• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      MPP+對(duì)N2a細(xì)胞中CDR1as基因表達(dá)的影響

      2022-05-30 10:48:04張小琴王友翠謝俊霞
      青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2022年3期
      關(guān)鍵詞:中腦環(huán)狀變性

      張小琴 王友翠 謝俊霞

      [摘要]目的 探討1-甲基-4-苯基吡啶離子(MPP+)對(duì)N2a細(xì)胞中環(huán)狀RNA小腦變性相關(guān)蛋白1反義轉(zhuǎn)錄物(CDR1as)基因表達(dá)的影響。方法 常規(guī)培養(yǎng)N2a神經(jīng)母細(xì)胞瘤細(xì)胞,給予100 μmol/L的MPP+分別處理3、6、9和12 h。采用實(shí)時(shí)熒光定量PCR檢測(cè) CDR1as基因的表達(dá)。結(jié)果 與用基礎(chǔ)培養(yǎng)液處理的對(duì)照組相比,經(jīng)MPP+處理3、6、9和12 h的N2a細(xì)胞CDR1as基因表達(dá)明顯降低(F=10.010,q=7.003~8.609,P<0.05)。結(jié)論 MPP+能誘導(dǎo)N2a細(xì)胞中 CDR1as基因的表達(dá)顯著降低,提示 CDR1as基因可能參與帕金森病的發(fā)病。

      [關(guān)鍵詞]RNA,環(huán)狀;CDR1as;1-甲基-4-苯基吡啶;N2a細(xì)胞;帕金森病

      [中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2022)03-0333-04

      doi:10.11712/jms.2096-5532.2022.58.121

      EFFECT OF 1-METHYL-4-PHENYLPYRIDINIUM ON EXPRESSION OF THE CEREBELLAR DEGENERATION-RELATED PROTEIN 1 ANTISENSE TRANSCRIPT GENE IN N2A CELLS

      ZHANG Xiaoqin, WANG Youcui, XIE Junxia

      (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)

      [ABSTRACT] Objective To investigate the effect of 1-methyl-4-phenylpyridinium (MPP+) on the expression of the cerebellar degeneration-related protein 1 antisense transcript (CDR1as) gene in N2a cells.Methods Neuroblastoma N2a cells were cultured with conventional methods and then treated with 100 μmol/L MPP+for 3, 6, 9, and 12 h. Quantitative real-time PCR was used to measure the mRNA expression of CDR1as.Results Compared with the control group treated with the basal medium, the N2a cells treated with MPP+for 3, 6, 9, and 12 h had a significant reduction in the mRNA expression of CDR1as (F=10.010,q=7.003-8.609,P<0.05).Conclusion MPP+induces a significant reduction in the expression of the CDR1as gene in N2a cells, suggesting that the CDR1as gene may be involved in the pathogenesis of Parkinsons disease.

      [KEY WORDS] RNA, circular; CDR1as; 1-methyl-4-phenylpyridinium; N2a cells; Parkinson disease

      帕金森病(PD)是僅次于阿爾茨海默病的第二大神經(jīng)退行性疾病[1-9]。PD主要的病理特征是中腦黑質(zhì)多巴胺(DA)能神經(jīng)元大量變性丟失,導(dǎo)致紋狀體內(nèi)DA含量減少,而變性丟失的 DA能神經(jīng)元內(nèi)均出現(xiàn)α-突觸核蛋白積聚[10-13]。環(huán)狀RNA是一類不具有5′末端帽子和3′末端 poly(A)尾巴、以共價(jià)鍵形成環(huán)形結(jié)構(gòu)的RNA分子。由于呈閉合環(huán)狀結(jié)構(gòu),對(duì)核酸外切酶不敏感,因此環(huán)狀RNA比線性RNA更為穩(wěn)定,且具有物種保守性、組織時(shí)序性及疾病表達(dá)特異性[14-20]。有文獻(xiàn)報(bào)道,環(huán)狀RNA小腦變性相關(guān)蛋白1反義轉(zhuǎn)錄物(CDR1as)可作為miR-7海綿調(diào)控miR-7靶基因的表達(dá)[21-22]。已有研究表明,α-突觸核蛋白基因的拷貝增加或點(diǎn)突變均可導(dǎo)致α-突觸核蛋白積聚,從而引發(fā)PD[23-24]。而miR-7可以與α-突觸核蛋白基因編碼 mRNA的3′UTR 區(qū)相互作用,從而抑制其翻譯[25-26]。這提示作為miR-7海綿的CDR1as基因可能參與了DA能神經(jīng)元的變性丟失。因此,闡明CDR1as基因在PD中發(fā)揮的作用至關(guān)重要。本研究旨在探討經(jīng)1-甲基-4-苯基吡啶離子(MPP+)處理的PD細(xì)胞模型中CDR1as基因的表達(dá)變化。

      1材料與方法

      1.1主要試劑及其來源

      MPP+(M0896)由美國(guó)Sigma公司提供,用雙蒸水稀釋至10 mmol/L,分裝,-20 ℃避光保存;DMEM高糖基礎(chǔ)培養(yǎng)液(01-052-1ACS)購自BI公司;TRIzol購自ambion公司;PCR逆轉(zhuǎn)錄試劑盒(AG11711)和SYBR Green(AG11702)購自艾科瑞生物公司;胎牛血清(澳洲源,F(xiàn)ND500)購自依科賽公司;青霉素和鏈霉素混合雙抗液(F1400)購自索萊寶公司。

      1.2細(xì)胞培養(yǎng)

      小鼠神經(jīng)母細(xì)胞瘤N2a細(xì)胞培養(yǎng)于含體積分?jǐn)?shù)0.05胎牛血清、100 kU/L青霉素和100 mg/L鏈霉素混合雙抗的DMEM高糖培養(yǎng)液中,在37 ℃、體積分?jǐn)?shù)0.05 CO2條件下培養(yǎng)。

      1.3四甲基偶氮唑鹽(MTT)法檢測(cè)細(xì)胞活力

      將N2a細(xì)胞接種于96孔板中,每孔細(xì)胞懸液200 μL(細(xì)胞數(shù)為8×104個(gè)),培養(yǎng)24 h后,棄上清,對(duì)照組直接加入新鮮基礎(chǔ)培養(yǎng)液,MPP+組加入終濃度為100 μmol/L的MPP+,分別處理3、6、9和12 h。細(xì)胞處理結(jié)束后,每孔加入5 g/L的MTT 20 μL,培養(yǎng)4 h后取出培養(yǎng)板,棄上清,每孔加入100 μL的二甲基亞砜(DMSO),振蕩10 min。用酶標(biāo)儀檢測(cè)波長(zhǎng)570 nm處的吸光度(A)值,計(jì)算細(xì)胞存活率。

      1.4實(shí)時(shí)熒光定量PCR(RT-PCR)檢測(cè)CDR1as基因表達(dá)

      將傳代N2a細(xì)胞接種于12孔板,分為對(duì)照組(A組)和100 μmol/L MPP+處理3、6、9、12 h組(B、C、D、E組)。采用TRIzol法冰上裂解各組細(xì)胞5 min。按照PCR逆轉(zhuǎn)錄試劑說明書操作,提取細(xì)胞總RNA。取1 μg的總RNA,加入1 μL gDNA Clean Reagent、2 μL 5×gDNA Clean Buffer,用RNA free water補(bǔ)至10 μL,42 ℃變性2 min;隨后向上述反應(yīng)體系中加入Evo M-MLV RTase Enzyme Mix 1 μL、RT Primer Mix 1 μL、5×RTase Reaction Buffer Mix Ⅰ 4 μL、RNA free water 4 μL,37 ℃作用15 min,繼以85 ℃、5 s逆轉(zhuǎn)錄合成cDNA。采用SYBR Green染料法相對(duì)定量測(cè)定CDR1as基因的表達(dá)。RT-PCR 檢測(cè)所用引物及其序列見表1。應(yīng)用2-ΔΔCt方法計(jì)算目的基因相對(duì)表達(dá)量。

      1.5統(tǒng)計(jì)學(xué)處理

      應(yīng)用Graph Pad Prism 6軟件進(jìn)行統(tǒng)計(jì)學(xué)處理。實(shí)驗(yàn)所得計(jì)量資料結(jié)果以x±s形式表示,兩組均數(shù)比較采用t檢驗(yàn);多組均數(shù)比較采用單因素方差分析(One-Way ANOVA檢驗(yàn)),繼以Tukey法進(jìn)行進(jìn)一步組間兩兩比較。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。

      2結(jié)果

      2.1MPP+作用不同時(shí)間對(duì)N2a細(xì)胞存活率影響

      與對(duì)照組相比較,經(jīng)100 μmol/L MPP+作用3、6、9和12 h的N2a細(xì)胞存活率均有明顯下降,差異具有統(tǒng)計(jì)學(xué)意義(t=2.283~11.430,P<0.05)。見表2。

      2.2MPP+作用不同時(shí)間后N2a細(xì)胞中CDR1as基因的表達(dá)變化

      RT-PCR檢測(cè)結(jié)果顯示,A、B、C、D、E組N2a細(xì)胞中CDR1as基因的表達(dá)水平分別為1.070±0.338、0.207±0.034、0.290±0.039、0.354±0.121和0.368±0.137(n=6)。與對(duì)照組比,經(jīng)100 μmol/L MPP+作用3、6、9和12 h的N2a細(xì)胞CDR1as基因表達(dá)水平明顯降低,差異均具有顯著意義(F=10.010,q=7.003~8.609,P<0.05)。

      3討論

      PD是世界上第二大常見的神經(jīng)退行性疾病,隨著人口老齡化加劇,發(fā)病人數(shù)逐年增加[1-9]。PD主要病理學(xué)特征是黑質(zhì)區(qū)DA能神經(jīng)元進(jìn)行性丟失,紋狀體DA含量降低。臨床上主要表現(xiàn)為肌僵直、靜止性震顫、姿勢(shì)不穩(wěn)、運(yùn)動(dòng)遲緩,影響了病人的生活質(zhì)量[27]。左旋多巴是治療PD的常用藥物,但大多數(shù)病人長(zhǎng)期服用左旋多巴后出現(xiàn)不自主運(yùn)動(dòng)、認(rèn)知障礙、癡呆等副作用[28]。因此,尋找新的治療靶點(diǎn)具有重要的意義。近期研究發(fā)現(xiàn),CDR1as參與PD的發(fā)病進(jìn)程,但其確切的機(jī)制尚未闡明。

      研究表明,CDR1as基因在人和小鼠腦組織中可有效地環(huán)化,而檢測(cè)不到線性CDR1as[29]。人源CDR1as基因序列含有74個(gè)miR-7結(jié)合位點(diǎn),小鼠CDR1as基因序列含有130個(gè)miR-7結(jié)合位點(diǎn),且在不同物種間高度保守[21-22,29]。CDR1as與miR-7共同高表達(dá)于腦組織神經(jīng)元的胞體和突起,在小腦、中腦、海馬、嗅球神經(jīng)元中均能檢測(cè)到CDR1as基因的表達(dá)[29-30]。研究發(fā)現(xiàn),CDR1as基因在興奮性

      神經(jīng)元中表達(dá)水平較高,CDR1as基因敲除小鼠表現(xiàn)出興奮性突觸誘發(fā)電位功能障礙[29]。在斑馬魚胚胎中過表達(dá)人源CDR1as會(huì)導(dǎo)致中腦體積縮小,其表型與miR-7缺失相似,且通過補(bǔ)充miR-7前體可部分恢復(fù)中腦體積,提示CDR1as可能是通過與miR-7相互作用,即作為miR-7海綿吸附miR-7而發(fā)揮作用[19]。有文獻(xiàn)報(bào)道,在PD病人和1-甲基-4-苯基-1,2,3,6-四氫吡啶誘導(dǎo)的PD小鼠的中腦黑質(zhì)區(qū),miR-7的表達(dá)均顯著降低,在小鼠中腦黑質(zhì)區(qū)敲低miR-7,則會(huì)導(dǎo)致α-突觸核蛋白積聚并伴有DA能神經(jīng)元的變性丟失,同時(shí)紋狀體內(nèi)DA含量顯著下降,提示miR-7可能在α-突觸核蛋白的轉(zhuǎn)錄后調(diào)節(jié)中發(fā)揮重要作用[31-32]。此外,miR-7在調(diào)節(jié)PD發(fā)病進(jìn)程中的神經(jīng)炎癥和DA能神經(jīng)元死亡中具有重要作用[33-36]。因此,CDR1as可能通過調(diào)節(jié)miR-7-α-突觸核蛋白軸調(diào)控PD的發(fā)展。本研究應(yīng)用濃度為100 μmol/L的MPP+處理N2a細(xì)胞構(gòu)建PD細(xì)胞模型,并檢測(cè)了CDR1as在不同時(shí)間點(diǎn)的變化,結(jié)果顯示,N2a細(xì)胞經(jīng)過MPP+處理3、6、9和12 h后CDR1as表達(dá)顯著降低,提示CDR1as基因可能間接參與了PD的發(fā)病。

      有研究顯示,在CDR1as基因敲除小鼠大腦中,miR-7的表達(dá)減少而不是增加,這表明還有其他機(jī)制參與了miR-7表達(dá)的調(diào)節(jié)[29]。采用CLIP-Seq技術(shù)對(duì)miR-7-target RNA-Ago2嵌合體中的靶序列進(jìn)行分析和排序發(fā)現(xiàn),無論是在人類還是小鼠大腦中,排在第1位的都是CDR1as基因,排在第2位的是長(zhǎng)鏈非編碼RNA Cyrano,提示Cyrano在中樞神經(jīng)系統(tǒng)中對(duì)miR-7具有重要的調(diào)控作用[29]。Cyrano高表達(dá)于腦神經(jīng)元的胞體和突起,含有1個(gè)與miR-7幾乎完全配對(duì)(除第9/10位外)的結(jié)合位點(diǎn),且該位點(diǎn)高度保守[37]。然而,Cyrano是否通過miR-7在PD發(fā)病中發(fā)揮作用還需進(jìn)一步探究。

      研究表明,在人類和小鼠腦中,CDR1as基因也存在miR-671的結(jié)合位點(diǎn),miR-671可以近乎完全與CDR1as基因互補(bǔ)配對(duì),隨后與Ago2蛋白結(jié)合,最終實(shí)現(xiàn)對(duì)CDR1as基因的有效降解,且此相互作用在物種間高度保守,提示這種特異性的相互作用可能具有重要生物學(xué)功能[29,38]。本研究中,N2a細(xì)胞經(jīng)過MPP+處理3、6、9和12 h后CDR1as基因表達(dá)顯著降低,這一現(xiàn)象是否與miR-671有關(guān)還需進(jìn)一步研究。

      綜上所述,N2a細(xì)胞經(jīng)過MPP+處理3、6、9和12 h后CDR1as基因表達(dá)水平顯著降低,本文結(jié)果為研究CDR1as基因在PD發(fā)病中的作用提供了實(shí)驗(yàn)依據(jù)。

      [參考文獻(xiàn)]

      [1]PRINGSHEIM T, JETTE N, FROLKIS A, et al. The prevalence of Parkinsons disease: a systematic review and meta-analysis[J].? Movement Disorders, 2014,29(13):1583-1590.

      [2]QI S G, YIN P, WANG L H, et al. Prevalence of Parkin-sons disease: a community-based study in China[J].? Movement Disorders: Official Journal of the Movement Disorder Society, 2021,36(12):2940-2944.

      [3]YUAN X, TIAN Y, LIU C Y, et al. Environmental factors in Parkinsons disease: new insights into the molecular mechanisms[J].? Toxicology Letters, 2022,356:1-10.

      [4]ROCCA W A. The burden of Parkinsons disease: a worldwide perspective[J].? The Lancet Neurology, 2018,17(11):928-929.

      [5]MARRAS C, BECK J C, BOWER J H, et al. Prevalence of Parkin-sons disease across North America[J].? Npj Parkinsons Disease, 2018,4:21.

      [6]JANKOVIC J, TAN E K. Parkinsons disease: etiopathoge-nesis and treatment[J].? Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(8):795-808.

      [7]VEYS L, VANDENABEELE M, ORTUO-LIZARN I, et al. Retinal α-synuclein deposits in Parkinsons disease patients and animal models[J].? Acta Neuropathologica, 2019,137(3):379-395.

      [8]SUNG V W, NICHOLAS A P. Nonmotor symptoms in Parkinsons disease: expanding the view of Parkinsons disease beyond a pure motor, pure dopaminergic problem[J].? Neurologic Clinics, 2013,31(3 Suppl):S1-S16.

      [9]DICKSON D W. Neuropathology of parkinson disease[J].? Parkinsonism & Related Disorders, 2018,46:S30-S33.

      [10]DEL TREDICI K, BRAAK H. Review: sporadic Parkinsons disease: development and distribution of α-synuclein pathology[J].? Neuropathology and Applied Neurobiology, 2016,42(1):33-50.

      [11]DECRESSAC M, MATTSSON B, LUNDBLAD M, et al. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons[J].? Neurobiology of Disease, 2012,45(3):939-953.

      [12]JUNN E, MOURADIAN M M. Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine[J].? Neuroscience Letters, 2002,320(3):146-150.

      [13]MASLIAH E, ROCKENSTEIN E, VEINBERGS I, et al. Dopaminergic loss and inclusion body formation in alpha-synu-

      clein mice: implications for neurodegenerative disorders[J].? Science (New York, N Y), 2000,287(5456):1265-1269.

      [14]VO J N, CIESLIK M, ZHANG Y J, et al. The landscape ofcircular RNA in cancer[J].? Cell, 2019,176(4):869-881.e13.

      [15]LI J W, SHI Q Q, WANG Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction[J].? Neuroscience Letters, 2019,701:146-153.

      [16]CHEN S J, HUANG V, XU X, et al. Widespread and functional RNA circularization in localized prostate cancer[J].? Cell, 2019,176(4):831-843.e22.

      [17]VEN? M T, HANSEN T B, VEN? S T, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development[J].? Genome Biology, 2015,16:245.

      [18]RYBAK-WOLF A, STOTTMEISTER C, GLAZAR P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J].? Molecular Cell, 2015,58(5):870-885.

      [19]SALZMAN J, CHEN R E, OLSEN M N, et al. Cell-type specific features of circular RNA expression[J].? PLoS Genetics, 2013,9(9):e1003777.

      [20]JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J].? RNA (New York, N Y), 2013,19(2):141-157.

      [21]MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J].? Nature, 2013,495(7441):333-338.

      [22]HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J].? Nature, 2013,495(7441):384-388.

      [23]ROCHA E M, DE MIRANDA B, SANDERS L H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuro-inflammation in Parkinsons disease[J].? Neurobiology ofDisease, 2018,109:249-257.

      [24]SINGLETON A B, FARRER M, JOHNSON J, et al. Alpha-Synuclein locus triplication causes Parkinsons disease[J].? Science (New York, N Y), 2003,302(5646):841.

      [25]DOXAKIS E. Post-transcriptional regulation of alpha-synu-clein expression by mir-7 and mir-153[J].? The Journal of Biological Chemistry, 2010,285(17):12726-12734.

      [26]JUNN E, LEE K W, JEONG B S, et al. Repression of alpha-synuclein expression and toxicity by microRNA-7[J].? Procee-dings of the National Academy of Sciences of the United States of America, 2009,106(31):13052-13057.

      [27]OKEEFFE G W, SULLIVAN A M. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinsons disease[J].? Parkinsonism & Related Disorders, 2018,56:9-15.

      [28]NUTT J G. Motor fluctuations and dyskinesia in Parkinsons disease[J].? Parkinsonism & Related Disorders, 2001,8(2):101-108.

      [29]PIWECKA M, GLAZAR P, HERNANDEZ-MIRANDA L R, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J].? Science (New York, N Y), 2017,357(6357):eaam8526.

      [30]BAK M, SILAHTAROGLU A, M?LLER M, et al. micro-RNA expression in the adult mouse central nervous system[J].? RNA (New York, N Y), 2008,14(3):432-444.

      [31]MCMILLAN K J, MURRAY T K, BENGOA-VERGNIORY N, et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo[J].? Molecular Therapy: the Journal of the American Society of Gene Therapy, 2017,25(10):2404-2414.

      [32]ZHAO J J, ZHOU Y, GUO M M, et al. microRNA-7: expression and function in brain physiological and pathological processes[J].? Cell & Bioscience, 2020,10:77.

      [33]ZHOU Y, LU M, DU R H, et al. microRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinsons disease[J].? Molecular Neurodegeneration, 2016,11:28.

      [34]CHOI D C, CHAE Y J, KABARIA S, et al. microRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2014,34(38):12725-12737.

      [35]KONG B, WU P C, CHEN L, et al. microRNA-7 protects against 1-methyl-4-phenylpyridinium iodide-induced cell apoptosis in SH-SY5Y cells by directly targeting Krüpple-like factor 4[J].? DNA and Cell Biology, 2016,35(5):217-225.

      [36]LI S Z, LV X C, ZHAI K H, et al. microRNA-7 inhibits neuronal apoptosis in a cellular Parkinsons disease model by targeting Bax and Sirt2[J].? American Journal of Translational Research, 2016,8(2):993-1004.

      [37]ULITSKY I, SHKUMATAVA A, JAN C H, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution[J].? Cell, 2011,147(7):1537-1550.

      [38]HANSEN T B, WIKLUND E D, BRAMSEN J B, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J].? The EMBO Journal, 2011,30(21):4414-4422.

      (本文編輯馬偉平)

      猜你喜歡
      中腦環(huán)狀變性
      環(huán)狀RNA在腎細(xì)胞癌中的研究進(jìn)展
      晉州市大成變性淀粉有限公司
      結(jié)直腸癌與環(huán)狀RNA相關(guān)性研究進(jìn)展
      征兵“驚艷”
      當(dāng)變性女遇見變性男 一種奇妙的感覺產(chǎn)生了
      麻醉過程中腦電信號(hào)處理方法研究
      變性淀粉在酸奶中的應(yīng)用
      西藏科技(2015年10期)2015-09-26 12:10:16
      胸科手術(shù)中腦血氧含量下降與術(shù)后認(rèn)知功能障礙的相關(guān)性分析
      青年缺血性卒中腦動(dòng)脈狹窄研究進(jìn)展
      三角網(wǎng)格曲面等殘留環(huán)狀刀軌生成算法
      安徽省| 剑河县| 沙坪坝区| 靖州| 宜兰市| 金寨县| 施甸县| 黔东| 临沂市| 台中市| 桃江县| 喀什市| 桦甸市| 大连市| 湘潭市| 德令哈市| 房山区| 若羌县| 昌黎县| 普陀区| 长岛县| 田林县| 康定县| 陇西县| 同仁县| 高雄县| 葵青区| 紫云| 武陟县| 新郑市| 临夏县| 顺平县| 阿克陶县| 凌源市| 玉田县| 禹州市| 井研县| 万年县| 新巴尔虎右旗| 齐齐哈尔市| 肇源县|