林飛,孫士通
(杭州市勘測(cè)設(shè)計(jì)研究院有限公司,浙江 杭州 310012)
“類矩形隧道”在軌道交通隧道領(lǐng)域是一個(gè)嶄新術(shù)語(yǔ),其隧道橫截面是由數(shù)條光滑可導(dǎo)的曲線組成,構(gòu)成一個(gè)類似于矩形的封閉輪廓[1]。類矩形盾構(gòu)機(jī)能夠在寬度11米多的情況下,實(shí)現(xiàn)雙線合一,相比于傳統(tǒng)的圓形盾構(gòu)隧道,其可節(jié)約35%的地下空間,在城市核心區(qū)與老舊城區(qū)的地下工程施工時(shí),可大大減少對(duì)地上和地下構(gòu)筑物的影響,經(jīng)濟(jì)效益高。之前國(guó)內(nèi)只有寧波在地鐵隧道施工中采用過(guò)類矩形盾構(gòu),該項(xiàng)盾構(gòu)技術(shù)由寧波地鐵組織自主研發(fā)。目前杭州地鐵4號(hào)線二期的類矩形盾構(gòu)橫截面尺寸與寧波地鐵的完全一致,具體如圖1所示:
圖1 類矩形盾構(gòu)斷面示意圖
隧道斷面測(cè)量是地鐵鋪軌前需要經(jīng)過(guò)的一道重要工序,其測(cè)量結(jié)果是線路專業(yè)對(duì)線路設(shè)計(jì)參數(shù)進(jìn)行調(diào)整的依據(jù)[2],同時(shí)也是掌握隧道結(jié)構(gòu)安全狀況的主要監(jiān)測(cè)手段[3],十分重要。
按照設(shè)計(jì)要求,直線段每6 m(小盾構(gòu)5環(huán))、曲線段每 3.6 m(小盾構(gòu)3環(huán)),測(cè)量一個(gè)橫斷面。曲線段各線路要素點(diǎn)如:直緩點(diǎn)ZH(或緩直點(diǎn)HZ、直圓點(diǎn)ZY、圓直點(diǎn)YZ)、圓緩點(diǎn)YH(或緩圓點(diǎn)HY),豎曲線起點(diǎn)、終點(diǎn)、曲中點(diǎn)應(yīng)進(jìn)行橫斷面測(cè)量。每個(gè)橫斷面的測(cè)點(diǎn)分布如圖2所示:
圖2 類矩形盾構(gòu)斷面測(cè)點(diǎn)分布圖
根據(jù)測(cè)點(diǎn)相對(duì)于設(shè)計(jì)軌面的高度要求進(jìn)行測(cè)量,計(jì)算測(cè)點(diǎn)到設(shè)計(jì)線路中心線的橫距值A(chǔ)1、A2、A3和B1、B2、B3。
斷面測(cè)量精度按照規(guī)范[4]要求進(jìn)行,平面測(cè)量基準(zhǔn)線為設(shè)計(jì)的線路中心線,高程基準(zhǔn)線為設(shè)計(jì)的軌頂面高程。
根據(jù)類矩形盾構(gòu)的隧道橫斷面設(shè)計(jì)圖分析,其由上、下、左、右四段圓弧組合而成,其中上、下圓弧為半徑 15 m的大圓,左、右圓弧為半徑 2.75 m的小圓,如圖3所示:
圖3 類矩形盾構(gòu)橫斷面幾何形狀圖
由上圖可以看出,斷面測(cè)量要求的線路右側(cè)B1、B2、B3的測(cè)點(diǎn)均分布在小圓的圓弧上。
(1)斷面測(cè)量方法
斷面外業(yè)測(cè)量主要采用全站儀來(lái)采集各個(gè)斷面的測(cè)點(diǎn),其中,線路左右測(cè)的斷面測(cè)點(diǎn)采用免棱鏡模式采集,隧道中線位置的底部高采用立棱鏡桿測(cè)圓棱鏡的模式進(jìn)行。根據(jù)類矩形斷面測(cè)量要求,線路左側(cè)A1、A2、A3的測(cè)點(diǎn)均分布在中隔墻上,由于中隔墻結(jié)構(gòu)簡(jiǎn)單且近乎垂直,在實(shí)際測(cè)量中,A1、A2、A3測(cè)點(diǎn)的采集位置上下偏差少許對(duì)其到設(shè)計(jì)中線的橫距值影響甚微。關(guān)鍵在于線路右側(cè)B1、B2、B3的測(cè)點(diǎn),其分布于小圓圓弧上,在實(shí)際測(cè)量中測(cè)點(diǎn)位置的上下偏差均會(huì)影響測(cè)點(diǎn)到設(shè)計(jì)中線的橫距值。目前的常用方法是現(xiàn)場(chǎng)先把測(cè)點(diǎn)放樣出來(lái)并用油漆標(biāo)注到隧道壁上,然后測(cè)量油漆標(biāo)志點(diǎn)。然而這種方法一方面新增了放樣的工作量,另一方面實(shí)施過(guò)程中也存在放樣誤差。
本文的方法是全站儀無(wú)棱鏡模式在小圓圓弧上任意采集4個(gè)點(diǎn)(點(diǎn)位盡量均勻分布)來(lái)擬合出小圓,根據(jù)圓上3點(diǎn)確定圓心的理論,可以得到4組圓心值再求取平均,求出實(shí)際的小圓圓心以及半徑。然后根據(jù)實(shí)測(cè)的圓心三維坐標(biāo),利用相關(guān)幾何關(guān)系推導(dǎo)出最難求取的B1、B2、B3橫距值,具體在下一小節(jié)展開(kāi)。
(2)斷面數(shù)據(jù)處理
具體到某一個(gè)橫斷面處,實(shí)測(cè)的小圓位置相對(duì)于設(shè)計(jì)的小圓位置主要是存在是橫向和豎向兩個(gè)方向的偏差,示意圖如圖4所示,灰色圈為小圓理論位置,紅色圈為小圓實(shí)際位置。
圖4 類矩形盾構(gòu)解算橫斷面兩側(cè)實(shí)測(cè)偏距值示意圖
線路左側(cè)A1、A2、A3橫距值直接為外業(yè)打點(diǎn)坐標(biāo)與設(shè)計(jì)線路求垂距得出,線路右側(cè)B1、B2、B3橫距值的求取方法如下:
以求取B3橫距實(shí)測(cè)值LS為例,B3高度位置為設(shè)計(jì)軌面高程H軌面以上 550 mm處,實(shí)測(cè)小圓圓心高程為H小圓,距B3位置的高差為h,則:
h=H小圓-H軌面-0.55
(1)
實(shí)測(cè)小圓圓心與管壁的橫向距離為L(zhǎng)1,與線路中心線的橫向距離為L(zhǎng)2,實(shí)測(cè)小圓半徑為RS,則:
(2)
LS=L1+L2
(3)
將式(1)、式(2)代入(3),可知B3橫距實(shí)測(cè)值LB3為:
(4)
同理B1、B2橫距實(shí)測(cè)值LB1和LB2分別為:
(5)
(6)
其中,L2可由實(shí)測(cè)小圓圓心坐標(biāo)與設(shè)計(jì)線路算偏距求得,而實(shí)測(cè)小圓圓心三維坐標(biāo)和實(shí)測(cè)半徑通過(guò)編寫軟件來(lái)計(jì)算獲得。軟件采用VB6.0編寫,主要利用圓上3點(diǎn)確定圓心的理論[5,6],可批量計(jì)算任意組斷面的圓上打點(diǎn)數(shù)據(jù),并輸出實(shí)際小圓的圓心三維坐標(biāo)以及半徑。本文采用外業(yè)測(cè)小圓圓弧上4點(diǎn)來(lái)擬合圓心三維坐標(biāo),這樣可以得到4組圓心值再求取平均,使結(jié)果更加可靠,也不會(huì)增加太多工作量。
軟件界面如圖5所示:
圖5 編寫的可批量擬合圓心軟件
杭州地鐵4號(hào)線二期彭埠站~明挖轉(zhuǎn)換井類矩形盾構(gòu)隧道全長(zhǎng) 442.46 m,在完成隧道貫通測(cè)量之后,采用0.5秒全站儀對(duì)隧道斷面按 6 m一個(gè)斷面進(jìn)行了測(cè)量。
小圓圓弧上的打點(diǎn)數(shù)據(jù)經(jīng)軟件計(jì)算處理之后的結(jié)果如圖6所示:
圖6 擬合圓心軟件計(jì)算成果
然后將所得數(shù)據(jù)及相關(guān)測(cè)量數(shù)據(jù)與設(shè)計(jì)中線數(shù)據(jù)進(jìn)行橫向偏距計(jì)算及豎向高差計(jì)算[6],得出最終的斷面成果,如圖7所示:
圖7 斷面測(cè)量計(jì)算成果表(篇幅有限,僅示意部分?jǐn)?shù)據(jù))
為做對(duì)比,采用常規(guī)方法(即先放樣出B1、B2、B3的測(cè)點(diǎn),再進(jìn)行測(cè)量)對(duì)該隧道23+018.512至23+085.589范圍相同里程的12個(gè)斷面也測(cè)了一遍。
用本文的類矩形盾構(gòu)隧道斷面測(cè)量及數(shù)據(jù)處理方法所得B1、B2、B3的橫距值與常規(guī)方法所測(cè)值對(duì)比如表1所示:
本文方法與常規(guī)方法所得成果對(duì)比 表1
續(xù)表1
由表1可以看出,本文方法與常規(guī)方法所得成果的互差均未超過(guò) ±20 mm,偏差最大的為里程 23 060.669處斷面的B3橫距值,差值為 -19 mm。
通過(guò)在杭州地鐵4號(hào)線二期彭埠站~明挖轉(zhuǎn)換井區(qū)間隧道斷面的實(shí)際測(cè)量結(jié)果可得出如下結(jié)論:
(1)本文的類矩形盾構(gòu)隧道斷面測(cè)量及數(shù)據(jù)處理方法與常規(guī)方法的測(cè)量結(jié)果接近,互差符合規(guī)范[4,7]中的限差(2倍中誤差) ±20 mm的規(guī)定,可以滿足類矩形盾構(gòu)隧道斷面的測(cè)量要求。
(2)考慮到常規(guī)方法的前期放樣工作量巨大,且存在放樣誤差,本文的方法無(wú)須進(jìn)行測(cè)點(diǎn)放樣,在外業(yè)測(cè)量中更具實(shí)用性。