方法增加了和的數量從而重建了厭氧發(fā)酵系統(tǒng)的產甲烷菌群.由于厭氧發(fā)酵菌群體系的復雜性,耐丙酸微生物菌群和耐丁酸微生物菌群調控改善厭氧酸化失穩(wěn)體系的微生物學機理需進一步深入探討.
本研究針對廚余垃圾干式厭氧發(fā)酵體系中易積累造成體系酸化失穩(wěn)問題的丙酸和丁酸,馴化耐丙酸和耐丁酸厭氧發(fā)酵菌群,研究其對廚余垃圾厭氧發(fā)酵酸化失穩(wěn)的調控能力,利用高通量測序技術分析調控過程中微生物群落結構的變化,探討微生物機理,以期為廚余垃圾干式厭氧發(fā)酵酸化失穩(wěn)的調控提供理論基礎.
廚余垃圾采集于北京市海淀區(qū)某居民小區(qū)(廚余垃圾1#)和北京工商大學食堂(廚余垃圾2#),分別確定為1#和2#采樣點.為保證廚余垃圾成分的均一性和穩(wěn)定性,廚余垃圾連續(xù)多日取樣并在取樣前混合均勻;調控所使用的馴化菌泥取自山東省某工廠污水處理厭氧工藝段厭氧顆粒污泥.實驗底物的基本理化性質見表1.
表1 實驗底物理化參數
首先采用序批式厭氧發(fā)酵反應裝置進行耐丙酸和耐丁酸的產甲烷菌泥馴化實驗.分別將700mL厭氧顆粒污泥添加在2個1L的厭氧發(fā)酵瓶中.每隔24h加入含丙酸鈉或丁酸鈉的碳源營養(yǎng)液.
厭氧發(fā)酵酸化失穩(wěn)調控實驗采用序批式厭氧發(fā)酵反應裝置.發(fā)酵底物物料配比為廚余垃圾1# : 廚余垃圾2# = 1:3(按TS計).發(fā)酵前在120℃ 下加熱80min、6000r/min將廚余垃圾脫油,將脫油處理后的廚余垃圾混合物與厭氧污泥顆粒以1:1(按VS計)配比混合,實驗設計分組如表2,每組設置2平行實驗.
厭氧發(fā)酵實驗在中溫條件(35℃)下進行,每隔24h采集少量發(fā)酵底物檢測相關性能指標,利用排水法測定沼氣的產氣量.每日定時采集沼氣進行檢測,當觀察到甲烷含量持續(xù)下降時(即酸化失穩(wěn)),按體積比20%將馴化體系中最佳產氣時刻的菌泥加入到酸化失穩(wěn)的廚余垃圾干式厭氧發(fā)酵體系中.連續(xù)觀察耐丙酸產甲烷菌群調控(PAMR)和耐丁酸產甲烷菌群調控(BAMR)的調控效果和發(fā)酵性能.
表2 實驗設計分組
含水率采用烘干法計算;灰分采用灼燒法測定; pH值采用pH電極法測定,以上方法均參考《水和廢水監(jiān)測分析方法》[15].化學需氧量(COD)采用消解分光光度法[16];氨氮采用納氏分光光度法[17];粗脂肪采用索氏提取法[18];粗蛋白采用凱氏定氮法[19];粗纖維采用范式洗滌法[20];碳氮比(C/N)采用元素分析儀(Vario EL/micro cube)測定.
沼氣組分和揮發(fā)性脂肪酸(VFAs)采用氣相色譜法進行分析.沼氣采用氣相色譜法(填充柱,柱溫80℃,進樣口溫度150℃,檢測器溫度150℃,載氣為高純氬氣);揮發(fā)性脂肪酸(VFAs)采用氣相色譜法(FFAP毛細管柱,柱溫160℃,檢測器溫度250℃,載氣為高純氮氣).
采用FastDNA?土壤DNA提取試劑盒(MP Biomedicals, America)提取DNA.提取后DNA在-20℃下保存,然后進行聚合酶鏈反應(PCR)擴增,本研究使用Ion Plus Fragment library Kit 48rxns(16S V4)和TruSeq?DNA PCR-Free Sample Preparation Kit(Archaea)構建文庫,并通過Qubit和Q-PCR進行定量.利用Thermofisher Ion S5TMXL and HiSeq2500PE250對定量文庫進行測序.
采用Origin和Excel軟件對數據進行分析處理.
向厭氧發(fā)酵顆粒污泥中連續(xù)投加丙酸鈉馴化耐丙酸產甲烷菌群.如圖1(a)所示,在發(fā)酵的第1~4d丙酸鈉投加濃度為500mg/L,發(fā)酵第5~8d為1000mg/L,發(fā)酵第9~29d每隔2d提高500mg/L.在馴化過程中,耐丙酸產甲烷菌泥在發(fā)酵的第18d日甲烷產量達到最高(893.78mL),此時其pH值為7.76.取用這一時刻的耐丙酸馴化菌泥作為厭氧發(fā)酵酸化失穩(wěn)體系接種菌泥.在馴化的第24d日甲烷產量有所上升,為736.44mL,隨后日甲烷產量迅速下降.在此馴化體系中,耐丙酸產甲烷菌群的最高丙酸耐受濃度為35320mg/L,遠高于之前研究中4000mg/L的抑制濃度[21].由此,選用第18d、第24d和第30d(結束時)的菌泥(MP18、MP24、MP30)進行高通量測序檢測微生物群落分析.
馴化耐丁酸產甲烷菌群采用丁酸鈉為碳源,如圖1(b)所示,馴化過程的第2~5d投加丁酸鈉500mg/ L,第6d開始每隔兩日提高500mg/L的丁酸鈉.在發(fā)酵的第24d達到最高日甲烷產量(1535.02mL),此時耐丁酸產甲烷菌泥的pH值為7.70.選用第24d的耐丙酸馴化菌泥,作為厭氧發(fā)酵酸化失穩(wěn)體系接種菌泥.在馴化第30d日甲烷產量出現產氣小高峰,為1320.83mL,丁酸濃度為14455.35mg/L.在此馴化體系中,耐丁酸產甲烷菌群的最高丙酸耐受濃度為17110.39mg/L.由此,選第24d、第30d和第36d(結束時)的菌泥(MB24、MB30、MB36)進行高通量測序檢測微生物群落,探究丁酸產甲烷菌群的馴化演替規(guī)律.
圖1 耐酸產甲烷菌群馴化過程中酸投加量、酸濃度及日甲烷產量變化
如圖2(a)所示,廚余垃圾干式厭氧發(fā)酵過程中日甲烷產量呈降低趨勢,在發(fā)酵第10d幾乎不產氣,丙酸濃度達到7112.14mg/L.此時體系 pH值為5.56,因此認為發(fā)酵第10d時出現酸化失穩(wěn).將耐丙酸產甲烷菌泥加入到此失穩(wěn)體系中,投加后體系的pH值為5.68,投加馴化耐丙酸菌泥對酸化失穩(wěn)體系pH值影響較小.隨著調控反應的進行,耐丙酸菌群對于酸化失穩(wěn)體系具有良好的調控效果, 丙酸濃度在第10~15d下降明顯,發(fā)酵結束時,與空白對照組相比調控組丙酸濃度削減了6900.81mg/L.同時,日甲烷產量明顯升高,在發(fā)酵第11d,調控組日甲烷產量(17.0± 0.8mL/g VS),比空白對照組(2.8±1.1mL/g VS)高了507%,經過計算得出,在整個調控階段(第10~15日)調控組累積甲烷產量為46.0mL/g VS,比空白對照組(12.8mL/g VS)提高259%.
圖2 厭氧發(fā)酵酸化失穩(wěn)體系調控過程中酸含量及日甲烷產量的變化
如圖2(b)所示,廚余垃圾厭氧發(fā)酵第10d時酸化失穩(wěn),此時丁酸濃度為5009.07mg/L, pH值為5.48.將耐丁酸產甲烷菌泥加入到此失穩(wěn)體系中,投加后體系的pH值為5.57.隨著調控的進行,酸化失穩(wěn)發(fā)酵體系中丁酸濃度明顯下降,發(fā)酵結束時,與空白對照組相比丁酸濃度削減了5371.56mg/L.在發(fā)酵第11d,調控組日甲烷產量(17.1±2.1mL/g VS)與空白對照實驗組(2.7±2.1mL/g VS)相比提高了533%(195.76± 9.36mL/g VS),經過計算得出,在整個調控階段(第10~15d)累積甲烷產量(40.0mL/g VS)比空白對照組(12.9mL/g VS)提高了210%.
2.3.1 微生物群落多樣性和豐富度 Alpha Diversity常被用于分析微生物群落多樣性和豐富度,利用Observed_Species、Shannon、Simpson、Chao1和ACE等指數,在97%一致性閾值下對不同樣本的微生物群落豐富度進行比較分析,觀察馴化體系內的種群豐富度變化.表3中為耐丙酸菌群馴化階段(MP)、耐丙酸菌群調控階段(mP)、耐丁酸菌群馴化階段(MB)和耐丁酸菌群調控階段(mB)的Alpha Diversity指數.
Observed_Species指數數值越高,樣品內微生物種群豐富度越高.由表3可以看出,在馴化階段,隨著丙酸和丁酸濃度的升高,無論是細菌還是古菌,其Observed_Species指數都呈現出逐漸降低的趨勢,說明體系內微生物種群豐富度明顯下降,這證實了在趨于酸化的干式厭氧發(fā)酵體系中,揮發(fā)性脂肪酸累積使厭氧發(fā)酵菌群的豐富度遭到破壞.
由表3可以看出,在耐丙酸酸化失穩(wěn)調控階段,細菌種群豐富度明顯提高,體系中的Observed_ Species指數由第10d的1171(mP10)提高到第15d的1224(mP15),而在耐丁酸酸化失穩(wěn)調控階段,體系中Observed_Species指數先降低后上升,在第15d恢復到了824(mB15),說明細菌種群豐富度雖然有波動,但整體呈現為波動上升.
表3所示,在耐丙酸和耐丁酸產甲烷菌群調控階段,古菌的Observed_Species指數均呈現出先降低后上升的趨勢,說明添加調控菌泥后,系統(tǒng)中古菌的種群豐富度發(fā)生了變化,但隨著酸抑制的逐漸緩解,體系中古菌豐富度也逐漸增加,并且根據之前的分析由圖2可以看出,甲烷產率也隨之逐漸增長,間接說明古菌豐富度的高低與甲烷產量之間具有一定的相關性.
Shannon指數越高,說明微生物群落豐富度越高,多樣性越高,物種分布越均勻.由表3可以看出,在馴化階段,耐丙酸產甲烷菌在第18d時Shannon指數最高,為6.785(MP18),耐丁酸產甲烷菌在第24d時Shannon指數最高,為6.404(MB24),說明此時系統(tǒng)內細菌種群分布較均勻,根據Observed_Species指數分析,其細菌種群豐富度也較高,說明此時的兩種馴化菌泥都可分別添加到酸化失穩(wěn)體系中進行調控;在調控階段,酸化失穩(wěn)體系在第15d時Shannon指數最高,為7.815(mP15),說明經過調控后,酸化失穩(wěn)體系中細菌種群的豐富度和多樣性都得到了恢復,且細菌種群的分布較為均勻.耐丁酸產甲烷菌群調控的酸化體系在第10d時的Shannon指數最高,為6.455(mB10),說明加入調控菌泥后,瞬時提高了體系中細菌豐富度和多樣性.
由表3還可以看出,在調控階段,體系內古菌的Shannon指數在第10d最高,為3.084(mP10),說明在調控當天,添加耐丙酸產甲烷菌泥迅速提高了酸化失穩(wěn)體系中古菌種群的豐富度和多樣性.表格中各個指數的變化以及圖2中沼氣對比變化說明耐丙酸、耐丁酸產甲烷菌群調控都有助于恢復酸化條件下菌群的多樣性和豐富度,從而促進恢復厭氧干式發(fā)酵體系進而提高甲烷產量.
表3 Alpha Diversity指數
2.3.2 微生物細菌門水平分析 由圖3(a)可以看出,在耐丙酸菌和耐丁酸菌的馴化過程中,、和等水解酸化菌門占據優(yōu)勢地位.之前有研究表明[22],和菌門是厭氧系統(tǒng)中最常見的細菌.菌門包括多種梭狀芽胞桿菌,是促進復雜有機物降解的關鍵細菌,可以水解纖維素等大分子有機底物并產生VFAs,例如乙酸,是乙酸異養(yǎng)型微生物產甲烷過程中的主要前體物.菌門在生長過程中可以產生各種裂解酶,包括可以降解復雜有機物的水解酶和脂肪酶,從而降解多糖等大分子有機物[23].可以降解有機化合物,并且該菌門中有一些細菌,如和可以通過中間電子轉移促進產甲烷菌的生長[24].
在耐丙酸菌的馴化過程中,、和菌門的相對豐度逐漸增長,這些細菌通常與厭氧發(fā)酵初級階段即水解酸化階段相關.有研究表明菌門可以利用乙酸進行異養(yǎng)生長[25],可以降解各種碳水化合物和氨基酸[24].然而隨著丙酸負荷的增加,菌門的相對豐度逐漸降低由70.17% (MP18)降低至19.13%(MP30).Li0等人也研究發(fā)現經丙酸鈉馴化后的污泥比未經馴化的污泥中菌門的豐度低,說明丙酸負荷的增加擾動了系統(tǒng)的穩(wěn)定性,導致主要的水解酸化菌的相對豐度開始下降,并且從圖1(a)可以看出,在馴化第18d后相應體系內日甲烷產量也有所降低.因此,選取耐丙酸產甲烷菌群馴化體系第18d的馴化菌泥投加到廚余垃圾干式厭氧發(fā)酵酸化失穩(wěn)第10d的體系中進行調控,在調控過程中,菌門的相對豐度先上升后下降,由45.85%(mP10)上升至63.23% (mP13)隨后又降低至59.50%(mP15),菌門的相對豐度開始逐漸增加,由4.30%(mP10)增長至8.73%(mP15),同時菌門的相對豐度逐漸降低由28.86%(mP10)降低至14.22% (mP15).由圖2(a)可以看出,調控后體系內丙酸濃度得到了削減,體系的酸化失穩(wěn)狀態(tài)逐漸解除,菌群的變化同時表明,加入耐丙酸產甲烷菌泥后,緩解了體系中的酸積累,酸化失穩(wěn)體系水解酸化微生物開始逐漸恢復.
由圖3(b)可以看出,在耐丁酸產甲烷菌的馴化過程中,其中和菌門的相對豐度有所增長,隨著丁酸鈉投加量的增加,菌門的相對豐度由33.63% (MB23)增長至44.07%(MB35),菌門的相對豐度由3.95%(MB23)增長至14.75%(MB35),和菌門可以降解纖維素和半纖維素,也可以降解蛋白質[26].與耐丙酸產甲烷菌馴化過程相比,菌門的增長可能是因為其對丁酸耐受性較強[26].同時,和菌門的相對豐度逐漸降低,菌門的相對豐度由32.54%(MB23)降低至17.69% (MB35),菌門的相對豐度由14.32% (MB23)降低至5.06% (MB35).和菌門都是厭氧過程中主要的水解酸化菌,其相對豐度的降低說明由于丁酸負荷的增加,系統(tǒng)穩(wěn)定性開始降低,相應地在圖1(b)中可以看出,日甲烷產量從馴化第23d后開始下降.因此,將耐丁酸產甲烷菌群馴化體系第23d的菌泥投加到廚余垃圾干式厭氧發(fā)酵的酸化失穩(wěn)體系中進行調控.在細菌門水平分析,菌門的相對豐度在調控過程中逐漸增長由40.41% (mB10)增長至60.38%(mB15),有研究發(fā)現,菌門在丁酸的降解中起著重要的作用[27],因此,在耐丁酸產甲烷菌調控過程中逐漸成為優(yōu)勢菌門,并且由圖2(b)可以看出,調控體系中丁酸濃度有所削減,說明加入調控菌群后,失穩(wěn)體系中降解丁酸微生物逐漸增加,逐漸緩解了系統(tǒng)中丁酸積累.
圖3 細菌門水平相對豐度
2.3.3 微生物屬水平分析 由圖4(a)可以看出,在耐丙酸菌群的馴化過程中,隨著丙酸負荷的增加菌屬的相對豐度逐漸降低,由57.48% (MP18)降低至2.68%(MP30),說明菌屬對丙酸的耐受度較低,菌屬是乳酸菌的一種,通常在厭氧消化過程中與嗜氫營養(yǎng)型古菌共生,將有機酸分解為乙酸和氫氣[28],同時由圖1(a)可以看出,在馴化第18d后,體系日甲烷產量逐漸降低,與菌屬的降低趨勢相同.
酸化失穩(wěn)體系投加耐丙酸馴化菌泥調控過程中菌屬的相對豐度有所增加,由1.36%(mP10)增加至40.11%(mP15).同時,水解酸化菌屬在調控過程中得到恢復和富集,投加丙酸馴化菌泥中該菌屬的相對豐度為3.05%(MP18),發(fā)酵酸化體系中的菌群相對豐度由2.77%(mP10)提高至5.89%(mP15).有研究表明和能夠加速 VFAs 向乙酸鹽的轉化,有助于加速厭氧消化產氣進程[29].此外還觀察到,菌屬的相對豐度在調控過程中逐漸升高,由0.28%(mP10)提高至2.41% (mP15),菌屬在調控過程中得到恢復和富集,菌屬能夠降解丙酸和丁酸轉化為乙酸和氫氣[30],同時在圖2(a)中可以觀察到,添加耐丙酸產甲烷菌泥后,體系中丙酸濃度開始下降,說明通過添加耐丙酸產甲烷菌群可以增加體系內降解丙酸的微生物,逐漸緩解了酸化失穩(wěn)體系中丙酸積累的脅迫效應.
圖4 細菌屬水平相對豐度
由圖4(b)可以看出,在耐丁酸抑制產甲烷菌群馴化體系中,菌群的相對豐度先增長后下降,在馴化第30d,其相對豐度到達最高27.60% (MB30),由圖1 (b)可以看出,在馴化第30d,出現產氣小高峰,菌群的變化同產氣情況相似,和菌屬的相對豐度隨著丁酸負荷的增加而減少,菌屬的相對豐度由0.69%(MB23)降至0.12%(MB35),菌屬的相對豐度由0.45%(MB23)降至0.09%(MB35)說明丁酸脅迫會影響和菌屬的相對豐度.同時,也觀察到菌屬的相對豐度隨著丁酸負荷的增加而增加,由0.04%(MB23)增加至1.07%(MB35).菌屬是一類蛋白質水解菌,也是一類產酸菌,通常它的出現及富集表明系統(tǒng)開始出現酸積累[31].
選取第24d的耐丁酸馴化菌泥投加到酸化失穩(wěn)體系第10d中進行調控,由圖4(b)可以看出,的相對豐度逐漸增加,由16.25% (mB10)增長至36.83%(mB15),說明通過耐丁酸產甲烷菌群調控,酸化失穩(wěn)體系內得到富集和恢復.同時也觀察到在調控過程中的相對豐度維持穩(wěn)定,中存在互養(yǎng)代謝碳原子數在4~18的脂肪酸的嗜中溫菌屬,并且可以與產甲烷菌協同作用降解丁酸[32].
由圖5(a)可以看出,在耐丙酸菌群的馴化過程中,和菌屬占據優(yōu)勢地位.菌屬為氫型產甲烷古菌[28].是一種嚴格的嗜乙酸產甲烷菌[33].馴化階段日甲烷產量最大時,體系中占據著優(yōu)勢地位,達到了70.05%(MP18),說明在馴化體系內主要為氫型產甲烷菌.在酸化失穩(wěn)體系中投加耐丙酸馴化菌泥后,體系中氫型產甲烷古菌的相對豐度明顯得到提高,由15.76%(mP10)增長至76.02% (mP15),同時菌屬的相對豐度在調控過程中逐漸降低,由76.25%(mP10)降低至22.90% (mP15),說明在耐丙酸產甲烷菌群的調控過程中,氫型產甲烷菌逐漸演替為優(yōu)勢菌.
圖5 古菌屬水平相對豐度
由圖5(b)可以看出,古菌屬水平上,在耐丁酸菌群馴化過程中和仍然占據優(yōu)勢地位,其相對豐度之和占古菌總數的90%以上.在日甲烷產量最高以及產氣小高峰時,菌群的相對豐度達到75.80%(MB24)和89.03%(MB30),此時系統(tǒng)主要以乙酸型產甲烷為主,甲烷的增長可能與菌群的相對豐度相關.將耐丁酸馴化菌泥投加到酸化失穩(wěn)的體系中,菌屬的相對豐度提高到了86.95% (mB10),通過調控瞬時補充了酸化失穩(wěn)體系中的乙酸型產甲烷菌,并且根據圖2(b)可以看出系統(tǒng)內日甲烷產量也在第10d調控后迅速上升,說明菌屬可以提高體系中的產甲烷量.有研究表明菌屬在高濃度的VFAs環(huán)境成為優(yōu)勢菌屬,此時體系正處于酸積累狀態(tài),VFAs濃度較高[34].在調控結束時,菌屬相對豐度為95.71%(mB15).由圖4(b)中可以看出,在調控階段菌屬的相對豐度逐漸增加,由16.25%(mB10)增長到了36.83%(mB15),Kurade等[35]發(fā)現菌屬在產乙酸中具有重要的作用,此時體系中乙酸型產甲烷菌占據主導作用,說明此時可能存在菌屬與菌屬的協作共生關系,共同促進了甲烷生成0.
3.1 經耐丙酸產甲烷菌群調控后,廚余垃圾厭氧發(fā)酵失穩(wěn)體系得到恢復,丙酸削減濃度達到了6900.81mg/L,與空白對照組相比累積甲烷產量提高了259%;
3.2 經耐丁酸產甲烷菌群調控后,廚余垃圾厭氧發(fā)酵失穩(wěn)體系得到恢復,丁酸削減濃度達到了5371.56mg/L,與空白組相比累積甲烷產量提高了210%;
3.3 耐丙酸、耐丁酸產甲烷菌群調控可改變酸化體系微生物群落結構,從而使酸化失穩(wěn)體系得到恢復.經調控后酸化失穩(wěn)體系細菌和古菌的多樣性和豐富度明顯提高.在屬水平上耐丙酸產甲烷菌群的投加使有利于加速VFAs降解的和相對豐度增長,氫型產甲烷菌為優(yōu)勢菌群;耐丁酸產甲烷菌群的投加使有利于降解丁酸的和相對豐度增長,乙酸型產甲烷菌為優(yōu)勢菌群.
[1] 邴君妍,羅恩華,金宜英,等.中國餐廚垃圾資源化利用系統(tǒng)建設現狀研究[J]. 環(huán)境科學與管理, 2018,43(4):39-43.
Bing J Y, Luo E H, Jin Y Y, et al.Current Situation of Food Waste Recycling in China. Environmental Science and Management, 2018,43(4):39-43.
[2] Lee E, Oliveira D S B L, Oliveira L S B L, et al. Comparative environmental and economic life cycle assessment of high solids anaerobic co-digestion for biosolids and organic waste management [J]. Water Research, 2020,171:115443.
[3] 任連海,黃燕冰,王 攀,等.熱處理時間對餐廚垃圾高溫干式厭氧發(fā)酵的影響[J]. 環(huán)境工程學報, 2015,9(2):901-906.
Ren L H, Huang Y B, Wang P, et al. Effect of heating time on high-temperature dry anaerobic fermentation of restaurant garbage. Chinese Journal of Environmental Engineering, 2015,9(2):901-906.
[4] Rocamora I, Wagland ST, Villa R, et al. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance [J]. Bioresource Technology, 2020,299:122681.
[5] Sivagurunathan P, Sen B, Lin C Y. Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy [J]. International Journal of Hydrogen Energy, 2014,39(33):19232-19241.
[6] Chi X, Li J Z, Wang X, et al. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion [J]. Bioresource Technology, 2018,263:562-568.
[7] Zhang W, Zhang F, Li Y X, et al. Inhibitory effects of free propionic and butyric acids on the activities of hydrogenotrophic methanogens in mesophilic mixed culture fermentation [J]. Bioresource Technology, 2019,272:458-464.
[8] Han Y, Green H, Tao W D, et al. Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism [J]. Chemosphere, 2020,255:126840.
[9] Zhao J, Westerholm M, Qiao W, et al. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure [J]. Bioresource Technology, 2018,256:44-52.
[10] Kong X, Wei Y H, Xu S, et al. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates [J]. Bioresource Technology, 2016,211:65-71.
[11] Zhang J Y, Lv C, Tong J, et al. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pre-treatment [J]. Bioresource Technology, 2016, 200(2):253-261.
[12] Gao S M, Huang Y, Yang L L, et al. Evaluation the anaerobic digestion performance of solid residual kitchen waste by NaHCO3buffering [J]. Energy Conversion and Management, 2015,93:166-174.
[13] Tale V P, Maki J S, Zitomer D H. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community [J]. Water Research, 2015,70:138-147.
[14] Li Y, Yang G X, Li L H, et al. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment [J]. Waste Management, 2018,79:744-751.
[15] 國家環(huán)境保護總局.水和廢水監(jiān)測分析方法[M]. 北京:中國環(huán)境科學出版, 2009.
State Environmental Protection Administration.Water and waste water monitoring and analysis method [M]. Beijing: China Environmental Science Press, 2009.
[16] HJ/T 399-2007 水質化學需氧量的測定快速消解分光光度法[S].
HJ/T 399-2007 Water quality-Determination of the chemical oxygen demand-Fast digestion-Spectrophotometric method [S].
[17] HJ/T 535-2009 水質氨氮的測定納氏試劑分光光度法[S].
HJ/T 535-2009 Water quality-Determination of ammonia nitrogen-Nessler’s Reagent spectrophotometry [S].
[18] GB 5009.6-2016 食品安全國家標準食品中粗脂肪的測定[S].
GB 5009.6-2016 National food safety standard—Determination of crude fat in foods [S].
[19] GB 5009.5-2016 食品安全國家標準食品中蛋白質的測定[S].
GB 5009.5-2016 National food safety standard—Determination of protein in foods [S].
[20] GB /T 5009.10-2003 植物類食品中粗纖維的測定[S].
GB /T 5009.10-2003 Determination of crude fiber in vegetable foods [S].
[21] 喬 瑋,姜萌萌,趙 婧,等.中溫和高溫環(huán)境下乙酸和丙酸厭氧發(fā)酵產甲烷動力學特征[J]. 農業(yè)工程學報, 2018,34(21):242-246.
Qiao W, Jiang M M, Zhao J, et al. Methanogenesis kinetics of anaerobic digestion of acetate and propionate at mesophilic and thermophilic conditions [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(21): 242-246.
[22] Alalawy A, Guo Z D, Almutairi F M, et al. Explication of structural variations in the bacterial and archaeal community of anaerobic digestion sludges: An insight through metagenomics [J]. Journal of Environmental Chemical Engineering, 2021,9(5):105910.
[23] Ma G L, Chen Y T, Ndegwa P. Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta- regression [J]. Renewable and Sustainable Energy Reviews, 2021,135: 110212.
[24] Arelli V, Mamindlapelli N K, Juntupally S, et al. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: Impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity [J]. Bioresource Technology, 2021,340: 125675.
[25] Li J R, Chen T, Yin J, et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge [J]. Bioresource Technology, 2021,334:125143.
[26] Xiao H, Fang D X, Wang Y J, et al. Nymphoides peltatum as a novel feedstock for biomethane production via anaerobic co-digestion with waste sludge [J]. International Journal of Hydrogen Energy, 2021,46 (35):18401-18411.
[27] Bedoya K, Hoyos O, Zurek E, et al. Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in Colombia [J]. Science of The Total Environment, 2020,726:138479.
[28] Li L, Qin Y, Kong Z, et al. Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste [J]. Science of the Total Environment, 2019,652:709-717.
[29] Wang P, Wang H T, Qiu Y Q, et al. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review [J]. Bioresource Technology, 2018,248:29-36.
[30] Barua S, Zakaria B S, Dhar B R. Enhanced methanogenic co- degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers [J]. Bioresource Technology, 2018,266:259-266.
[31] Malinowsky C, Nadaleti W, Debiasi L R, et al. Start-up phase optimization of two-phase anaerobic digestion of food waste: Effects of organic loading rate and hydraulic retention time [J]. Journal of Environmental Management, 2021,296:113064.
[32] Narihiro T, Nobu M K, Tamaki H, et al. Draft Genome Sequence of Syntrophomonas wolfei subsp. methylbutyratica Strain 4J5T(JCM 14075), a Mesophilic Butyrate- and 2-Methylbutyrate-Degrading Syntroph [J]. Genome announcements, 2016,4(2):e00047-16.
[33] Llamas M, Greses S, Tomás-Pejó E, et al. Tuning Microbial Community in Non-Conventional Two-Stage Anaerobic Bioprocess for Microalgae Biomass Valorization into Targeted Bioproducts [J]. Bioresource Technology, 2021,(337):125387.
[34] Kurade M B, Saha S, Salama E, et al. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane [J]. Bioresource technology, 2019, 272:351-359.
[35] Ryue J, Lin L, Liu Y, et al. Comparative effects of GAC addition on methane productivity and microbial community in mesophilic and thermophilic anaerobic digestion of food waste [J]. Biochemical Engineering Journal, 2019,146:79-87.
Regulation of acidified dry anaerobic digestion of kitchen waste and microbial community analysis.
WANG Pan, YANG Xin-yu, ZHENG Yi, REN Lian-hai*
(State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing 10048, China)., 2022,42(4):1770~1779
Aiming at the problems caused by the accumulation of propionic acid and butyric acid during anaerobic digestion, the sludge with propionic acid and butyric acid tolerant microorganism were domesticated, and they were added into the acidified systems of dry anaerobic digestion of kitchen waste to explore the effects on methane production and microbial communities. After treated by the sludge with propionic acid and butyric acid tolerant bacteria, the propionic acid concentration reduced by 6900.81mg/L, and the cumulative methane production increased by 259%, while the butyric acid concentration reduced by 5371.56mg/L, and the cumulative methane production increased by 210%, respectively. The richness of bacteria in the acidified systems was significantly improved after the regulation with propionic acid and butyric acid tolerant bacteria. The analysis of microbial community structure at genus level showed that the relative abundance ofand, having the ability of degrading volatile fatty acids, began to increase in the reactors treated by the sludge with propionic acid tolerant bacteria. After adding the sludge with butyric acid tolerant bacteria, the relative abundance ofincreased.have a synergistic effect with acetic acid methanogens. According to the analysis of archaea, the relative abundance of hydro methanogens and acetic acid methanogens increased in the groups treated with propionic acid and butyric acid tolerant bacteria, respectively.
kitchen waste;dry anaerobic fermentation;regulation of acidified anaerobic fermentation system;microbial community
X705,X703.5
A
1000-6923(2022)04-1770-10
王 攀(1983-),女,河北石家莊人,教授,博士,主要從事固體廢棄物資源化方向.發(fā)表論文50余篇.
2021-09-13
國家重點研發(fā)計劃重點專項(2019YFC1906303);國家自然基金資助項目(42007350);北京市自然基金資助項目(8202010);2021年研究生科研能力提升計劃項目(202105)
*責任作者, 教授, renlh@th.btbu.edu.cn