• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      纖維素基輕質多孔材料的研究進展

      2022-07-27 03:18:26宗益峰王如意楊毓?jié)?/span>劉楊趙輝
      包裝工程 2022年13期
      關鍵詞:輕質屏蔽纖維素

      宗益峰,王如意,楊毓?jié)?,劉?b,趙輝,b

      纖維素基輕質多孔材料的研究進展

      宗益峰a,王如意a,楊毓?jié)峚,劉楊a,b,趙輝a,b

      (廣西大學 a.輕工與食品工程學院 b.廣西清潔化制漿造紙與污染控制重點實驗室,南寧 530004)

      纖維素基輕質多孔材料具有質輕、孔隙率高、成本低等優(yōu)點,被廣泛應用于吸附、催化、隔熱等領域,但易燃、耐水性差等缺點限制了它的應用范圍。通過復合改性可以改善上述缺點,并賦予其新的特性,因此需要充分了解功能化改性方法和復合輕質多孔材料的廣泛應用。通過追蹤國內外纖維素基輕質多孔材料的功能化改性研究和應用進展,概述纖維素基輕質多孔材料的基本性質和性能,重點分析纖維素基復合輕質多孔材料的功能化改性方法和應用,詳細介紹纖維素基復合輕質多孔材料在眾多領域的應用。將有機或無機材料與纖維素進行復合制成輕質多孔材料,可以實現(xiàn)阻燃、吸附、電磁屏蔽、導電、疏水、抗菌等功能,拓寬了纖維素基輕質多孔材料在包裝、醫(yī)用、電池等領域的應用范圍。

      纖維素;復合材料;功能化

      纖維素基輕質多孔材料于1971年由Weatherwax等[1]首次制備完成,此后便很少有人關注。直到30年后的2001年,Tan等[2]以醋酸纖維素和乙酸丁酸纖維素為原料,以二異氰酸酯為交聯(lián)劑,得到了具有高沖擊強度的纖維素基輕質多孔材料。2004年,Jin等[3]首次使用非衍生性溶劑,將纖維素在硫氰酸鈣水溶液中溶解和再生來制備纖維素多孔材料,隨后,各種非衍生性溶劑體系被開發(fā)出來,包括NaOH水溶液體系[4]、N,N?二甲基乙酰胺/氯化鋰(DMAc/LICI)體系[5]、堿/尿素或硫脲/水體系[6]、胺氧化物體系[7]、離子液體體系[8]等。2006年,從植物源或細菌纖維素(BC)中分離的納米纖維素也被用來制備纖維素多孔材料[9]。纖維素基輕質多孔材料是一類密度低(<100 mg/cm3)、孔隙率高(>50%)、比表面積大、孔結構從納米到微米的固體材料[10],在傳統(tǒng)的多孔材料特性[11](低密度、高比表面積、高孔隙率及孔徑分布小等)基礎上增加了纖維素的生物性優(yōu)勢[12](可生物降解性和生物相容性),以及高的力學強度等優(yōu)異性能,并帶有豐富的羥基基團。

      纖維素基輕質多孔材料的制備主要分為2步,首先將纖維素通過溶劑分散并凝膠化得到水凝膠,然后通過干燥去除溶劑成型。在凝膠過程中,纖維素的溶膠?凝膠轉變通過物理或化學交聯(lián)形成三維纖維網(wǎng)絡[13]。這里最主要的問題是如何保持制備過程中形成的微觀結構[14],可通過添加表面活性劑、穩(wěn)泡劑等來解決[15]。纖維素基輕質多孔材料的孔結構還取決于干燥工藝的選擇。超臨界干燥可有效避免3D多孔結構的坍塌[16],但存在干燥周期長、產量低、成本高等缺點。相對而言,冷凍干燥使冰晶直接升華,更加安全且相對經濟。目前也有研究采用冰模板定向冷凍干燥的方法來制備具有各向異性多孔結構和力學性能的纖維素泡沫/氣凝膠[17]。在冷凍干燥過程的冷凍和升華階段,大冰晶會導致納米纖維的聚集,使纖維素多孔材料的比表面積顯著降低,可以通過將溶劑改為叔丁醇來改善[18]。除了上述2種主要的干燥方法外,烘箱干燥方法因其成本低、工藝簡單而被認為是最有前景的方法。在干燥過程中存在溶劑表面張力引起的黏附性,固體基質的毛細作用會導致內部網(wǎng)絡結構崩塌[19]等問題的出現(xiàn)。目前也有研究致力于改善這些問題,從而降低制備材料的成本[20]。

      纖維素基輕質多孔材料在應用過程中存在易燃、耐水性差、不易回收、可重復使用性能差等問題,可以通過化學或物理改性等方法來改善這些問題,并賦予其新的功能,從而應用于吸附[21]、抗菌[22]、疏水[23]、電磁屏蔽[24]、阻燃[25]等領域,這也是目前的研究熱點。開發(fā)環(huán)境友好、成本低、可回收,以及具有特殊性能的纖維素基復合多孔材料將成為未來的主流研究方向。文中將圍繞纖維素基輕質多孔材料的改性方法、結構特點、性能及應用等方面,著重闡述纖維素基復合輕質多孔材料在吸附、醫(yī)用、電磁屏蔽、阻燃等領域的研究現(xiàn)狀,為纖維素基復合輕質多孔材料研究提供一定的理論參考。

      1 纖維素基輕質多孔材料的復合改性

      纖維素基復合輕質多孔材料是以纖維素為基體,以有機或無機材料為功能體或增強體,通過復合制成的性能優(yōu)良的新型功能材料[26]。功能體或增強體與纖維素的復合改性方法有很多,按與纖維素復合的材料種類分類,可分為有機材料復合、納米碳材料復合、金屬納米粒子復合、氧化物復合、礦物復合等。

      1.1 有機材料復合

      與纖維素基輕質多孔材料復合的有機材料大多為高分子聚合物,如殼聚糖[27]、甲殼素[28]、共價有機骨架COF(Covalent Organic Framework)粉末材料[29]、單寧、海藻酸鈉等。也有如甲醇[30]等非高分子聚合物的有機材料,用甲醇將纖維素進行再生,制成纖維素?甲醇凝膠,通過超臨界干燥方法,可以制備出比表面積大、密度低(0.058 g/cm3)和孔隙率高(96%)的納米孔徑(<2 nm)氣凝膠。

      殼聚糖的化學結構與纖維素十分相似,其分子鏈上存在大量氨基和羥基,能與纖維素上豐富的羥基形成氫鍵[31]。Zhang等[32]制備了一種殼聚糖?纖維素包裹磁性碳泡沫吸附劑,將纖維素與殼聚糖混合后,殼聚糖水凝膠球的表面孔隙率增加,材料的微觀結構得到改善。這些變化將促進重金屬溶液滲透到聚合物網(wǎng)絡結構中,從而提高金屬離子的吸附性能和吸附速率。這里總結了部分有機材料與纖維素的復合原理,復合后的結構特點、性能和應用見表1。

      表1 幾種有機材料與纖維素的復合原理及應用

      Tab.1 Principle and application of the compounding of several organic materials and cellulose

      MOF/纖維素復合光催化材料在酸性環(huán)境中還原六價鉻通過式(1)—(2)實現(xiàn),其中過量的H+有利于將Cr(Ⅵ)還原為Cr(Ⅲ)[37]。在堿性環(huán)境中,Cr(Ⅵ)的存在形式是CrO42–,相應的Cr(Ⅵ)還原通過式(3)完成。

      NH2-MIL-101(Fe)+→(h++e?) (1)

      Cr2O72?+14H++6e?→(2Cr3++7H2O) (2)

      CrO42?+4H2O+3e?→(Cr(OH)3+5OH?) (3)

      共價有機骨架(COF)材料是一種結晶的、高度多孔的二維或三維聚合物,具有可調的拓撲結構和功能[38]。已經開發(fā)了COF材料的許多用途,包括催化劑載體[39]、超靈敏傳感器[40]等。COF材料通常以粉末狀存在,很難直接形成結晶多孔材料[41]。粉末本身不易均勻摻雜和進一步加工,且難以回收,所以將COF與纖維素復合,以對COF材料賦形,拓寬其應用領域。郭從寶[41]將NFC(Nano Fibrillated Cellulose)、CNC(Cellulose Nanocrystals)和COF材料相結合,制備了COF?CMC(Carboxymethyl Cellulose)/CNC復合氣凝膠。將CNC和CMC進行功能化改性和化學交聯(lián),制備的氣凝膠具有分層結構,并顯示出良好的力學性能、熱穩(wěn)定性、機械穩(wěn)定性和柔韌性。

      1.2 納米碳材料復合

      納米碳具有優(yōu)異的導電性和導熱性[42],由于聚集性的問題[43],它們很難單獨應用。纖維素可以對各種納米碳材料起到穩(wěn)定的作用,還可以作為納米碳材料優(yōu)異的載體。碳納米管與納米纖維素之間具有良好的親和力,可以制成性能優(yōu)異的復合材料[44]。目前研究較多的就是碳納米管和氧化石墨烯。

      碳納米管(CNT)的質量較輕,具有良好的導電性、導熱性,出色的力學性能和高柔韌性,但CNT在水中不能均勻分散,這是急需解決的問題。Mougel等[45]將纖維素納米晶體(CNCs)和碳納米管(CNT)分散在水中制成三維大孔導電泡沫。由于CNCs的化學結構和其表面帶有負電荷的影響,CNCs在水性介質中具有出色的膠體穩(wěn)定性,從而具有靜電穩(wěn)定性,可以起到穩(wěn)定CNT的作用。氧化石墨烯(GO)是一種單層石墨氧化物,力學性能較好,剛度強,比表面積大,具有優(yōu)異的導電性和較高的電催化活性。由于纖維素基多孔材料具有較高的比表面積和孔隙率,所以具備一定的吸附能力。如果將纖維素基多孔材料與氧化石墨烯復合,就可以制備出吸附能力更強且具有導電性能的纖維素基復合材料[46]。

      1.3 金屬納米粒子復合

      金屬納米粒子具有獨特的光學性質[47]、電學性質和良好的催化效果,在許多領域引起了人們的廣泛關注。纖維素?納米粒子復合多孔材料主要由Au、Ag、Cu[48]、Pb[49]等與纖維素復合而成,其中研究得最多的是金納米離子和銀納米粒子。

      最簡單的金屬納米粒子與纖維素復合的方法就是物理沉積,一般通過靜電作用來實現(xiàn)[50]。Zhou等[51]以MFC氣凝膠為模板,通過簡單的浸涂方法合成了MFC/PPy/Ag混合氣凝膠。作為一種成本低、高效且環(huán)保的工藝,可實現(xiàn)納米顆粒在纖維素氣凝膠中的精細分散。所制備的混合氣凝膠表現(xiàn)出增強的抗菌、導電和壓力響應特性。

      與物理負載相比,原位化學沉積更有利于實現(xiàn)納米粒子在納米纖維素上的均勻分布。納米纖維素的表面電荷密度是影響貴金屬離子靜電吸附的一個關鍵因素,對納米纖維素的形狀、形貌和懸浮穩(wěn)定性有著重要影響[52-53]。例如,部分脫硫處理的NCC比未脫硫的NCC能更好地穩(wěn)定AgNPs(Ag Nanoparticles)。AgNPs的尺寸分布隨著脫硫程度的增加而顯著改善[54]。此外,通常需要還原劑來誘導納米纖維素上金屬前體的成核和控制納米纖維素上金屬納米顆粒的形態(tài),如硼氫化物[55]、抗壞血酸[56]、多巴胺(PDA)[57]等。

      1.4 氧化物復合

      與纖維素基復合的氧化物一般為ZnO、TiO2、SiO2、Fe3O4等。氧化物和納米纖維素的復合材料通常通過溶膠?凝膠[58]、自組裝[59]、原子層沉積[60]和原位合成[61]制備。氧化物的晶體結構、大小、形狀和分布在很大程度上取決于納米纖維素的形貌和表面官能團[62]。這里總結了部分氧化物與纖維素復合的制備方法,以及制備后的結構特點、性能及應用,見表2。

      表2 幾種氧化物與纖維素的復合方法及應用

      Tab.2 Several composite methods and applications of oxides and cellulose

      Fe3O4納米粒子是傳統(tǒng)的磁性材料,是一種雙復介質,存在密度大、頻帶窄等缺點[67]。纖維素具有質輕、強度高、比面積大等優(yōu)點,因此將這2種材料結合起來能夠取長補短,使制成的復合材料具備2種材料的優(yōu)點。He等[68]利用Pickering乳液技術結合冷凍干燥技術制備了納米原纖維(CNF)/CNT/聚乳酸(PLA)/Fe3O4泡沫。復合材料具有質輕、隔熱性能好、電磁波吸收性能好等優(yōu)點。得益于納米Fe3O4顆粒、碳納米管的特性以及有機?無機組分組裝產生的新型界面極化之間的協(xié)同效應,復合材料的最佳回波損耗為?65.14 dB。

      TiO2是另一種被廣泛研究的負載在納米纖維素上的金屬氧化物材料。Lu等[69]利用超臨界干燥制備了TiO2/纖維素復合氣凝膠。纖維素基質中的多孔結構和羥基通過靜電和氫鍵相互作用,增強了二氧化鈦的穩(wěn)定性。二氧化鈦/纖維素復合氣凝膠在紫外光照射下表現(xiàn)出良好的光催化活性。這項研究為便攜式和柔性光催化劑的開發(fā)提供了一種途徑。

      1.5 天然礦物復合

      由于纖維素?氧化物基復合材料引入了金屬氧化物,可能會產生二次污染,而礦物質材料無污染[70]且來源豐富、成本低,因此不會出現(xiàn)上述的問題。礦物質纖維素基復合吸附材料主要由沸石[71]、蒙脫土[72]、硅藻土[73]、坡縷石[74]等與多種纖維素復合而成。

      蒙脫土(MMT)是一種天然粘土礦物質,具有層狀結構和離子交換性能[75],是一種被廣泛研究的吸附材料。如果只是單純以MMT為原料進行吸附,則吸附后存在難以回收等問題。將纖維素與蒙脫土進行復合制成輕質多孔材料,不僅會提高材料的吸附性能,而且吸附后可以回收。PAN等[76]以超細碳酸鈣為造孔劑,通過一種新的方法制備了胺化纖維素/蒙脫土介孔復合微珠(AceMt),作為綠色吸附劑,可用于染料的去除。在乙酸溶液中,經過5次吸附?解吸循環(huán),復合材料的吸附容量也保持相對穩(wěn)定。

      羥基磷灰石(HAP)是脊椎動物體內骨骼和牙齒的主要無機成分,具有生物相容性高、無毒和易燃等優(yōu)點。利用HAP和纖維素可以制備具有絕緣、阻燃、生物相容性良好的材料。Guo等[77]使用丙基三甲氧基硅烷和聚乙烯亞胺將HAP與CNF進行交聯(lián),采用冷凍干燥法制備CNF/HAP復合泡沫。復合泡沫具有熱導率較低和阻燃性能良好等優(yōu)點,在垂直燃燒測試中擁有自熄能力和非常低的峰值熱釋放率,具有良好的熱穩(wěn)定性。復合泡沫表現(xiàn)出優(yōu)異的防火性能,可以用作絕緣和阻燃建筑材料。

      2 功能化應用

      將纖維素與有機或無機材料復合后可以賦予其特定的功能性,極大地拓展了材料的應用領域。相較于未功能化纖維素基輕質多孔材料,功能化纖維素基輕質多孔材料在電磁屏蔽、吸附、抗菌、阻燃隔熱等領域有較大的應用前景,見圖1。

      圖1 纖維素復合輕質多孔材料的應用領域

      2.1 電磁屏蔽材料

      電子產品的大量使用會造成嚴重的電磁效應,會對人體的健康造成嚴重的影響,并且還會引起信息泄露及干擾其他電子設備的正常運行[78]。電磁屏蔽材料可以減輕或者消除上述不良影響,但傳統(tǒng)的電磁屏蔽材料存在質量大、屏蔽機理單一、二次污染嚴重、生產過程煩瑣等缺點[79]。纖維素基電磁屏蔽材料具有輕質靈活、保溫隔音、綠色無污染、循環(huán)可再生等優(yōu)點,正成為目前研究的熱點。

      Zeng等[80]將CNF用來構建具有定向仿生細胞壁的過渡金屬碳化物和氮化物(Mxene)氣凝膠,采取了一種仿生的微結構設計方法(見圖2),由珍珠狀細胞壁的CNF“砂漿”黏結的MXene“磚”具備機械強度高、導電性好和界面極化的特性,從而使MXene/ CNF氣凝膠具有超高的電磁屏蔽性能。在密度僅為8.0、1.5 mg/cm3的情況下,氣凝膠的屏蔽效能(SE)分別達到74.6 dB和35.5 dB,躋身于目前研發(fā)的其他電磁屏蔽材料的第一梯隊。

      圖2 MXene/CNF仿生細胞壁結構和定向冷凍干燥示意圖[80]

      Zeng等[81]制備了超輕、高柔性的生物聚合物氣凝膠,它由纖維素納米纖維和銀納米線形成的仿生細胞微結構組成,通過冷凍干燥方法成型。結合原位壓縮產生的屏蔽變換和建筑單元的控制,優(yōu)化的層狀多孔生物高聚物氣凝膠具有非常好的電磁屏蔽效果,電磁屏蔽的原理見圖3。在密度為6.2 mg/cm3時,X波段屏蔽效能為70.5 dB,電磁屏蔽性能優(yōu)異。

      圖3 CNF/Ag氣凝膠層狀多孔結構實現(xiàn)電磁屏蔽效果的機制[81]

      介紹的2種電磁屏蔽材料采取了不同的結構設計思路,并且材料都具有輕巧靈活、電磁屏蔽性能良好等優(yōu)點,對以后設計電磁屏蔽材料有一定借鑒意義。

      2.2 吸附材料

      隨著石油工業(yè)和化學工業(yè)的發(fā)展,漏油和化學品泄漏正在成為人類面臨的環(huán)境問題[82-83]。吸附是一種成本低且操作簡單的方法[84]。低成本、輕質、可循環(huán)使用是作為優(yōu)異吸附材料必備的性能條件[85]。纖維素質輕且強度高,利用纖維素與其他材料復合可以制備出質輕且吸附性能優(yōu)異的復合材料。目前,纖維素基復合吸附材料的研究主要集中在設計特定的細胞微結構[86]和使用可彎曲但堅固的固體成分等方面[87]。

      Mi等[88]以纖維素和石墨烯為原料,采用雙向冷凍干燥方法,制備了高彈性、可壓縮和各向異性的纖維素/石墨烯氣凝膠(CGAs)。制備的復合材料超輕(密度為5.9 mg/cm3)且具有高比表面積(47.3 m2/g)。經過超疏水改性的纖維素/石墨烯氣凝膠(MCGA)具有相當于其質量80~197倍的顯著吸附能力,并且可以通過簡單的機械擠壓快速高效地回收吸收的油。

      Wei等[89]將納米纖維素與氧化鐵(Fe3O4)納米顆粒集成在一起,制備了一種磁性雜化氣凝膠。制備的雜化氣凝膠對Cu2+、Pb2+、Cr6+的吸附容量分別為0.4、1.25、2.2 mg/g,見圖4,可以有效地吸附水中的重金屬離子,實現(xiàn)磁性條件下的可控回收。

      通過與不同的材料復合,賦予新材料對不同污染物的吸附性能,如吸附重金屬離子、印染廢水和石油等,這對處理環(huán)境污染問題具有重要的意義。

      2.3 電極材料

      Fe3O4是一種優(yōu)秀的電池材料,可以作為鋰離子電池的負極材料。由于Fe3O4的導電性較差,且在應用中體積會膨脹,因而限制了它在實際中的應用。Sun等[90]通過分解纖維素/酒石酸鐵絡合物體系,制備了Fe3O4@C復合材料。酒石酸鐵絡合物經冷凍干燥和高溫炭化后,分解成Fe3O4,均勻沉積在纖維素衍生的多孔炭中。多孔炭具有良好的導電性,在電化學研究中發(fā)現(xiàn)它可以適應復合材料的體積變化。復合材料作為鋰電池的負極在100 mA/g下的充電容量可以達到864.9 mA·h/g,初始充電容量較高。在1 000 mA/g下循環(huán)300次后,容量保持率為86.4%。該方法為制備性能優(yōu)良的Fe3O4@C復合材料提供了一種新的途徑,并有望在未來的鋰離子電池中得到實際應用。

      Zheng等[91]制備了一種以纖維素納米纖維(CNF)/氧化石墨烯(RGO)/碳納米管(CNT)雜化氣凝膠為電極(見圖5),以H2SO4/聚乙烯醇(PVA)凝膠為電解質的新型高柔性全固態(tài)超級電容器。首先將氧化石墨納米片(GONS)與碳納米管(CNT)均勻混合。由于GONS是水溶性的,含有大量的氧原子,因而極易與CNT形成均勻的溶液。再加入纖維素納米纖維CNF形成均勻的溶液,通過預凍和冷凍干燥方法制成CNF/RGO/CNT氣凝膠,并通過熱還原形成最終的超級電容器電極材料。得益于氣凝膠電極的多孔結構和CNF優(yōu)異的電解質吸收性能,所制備的柔性超級電容器具有較高的比電容(216 mF/cm2)和優(yōu)異的循環(huán)穩(wěn)定性(在1000次充放電循環(huán)后仍保持99.5%以上的比電容)。CNF/RGO/CNT氣凝膠電極具有優(yōu)良的電化學性能、成本低、易于大規(guī)模生產、環(huán)境友好等特點,在柔性儲能裝置的開發(fā)中具有廣闊的應用前景。

      目前,電池性能制約了手機、汽車行業(yè)的發(fā)展,提高電池的容量和抗衰減性能顯得至關重要??顾p性能的提高可以有效地延長電池的使用時間、節(jié)約成本。電池容量的提高可以減輕人們對石油等不可再生資源的依賴,使電動汽車的使用體驗逐漸媲美燃油車,推動了人類在可持續(xù)能源領域的高質量發(fā)展。

      2.4 疏水材料

      由于存在大量的羥基,纖維素基輕質多孔材料具有較強的親水性[92],這會導致材料的耐水性差、強度降低,并且影響油水分離性能[93]。為了提高纖維素基輕質多孔材料的耐水性能,可通過提高粗糙度(微米或納米級的粗糙度)和引入低表面能物質來實現(xiàn)[94]。目前,常用的纖維素基輕質多孔材料的疏水化工藝包括化學氣相沉積、原子層沉積、冷等離子體處理[95]、溶膠?凝膠[96]、酯化[97]和氟化等,主要以TiO2、SiO2、烷氧基硅烷、氯硅烷、烷基烯酮二聚體[98]、三氯甲基硅烷、全氟十二烷基三氯硅烷[99]、硬脂酰氯和棕櫚酰氯[100]等為疏水改性原料。

      圖4 納米纖維素?Fe3O4混合氣凝膠的吸附效率[89]

      圖5 CNF/RGO/CNT氣凝膠電極的制造過程[91]

      在最新的研究中,研究人員發(fā)現(xiàn)使用木質素也可制備疏水纖維素基輕質多孔材料。Ferreira等[101]通過堿處理從木質纖維素中提取木質素,然后再將木質素沉積到木質纖維素中,通過烘箱干燥制備疏水纖維素泡沫。泡沫的接觸角為117°±8°,最高測量值為127°(見圖6),呈現(xiàn)出較好的疏水性。泡沫的疏水性主要歸因于木質纖維素中殘留木質素、再沉積木質素、纖維和泡沫表面粗糙度等的共同作用。從圖6可以看出,再沉積的木質素增加了纖維表面的粗糙度,提高了泡沫的疏水性能。制備所用烘箱也具有成本低、操作簡單等優(yōu)點,為大規(guī)模的工業(yè)化生產提供了良好的借鑒意義。

      圖6 檸檬酸交聯(lián)木質纖維素泡沫的接觸角和表面特性[101]

      2.5 抗菌材料

      羥基磷灰石(HAP)與天然骨組織有著相似的結構和化學成分[102-103],將它植入骨缺損的部分無不良反應,但其自身強度低,難以起到支撐作用[104]。纖維素具有強度高的特點,可為HAP提供支撐作用,再與其他材料一起復合可以得到結構穩(wěn)定、抗菌性能好、生物相容性好的復合支架[105]。Khan等[106]以細菌纖維素(BC)和?葡聚糖為原料,采用自由基聚合將?HAP和GO接枝到聚合物網(wǎng)絡中,并通過冷凍干燥技術制備了應用于骨組織工程的納米復合支架。復合支架對于革蘭氏陰性菌和革蘭氏陽性菌具有良好的抗菌性能,并且顯示出較強的生物化學親和力,以及細胞黏附、增殖和生物相容性,這對于應用抗菌性能的骨組織支架具有深遠的意義。

      作為天然抗菌劑,精油(Eos)既有抗菌作用,又有抗氧化作用,因此被廣泛用于抗菌材料。Zhang等[107]采用了一種簡單而環(huán)保的方法,用CNF和百里香精油(EO)制備出納米纖維?百里香精油泡沫(CNF?EO),通過酶解預處理和TEMPO氧化預處理可以制備碳納米纖維。將酶解纖維素納米纖維(EHCN)和氧化纖維素納米纖維(TOCN)浸泡在EO納米乳液中,然后進行冷凍干燥,就可以制備出CNF?EO復合材料。在食品保鮮方面,采用CNF?EO泡沫保鮮的牛肉在風味、色澤等感官上均發(fā)揮出較好的效果,與同期不加精油的對照組相比,采用TOCN?EO泡沫保鮮牛肉的貨架期延長了5 d,見圖7。這種CNF?EO泡沫體系的制備方法對新鮮食品的保鮮具有重要意義。

      研發(fā)具有抗菌性能的環(huán)境友好型材料,可以應用到食品保鮮和醫(yī)用材料等領域,優(yōu)異的抗菌性能可延長食品的保質期,用作醫(yī)用材料可以降低患者被感染的風險。

      圖7 EHCN?EO和TOCN?EO的抗菌性能對比[107]

      2.6 隔熱、阻燃材料

      纖維素氣凝膠具有密度低、隔熱性能好、導熱性低等特點,被廣泛應用于建筑的隔熱保溫材料。由于該材料易燃,因而限制了它在部分場景下的應用。由此,賦予纖維素氣凝膠優(yōu)異的阻燃性能,可以極大程度地拓展此材料的應用領域。

      Wang等[108]將四甲氧基硅烷(TMOS)和磷腈縮合,合成了含有環(huán)三磷腈橋連基團的介孔有機二氧化硅(PMOPZ),然后將它摻入CNF懸浮液中,通過冷凍澆鑄法制備了PMOPZ/CNF復合泡沫材料。相較于傳統(tǒng)的CNF泡沫,復合泡沫在水平(圖8a)和垂直(圖8b)方向的燃燒結果都表明它具有優(yōu)異的阻燃和自熄滅性能,極氧指數(shù)高達31%。SiO2的加入使復合泡沫塑料的放熱率(PHRR)和總放熱率(THR)分別降低了52.0%和61.3%,其優(yōu)異的阻燃性能滿足安全和節(jié)能的需要。

      He等[109]受到硼酸鹽在植物中的交聯(lián)作用的啟發(fā),通過硼酸鹽交聯(lián),制備出力學性能和阻燃性能均優(yōu)異的輕質、高孔隙率紙漿泡沫。與易燃原漿泡沫相比,低導熱系數(shù)(約0.045 W·m?1·K?1)的含硼紙漿泡沫具有更好的阻燃性能和良好的自熄滅性能。當硼的質量分數(shù)為3.45%時,制得的紙漿泡沫完全不燃,為制備具有優(yōu)良阻燃和隔熱性能的高強度、多孔紙漿泡沫提供了一條經濟有效、簡單易行的路線。

      圖8 PMOPZ/CNF泡沫在水平和垂直方向燃燒測試前后的照片[108]

      賦予輕質多孔材料阻燃的性能可以將它作為建筑物或家用電器中的熱絕緣體,提高材料的耐用性,降低材料的使用成本,從而降低社會的能耗需求。

      3 結語

      纖維素是一種縱橫比高、比表面積大、力學性能優(yōu)異,具有生物相容性和生物降解性的生物友好型材料。纖維素與有機或無機材料復合制備的輕質多孔材料可以實現(xiàn)阻燃、吸附、電磁屏蔽、導電、抗菌等功能,極大地拓展了其應用領域。隨著研究的深入,未來會出現(xiàn)越來越多性能更加優(yōu)異的纖維素基復合多孔材料,但是纖維素基復合多孔材料在成本控制、大規(guī)模生產、回收利用等方面還面臨挑戰(zhàn)。此外,還應認真考慮更環(huán)保、更綠色的合成方法,以滿足可持續(xù)發(fā)展的要求。研發(fā)綠色、環(huán)保、可再生的材料是大勢所趨,在碳中和的背景下顯得尤為重要,所以纖維素基復合輕質多孔材料的開發(fā)、制備及其推廣應用仍將是未來研究的重點。

      [1] WEATHERWAX R C, CAULFIELD D F. Cellulose Aerogels: An Improved Method for Preparing a Highly Expanded form of Dry Cellulose[J]. Tappi, 1971, 54(6): 985-986.

      [2] TAN C, FUNG B M, NEWMAN J K, et al. Organic Aerogels with Very High Impact Strength[J]. Advanced Materials, 2001, 13(9): 644-646.

      [3] JIN Hao, NISHIYAMA Y, WADA M, et al. Nanofibrillar Cellulose Aerogels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240(1/2/3): 63-67.

      [4] GAVILLON R, BUDTOVA T. Aerocellulose: New Highly Porous Cellulose Prepared from Cellulose-NaOH Aqueous Solutions[J]. Biomacromolecules, 2008, 9(1): 269-277.

      [5] GAREMARK J, YANG Xuan, SHENG Xia, et al. Top-down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization[J]. ACS Nano, 2020, 14(6): 7111-7120.

      [6] LI Qian, WU Ping-jian, ZHOU Jin-ping, et al. Structure and Solution Properties of Cyanoethyl Celluloses Synthesized in LiOH/Urea Aqueous Solution[J]. Cellulose, 2012, 19(1): 161-169.

      [7] SESCOUSSE R, GAVILLON R, BUDTOVA T. Aerocellulose from Cellulose-Ionic Liquid Solutions: Preparation, Properties and Comparison with Cellulose-NaOH and Cellulose-NMMO Routes[J]. Carbohydrate Polymers, 2011, 83(4): 1766-1774.

      [8] LOPES J M, MUSTAPA A N, PANTI? M, et al. Preparation of Cellulose Aerogels from Ionic Liquid Solutions for Supercritical Impregnation of Phytol[J]. The Journal of Supercritical Fluids, 2017, 130: 17-22.

      [9] MAEDA H, NAKAJIMA M, HAGIWARA T, et al. Preparation and Properties of Bacterial Cellulose Aerogel[J]. Kobunshi Ronbunshu, 2006, 63(2): 135-137.

      [10] SUN Yan, CHU You-lu, WU Wei-bing, et al. Nanocellulose-Based Lightweight Porous Materials: A Review[J]. Carbohydrate Polymers, 2021, 255: 117489.

      [11] ZU Guo-qing, SHEN Jun, ZOU Li-ping, et al. Nanocellulose-Derived Highly Porous Carbon Aerogels for Supercapacitors[J]. Carbon, 2016, 99: 203-211.

      [12] ZHAO Da-wei, ZHU Ying, CHENG Wan-ke, et al. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(28): e2000619.

      [13] BISSON A, RIGACCI A, LECOMTE D, et al. Drying of Silica Gels to Obtain Aerogels: Phenomenology and Basic Techniques[J]. Drying Technology, 2003, 21(4): 593-628.

      [14] SMIRNOVA I, GURIKOV P. Aerogel Production: Current Status, Research Directions, and Future Opportunities[J]. The Journal of Supercritical Fluids, 2018, 134: 228-233.

      [15] BUREIKO A, TRYBALA A, KOVALCHUK N, et al. Current Applications of Foams Formed from Mixed Surfactant-Polymer Solutions[J]. Advances in Colloid and Interface Science, 2015, 222: 670-677.

      [16] KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators[J]. Angewandte Chemie (International Ed in English), 2014, 53(39): 10394-10397.

      [17] CHEN Yi-ming, ZHOU Li-jie, CHEN Lian, et al. Anisotropic Nanocellulose Aerogels with Ordered Structures Fabricated by Directional Freeze-Drying for Fast Liquid Transport[J]. Cellulose, 2019, 26(11): 6653-6667.

      [18] JIANG Feng, HSIEH Y L. Assembling and Redispersibility of Rice Straw Nanocellulose: Effect of Tert-Butanol[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 20075-20084.

      [19] TEJADO A, CHEN W C, ALAM M N, et al. Superhydrophobic Foam-Like Cellulose Made of Hydrophobized Cellulose Fibres[J]. Cellulose, 2014, 21(3): 1735-1743.

      [20] PARK S Y, GOO S, SHIN H, et al. Structural Properties of Cellulose Nanofibril Foam Depending on Wet Foaming Conditions in Pickering Stabilization[J]. Cellulose, 2021, 28(16): 10291-10304.

      [21] NASSER ABDELHAMID H, MATHEW A P. Cellulose-Zeolitic Imidazolate Frameworks (CelloZIFs) for Multifunctional Environmental Remediation: Adsorption and Catalytic Degradation[J]. Chemical Engineering Journal, 2021, 426: 131733.

      [22] WANG Yan-sen, ZHAO Yi-fan, QIAO Long-xue, et al. Cellulose Fibers-Reinforced Self-Expanding Porous Composite with Multiple Hemostatic Efficacy and Shape Adaptability for Uncontrollable Massive Hemorrhage Treatment[J]. Bioactive Materials, 2021, 6(7): 2089-2104.

      [23] ZHAO Yi-fan, ZHONG Kai, LIU Wei, et al. Preparation and Oil Adsorption Properties of Hydrophobic Microcrystalline Cellulose Aerogel[J]. Cellulose, 2020, 27(13): 7663-7675.

      [24] CHEN Jun-qing, ZHU Zhao-dong, ZHANG Hui, et al. Wood-Derived Nanostructured Hybrid for Efficient Flame Retarding and Electromagnetic Shielding[J]. Materials & Design, 2021, 204: 109695.

      [25] JIANG Shuai, ZHANG Mei-ling, LI Meng-meng, et al. Cellulose-Based Composite Thermal-Insulating Foams Toward Eco-Friendly, Flexible and Flame-Retardant[J]. Carbohydrate Polymers, 2021, 273: 118544.

      [26] 呂少一, 傅峰, 王思群, 等. 納米纖維素基導電復合材料研究進展[J]. 林業(yè)科學, 2015, 51(10): 117-125.

      LYU Shao-yi, FU Feng, WANG Si-qun, et al. Advances in Nanocellulose-Based Electroconductive Composites[J]. Scientia Silvae Sinicae, 2015, 51(10): 117-125.

      [27] KIM U J, KIMURA S, WADA M. Highly Enhanced Adsorption of Congo Red Onto Dialdehyde Cellulose-Crosslinked Cellulose-Chitosan Foam[J]. Carbohydrate Polymers, 2019, 214: 294-302.

      [28] 趙川川. 基于纖維素與甲殼素的多相催化劑的開發(fā)及其催化性能研究[D]. 保定: 河北大學, 2021: 5-9.

      ZHAO Chuan-chuan. Development of Heterogeneous Catalysts Based on Cellulose and Chitin and Their Catalytic Performance Research[D]. Baoding: Hebei University, 2021: 5-9.

      [29] HIVECHI A, BAHRAMI S H, SIEGEL R A. Drug Release and Biodegradability of Electrospun Cellulose Nanocrystal Reinforced Polycaprolactone[J]. Materials Science and Engineering: C, 2019, 94: 929-937.

      [30] TSIOPTSIAS C, STEFOPOULOS A, KOKKINOMALIS I, et al. Development of Micro- and Nano-Porous Composite Materials by Processing Cellulose with Ionic Liquids and Supercritical CO2[J]. Green Chemistry, 2008, 10(9): 965.

      [31] XIE Hai-bo, ZHANG Suo-bo, LI Sheng-hai. Chitin and Chitosan Dissolved in Ionic Liquids as Reversible Sorbents of CO2[J]. Green Chemistry, 2006, 8(7): 630.

      [32] ZHANG Zhe-xin, LI Hui-dong, LI Jing, et al. A Novel Adsorbent of Core-Shell Construction of Chitosan-Cellulose Magnetic Carbon Foam: Synthesis, Characterization and Application to Remove Copper in Wastewater[J]. Chemical Physics Letters, 2019, 731: 136573.

      [33] AHSAN H M, PEI Ying, LUO Xiao-gang, et al. Novel Stable Pickering Emulsion Based Solid Foams Efficiently Stabilized by Microcrystalline Cellulose/Chitosan Complex Particles[J]. Food Hydrocolloids, 2020, 108: 106044.

      [34] SEHAQUI H, SALAJKOVá M, ZHOU Qi, et al. Mechanical Performance Tailoring of Tough Ultra-High Porosity Foams Prepared from Cellulose I Nanofiber Suspensions[J]. Soft Matter, 2010, 6(8): 1824.

      [35] LIU Ju, HAO Dan-dan, SUN Hui-wen, et al. Integration of MIL-101-NH2into Cellulosic Foams for Efficient Cr(Ⅵ) Reduction under Visible Light[J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12220-12227.

      [36] 張文良. 海藻酸鹽/羧甲基纖維素復合材料的制備及吸附性能研究[D]. 青島: 青島大學, 2019: 57-59.

      ZHANG Wen-liang. Preparation and Adsorption Properties of Alginate/Carboxymethyl Cellulose Composites[D]. Qingdao: Qingdao University, 2019: 57-59.

      [37] WANG Shan-li, CHEN C C, TZOU Y M, et al. A Mechanism Study of Light-Induced Cr(VI) Reduction in an Acidic Solution[J]. Journal of Hazardous Materials, 2009, 164(1): 223-228.

      [38] PACHFULE P, ACHARJYA A, ROESER J, et al. Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation[J]. Journal of the American Chemical Society, 2018, 140(4): 1423-1427.

      [39] ZHANG Jian-qiang, PENG Yong-sheng, LENG Wen-guang, et al. Nitrogen Ligands in Two-Dimensional Covalent Organic Frameworks for Metal Catalysis[J]. Chinese Journal of Catalysis, 2016, 37(4): 468-475.

      [40] JHULKI S, EVANS A M, HAO Xue-li, et al. Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework[J]. Journal of the American Chemical Society, 2020, 142(2): 783-791.

      [41] 郭從寶. 納米纖維素/共價有機骨架復合材料的制備表征及其用于二氯苯降解的催化性能研究[D]. 廣州: 華南理工大學, 2019: 1-2.

      GUO Cong-bao. Preparation, Characterization and Catalytic Performance for O-Dichlorobenzene Degradation of Nanocellulose/Covalent Organic Framework(COF) Composites[D]. Guangzhou: South China University of Technology, 2019: 1-2.

      [42] GUO Si-hua, ZHENG Run, JIANG Jin-tian, et al. Enhanced Thermal Conductivity and Retained Electrical Insulation of Heat Spreader by Incorporating Alumina-Deposited Graphene Filler in Nano-Fibrillated Cellulose[J]. Composites Part B: Engineering, 2019, 178: 107489.

      [43] LEE J K Y, CHEN Nuan, PENG Sheng-jie, et al. Polymer-Based Composites by Electrospinning: Preparation & Functionalization with Nanocarbons[J]. Progress in Polymer Science, 2018, 86: 40-84.

      [44] FAIZ NORRRAHIM M N, MOHD KASIM N A, KNIGHT V F, et al. Nanocellulose: A Bioadsorbent for Chemical Contaminant Remediation[J]. RSC Advances, 2021, 11(13): 7347-7368.

      [45] MOUGEL J B, BERTONCINI P, CATHALA B, et al. Macroporous Hybrid Pickering Foams Based on Carbon Nanotubes and Cellulose Nanocrystals[J]. Journal of Colloid and Interface Science, 2019, 544: 78-87.

      [46] YOUSEFI N, WONG K K W, HOSSEINIDOUST Z, et al. Hierarchically Porous, Ultra-Strong Reduced Graphene Oxide-Cellulose Nanocrystal Sponges for Exceptional Adsorption of Water Contaminants[J]. Nanoscale, 2018, 10(15): 7171-7184.

      [47] KHAN I, SAEED K, KHAN I. Nanoparticles: Properties, Applications and Toxicities[J]. Arabian Journal of Chemistry, 2019, 12(7): 908-931.

      [48] DACRORY S, ABOU-YOUSEF H, KAMEL S, et al. Development of Biodegradable Semiconducting Foam Based on Micro-Fibrillated Cellulose/Cu-NPs[J]. International Journal of Biological Macromolecules, 2019, 132: 351-359.

      [49] VIPIN A K, FUGETSU B, SAKATA I, et al. Cellulose Nanofiber Backboned Prussian Blue Nanoparticles as Powerful Adsorbents for the Selective Elimination of Radioactive Cesium[J]. Scientific Reports, 2016, 6: 37009.

      [50] DONG Li-li, YAN Gui-hua, REN Su-xia, et al. Platinum Nanoparticle Decorated Poly(diallyldimethylammonium chloride)/Cellulose Nanocrystal Nanohybrid for Electrochemical Sensing of Dopamine[J]. Journal of Biobased Materials and Bioenergy, 2018, 12(6): 519-524.

      [51] ZHOU Su-kun, WANG Meng, CHEN Xiong, et al. Facile Template Synthesis of Microfibrillated Cellulose/Polypyrrole/Silver Nanoparticles Hybrid Aerogels with Electrical Conductive and Pressure Responsive Properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3346-3354.

      [52] ZHANG Qing, ZHANG Lei, WU Wei-bing, et al. Methods and Applications of Nanocellulose Loaded with Inorganic Nanomaterials: A Review[J]. Carbohydrate Polymers, 2020, 229: 115454.

      [53] WU Xi, YAN Wen, ZHOU Ya-lan, et al. Thermal, Morphological, and Mechanical Characteristics of Sustainable Tannin Bio-Based Foams Reinforced with Wood Cellulosic Fibers[J]. Industrial Crops and Products, 2020, 158: 113029.

      [54] LOKANATHAN A R, UDDIN K M A, ROJAS O J, et al. Cellulose Nanocrystal-Mediated Synthesis of Silver Nanoparticles: Role of Sulfate Groups in Nucleation Phenomena[J]. Biomacromolecules, 2014, 15(1): 373-379.

      [55] XIONG Chuan-yin, DANG Wei-hua, NIE Shuang-xi, et al. Fabrication of High Value Cellulose nanofibers@Ni Foam by Non Carbonization: Various Application Developed during the Preparation[J]. Cellulose, 2021, 28(3): 1455-1468.

      [56] LI Shu-ming, JIA Ning, ZHU Jie-fang, et al. Rapid Microwave-Assisted Preparation and Characterization of Cellulose-Silver Nanocomposites[J]. Carbohydrate Polymers, 2011, 83(2): 422-429.

      [57] BAIG N, KAMMAKAKAM I. Removal of Oily Contaminants from Water by Using the Hydrophobic Ag Nanoparticles Incorporated Dopamine Modified Cellulose Foam[J]. Polymers, 2021, 13(18): 3163.

      [58] NELSON K, DENG Yu-lin. The Shape Dependence of Core–Shell and Hollow Titania Nanoparticles on Coating Thickness during Layer-by-Layer and Sol–Gel Synthesis[J]. Nanotechnology, 2006, 17(13): 3219-3225.

      [59] ZHAO Si-wei, ZHENG Ming, ZOU Xiao-hang, et al. Self-Assembly of Hierarchically Structured Cellulose@ZnO Composite in Solid–Liquid Homogeneous Phase: Synthesis, DFT Calculations, and Enhanced Antibacterial Activities[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6585-6596.

      [60] GEBAUER D, OLIYNYK V, SALAJKOVA M, et al. A Transparent Hybrid of Nanocrystalline Cellulose and Amorphous Calcium Carbonate Nanoparticles[J]. Nanoscale, 2011, 3(9): 3563.

      [61] ZHAN Hui, PENG Na, LEI Xiao-juan, et al. UV-Induced Self-Cleanable TiO2/Nanocellulose Membrane for Selective Separation of Oil/Water Emulsion[J]. Carbohydrate Polymers, 2018, 201: 464-470.

      [62] OUN A A, SHANKAR S, RHIM J W. Multifunctional Nanocellulose/Metal and Metal Oxide Nanoparticle Hybrid Nanomaterials[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(3): 435-460.

      [63] PIRZADA T, ASHRAFI Z, XIE Wen-yi, et al. Cellulose Silica Hybrid Nanofiber Aerogels: From Sol–Gel Electrospun Nanofibers to Multifunctional Aerogels[J]. Advanced Functional Materials, 2020, 30(5): 1907359.

      [64] WANG Pei-pei, ZHAO Jun, XUAN Rui-fei, et al. Flexible and Monolithic Zinc Oxide Bionanocomposite Foams by a Bacterial Cellulose Mediated Approach for Antibacterial Applications[J]. Dalton Transactions, 2014, 43(18): 6762-6768.

      [65] SHORT A E, PAMIDI S V, BLOOMBERG Z E, et al. Atomic Layer Deposition (ALD) of Subnanometer Inorganic Layers on Natural Cotton to Enhance Oil Sorption Performance in Marine Environments[J]. Journal of Materials Research, 2019, 34(4): 563-570.

      [66] XU Peng, YANG Jin, CHEN Yu, et al. Wood-Derived Fiber/BiOBr/AgBr Sponges by in Situ Synthesis for Separation of Emulsions and Degradation of Dyes[J]. Materials & Design, 2019, 183: 108179.

      [67] 李群, 馮云, 鄒楊, 等. 納米纖維素-無機復合材料研究進展[J]. 天津造紙, 2018, 40(3): 14-18.

      LI Qun, FENG Yun, ZOU Yang, et al. Research Progress of Nano-Cellulose-Inorganic Composite Materials[J]. Tianjin Paper Making, 2018, 40(3): 14-18.

      [68] HE Ying-ying, LI Shuai, ZHOU Li, et al. Cellulose Nanofibrils-Based Hybrid Foam Generated from Pickering Emulsion Toward High-Performance Microwave Absorption[J]. Carbohydrate Polymers, 2021, 255: 117333.

      [69] LU Yun, SUN Qing-feng, LI Jian, et al. Fabrication, Characterization and Photocatalytic Activity of TiO2/Cellulose Composite Aerogel[J]. Key Engineering Materials, 2014, 609/610: 542-546.

      [70] 趙曉光, 歐陽靜, 張毅, 等. 礦物基摩擦材料的研究進展[J]. 材料導報, 2019, 33(11): 1860-1868.

      ZHAO Xiao-guang, OUYANG Jing, ZHANG Yi, et al. Research Progress in Mineral-Based Friction Materials[J]. Materials Reports, 2019, 33(11): 1860-1868.

      [71] MA Shan-shan, ZHANG Mei-yun, NIE Jing-yi, et al. Lightweight and Porous Cellulose-Based Foams with High Loadings of Zeolitic Imidazolate Frameworks-8 for Adsorption Applications[J]. Carbohydrate Polymers, 2019, 208: 328-335.

      [72] 趙亞紅, 薛振華, 王喜明, 等. 羧甲基纖維素/蒙脫土納米復合材料對剛果紅染料的吸附及解吸性能[J]. 化工學報, 2012, 63(8): 2655-2660.

      ZHAO Ya-hong, XUE Zhen-hua, WANG Xi-ming, et al. Adsorption and Desorption Properties for Congo Red Dye of Carboxymethylcellulose/Montmorillonite Nanocomposites[J]. CIESC Journal, 2012, 63(8): 2655-2660.

      [73] LEE C Y, LEE Su-jin, HA J H, et al. The Effects of Kaolin Addition on the Properties of Reticulated Porous Diatomite-Kaolin Composites[J]. Journal of Korean Powder Metallurgy Institute, 2020, 27(4): 325-332.

      [74] 楊發(fā)翠, 孫士淇, 常玥, 等. 羧甲基纖維素鈉/坡縷石(CMC/PGS)復合材料的制備及其對Pb(Ⅱ)的吸附[J]. 硅酸鹽通報, 2016, 35(1): 25-29.

      YANG Fa-cui, SUN Shi-qi, CHANG Yue, et al. Preparation of Carboxymethyl Cellulose/Palygorskite (CMC/ PGS) and Adsorption Property for PB(Ⅱ)[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 25-29.

      [75] 趙寶寶. 纖維素基水凝膠的制備及其對亞甲基藍染料和重金屬離子的吸附研究[D]. 煙臺: 煙臺大學, 2021: 35-42.

      ZHAO Bao-bao. Preparation of Cellulose Based Hydrogels and Study on Adsorption of Methylene Blue Dye and Heavy Metal Ions[D]. Yantai: Yantai University, 2021: 35-42.

      [76] PAN Yuan-feng, XIE Hua-lei, LIU Hai-yan, et al. Novel Cellulose/Montmorillonite Mesoporous Composite Beads for Dye Removal in Single and Binary Systems[J]. Bioresource Technology, 2019, 286: 121366.

      [77] GUO Wen-wen, WANG Xin, ZHANG Ping, et al. Nano- Fibrillated Cellulose-Hydroxyapatite Based Composite Foams with Excellent Fire Resistance[J]. Carbohydrate Polymers, 2018, 195: 71-78.

      [78] 王麗, 王哲, 寧國艷, 等. 木基導電電磁屏蔽材料的研究進展[J]. 材料導報, 2018, 32(13): 2320-2328.

      WANG Li, WANG Zhe, NING Guo-yan, et al. Research Progress of Electromagnetic Shielding Wood-Based Conductive Materials[J]. Materials Review, 2018, 32(13): 2320-2328.

      [79] YAO Yuan-yuan, JIN Shao-hua, ZOU Hao-ming, et al. Polymer-Based Lightweight Materials for Electromagnetic Interference Shielding: A Review[J]. Journal of Materials Science, 2021, 56(11): 6549-6580.

      [80] ZENG Zhi-hui, WANG Chang-xian, SIQUEIRA G, et al. Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance[J]. Advanced Science, 2020, 7(15): 2000979.

      [81] ZENG Zhi-hui, WU Ting-ting, HAN Da-xin, et al. Ultralight, Flexible, and Biomimetic Nanocellulose/ Silver Nanowire Aerogels for Electromagnetic Interference Shielding[J]. ACS Nano, 2020, 14(3): 2927-2938.

      [82] BULLOCK R J, PERKINS R A, AGGARWAL S. In-Situ Burning with Chemical Herders for Arctic Oil Spill Response: Meta-Analysis and Review[J]. Science of the Total Environment, 2019, 675: 705-716.

      [83] LIU Hua, CAO Chang-yan, WEI Fang-fang, et al. Flexible Macroporous Carbon Nanofiber Film with High Oil Adsorption Capacity[J]. Journal of Materials Chemistry A, 2014, 2(10): 3557.

      [84] HUANG Xiao-dan, SUN Bing, SU Da-wei, et al. Soft-Template Synthesis of 3D Porous Graphene Foams with Tunable Architectures for Lithium–O2Batteries and Oil Adsorption Applications[J]. J Mater Chem A, 2014, 2(21): 7973-7979.

      [85] MEZA L R, DAS S, GREER J R. Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices [J]. Science, 2014, 345(6202): 1322-1326.

      [86] WU Ying-peng, YI Ning-bo, HUANG Lu, et al. Three-Dimensionally Bonded Spongy Graphene Material with Super Compressive Elasticity and Near-Zero Poisson's Ratio[J]. Nature Communications, 2015, 6: 6141.

      [87] BI Hui, CHEN I W, LIN Tian-quan, et al. A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(39): 5943-5949.

      [88] MI Hao-yang, JING Xin, POLITOWICZ A L, et al. Highly Compressible Ultra-Light Anisotropic Cellulose/Graphene Aerogel Fabricated by Bidirectional Freeze Drying for Selective Oil Absorption[J]. Carbon, 2018, 132: 199-209.

      [89] WEI Jie, YANG Zhi-xing, SUN Yun, et al. Nanocellulose-Based Magnetic Hybrid Aerogel for Adsorption of Heavy Metal Ions from Water[J]. Journal of Materials Science, 2019, 54(8): 6709-6718.

      [90] SUN Cheng-min, ZHENG Xiang, SUN Tian, et al. Synthesis of Fe3O4@C Composites Using Cellulose and Ferric Tartrate Complex as Precursor and Their Application as Anode for High Performance Lithium-Ion Batteries[J]. International Journal of Electrochemical Science, 2021: ArticleID: 210538.

      [91] ZHENG Qi-feng, CAI Zhi-yong, MA Zhen-qiang, et al. Cellulose Nanofibril/Reduced Graphene Oxide/Carbon Nanotube Hybrid Aerogels for Highly Flexible and All-Solid-State Supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(5): 3263-3271.

      [92] CHEN Cai-hong, LI Chao, YU De-you, et al. A Facile Method to Prepare Superhydrophobic Nanocellulose- Based Aerogel with High Thermal Insulation Performance via a Two-Step Impregnation Process[J]. Cellulose, 2022, 29(1): 245-257.

      [93] YANG Bin, ZHANG Mei-yun, LU Zhao-qing, et al. Comparative Study of Aramid Nanofiber (ANF) and Cellulose Nanofiber (CNF)[J]. Carbohydrate Polymers, 2019, 208: 372-381.

      [94] LIU Hong-zhi, GENG Bi-yao, CHEN Yu-fei, et al. Review on the Aerogel-Type Oil Sorbents Derived from Nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 49-66.

      [95] SHI Jian-jun, LU Ling-bin, GUO Wan-tao, et al. An Environment-Friendly Thermal Insulation Material from Cellulose and Plasma Modification[J]. Journal of Applied Polymer Science, 2013, 130(5): 3652-3658.

      [96] SAI Hua-zheng, XING Li, XIANG Jun-hui, et al. Flexible Aerogels with Interpenetrating Network Structure of Bacterial Cellulose–Silica Composite from Sodium Silicate Precursor via Freeze Drying Process[J]. RSC Advances, 2014, 4(57): 30453.

      [97] GRANSTR?M M, NéE P??KK? M K, JIN Hua, et al. Highly Water Repellent Aerogels Based on Cellulose Stearoyl Esters[J]. Polymer Chemistry, 2011, 2(8): 1789.

      [98] RUSSLER A, WIELAND M, BACHER M, et al. AKD-Modification of Bacterial Cellulose Aerogels in Supercritical CO2[J]. Cellulose, 2012, 19(4): 1337-1349.

      [99] AULIN C, NETRVAL J, W?GBERG L, et al. Aerogels from Nanofibrillated Cellulose with Tunable Oleophobicity [J]. Soft Matter, 2010, 6(14): 3298.

      [100]FUMAGALLI M, OUHAB D, BOISSEAU S M, et al. Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels[J]. Biomacromolecules, 2013, 14(9): 3246-3255.

      [101]FERREIRA E S, CRANSTON E D, REZENDE C A. Naturally Hydrophobic Foams from Lignocellulosic Fibers Prepared by Oven-Drying[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8267-8278.

      [102]PRABAKARAN S, RAJAN M, LV Chang-wei, et al. Lanthanides-Substituted Hydroxyapatite/ Aloe Vera Composite Coated Titanium Plate for Bone Tissue Regeneration[J]. International Journal of Nanomedicine, 2020, 15: 8261-8279.

      [103]VENKATESAN J, KIM S K. Chitosan Composites for Bone Tissue Engineering—an Overview[J]. Marine Drugs, 2010, 8(8): 2252-2266.

      [104]YU Han-ping, ZHU Ying-jie, XIONG Zhi-chao, et al. Bioinspired Fiberboard-and-Mortar Structural Nanocomposite Based on Ultralong Hydroxyapatite Nanowires with High Mechanical Performance[J]. Chemical Engineering Journal, 2020, 399: 125666.

      [105]劉云利, 陜紹云, 支云飛, 等. 功能化納米纖維素氣凝膠應用研究[J]. 現(xiàn)代化工, 2020, 40(5): 36-41.

      LIU Yun-li, SHAN Shao-yun, ZHI Yun-fei, et al. Research in Application of Functionalized Nanocellulose Aerogels[J]. Modern Chemical Industry, 2020, 40(5): 36-41.

      [106]KHAN M U A, HAIDER S, HAIDER A, et al. Development of Porous, Antibacterial and Biocompatible GO/n-HAp/Bacterial Cellulose/β-Glucan Biocomposite Scaffold for Bone Tissue Engineering[J]. Arabian Journal of Chemistry, 2021, 14(2): 102924.

      [107]ZHANG Zheng-jian, WANG Xiao-juan, GAO Meng, et al. Sustained Release of an Essential Oil by a Hybrid Cellulose Nanofiber Foam System[J]. Cellulose, 2020, 27(5): 2709-2721.

      [108]WANG Dong, FENG Xia-ming, ZHANG Li-ping, et al. Cyclotriphosphazene-Bridged Periodic Mesoporous Organosilica-Integrated Cellulose Nanofiber Anisotropic Foam with Highly Flame-Retardant and Thermally Insulating Properties[J]. Chemical Engineering Journal, 2019, 375: 121933.

      [109]HE Si-han, LIU Chao, CHI Xue-wen, et al. Bio-Inspired Lightweight Pulp Foams with Improved Mechanical Property and Flame Retardancy via Borate Cross-Linking[J]. Chemical Engineering Journal, 2019, 371: 34-42.

      Research Progress of Cellulose-based Lightweight Porous Materials

      ZONG Yi-fenga, WANG Ru-yia, YANG Yu-jiea, LIU Yanga,b, ZHAO Huia,b

      (a. College of Light Industry and Food Engineering b. Guangxi Key Laboratory of Clean Pulp and Paper and Pollution Control, Guangxi University, Nanning 530004, China)

      Cellulose-based lightweight porous material has the advantages of light weight, high porosity, and low cost. So they are widely used in adsorption, catalysis, heat insulation and other fields. However, problems such as flammability and poor water resistance limit its scope of application. Compound modification can improve the above shortcomings and give it new characteristics. Therefore, it is necessary to fully understand the functional modification method and the wide application of lightweight porous composite materials. In this paper, by tracking the research and application progress of functional modification of cellulose-based lightweight porous materials at home and abroad, the basic properties and performance of cellulose-based lightweight porous materials are summarized, and the functions of cellulose-based composite lightweight porous materials are analyzed. Chemical modification methods and applications, the opportunities and challenges of cellulose-based composite lightweight porous materials in many fields are introduced in detail. The organic or inorganic materials are combined with cellulose to make lightweight porous materials. These materials can achieve flame retardant, absorption, electromagnetic shielding, electrical conductivity, hydrophobic, antibacterial and other functions, which can broaden the application range of cellulose-based lightweight porous materials in packaging, medical, battery and other fields.

      cellulose; compound material; functionalization

      TS71+1;TB484

      A

      1001-3563(2022)13-0066-13

      10.19554/j.cnki.1001-3563.2022.13.009

      2021?10?26

      國家自然科學基金(22068004,21534007);廣西自然科學基金(2020GXNSFAA159027,2020GXNSFBA159023)

      宗益峰(1997—),男,本科,主攻纖維素輕質多孔材料。

      劉楊(1979—),女,博士,廣西大學副教授,主要研究方向為木質纖維素基功能型先進材料。

      責任編輯:彭颋

      猜你喜歡
      輕質屏蔽纖維素
      把生活調成“屏蔽模式”
      好日子(2022年3期)2022-06-01 06:22:10
      怎一個“輕質”了得
      輕質高強堇青石多孔陶瓷的制備與表征
      陶瓷學報(2021年4期)2021-10-14 08:57:40
      纖維素基多孔相變復合材料研究
      關于重芳烴輕質化與分離的若干思考
      科學家(2021年24期)2021-04-25 16:55:45
      纖維素氣凝膠的制備與應用研究進展
      陶瓷學報(2021年1期)2021-04-13 01:33:02
      朋友圈被屏蔽,十二星座怎么看
      滿足CLASS A++屏蔽性能的MINI RG59集束電纜的研發(fā)
      電線電纜(2017年5期)2017-10-18 00:52:04
      幾乎最佳屏蔽二進序列偶構造方法
      輕質材料彈射模型飛機
      邯郸县| 兴业县| 延庆县| 久治县| 盐池县| 焦作市| 汶川县| 中超| 衢州市| 徐汇区| 吉林省| 汶上县| 达孜县| 新巴尔虎左旗| 北京市| 谢通门县| 昭平县| 青阳县| 松阳县| 竹溪县| 崇礼县| 长岛县| 洛阳市| 利川市| 福建省| 厦门市| 衡阳县| 白沙| 谷城县| 道孚县| 蓬莱市| 辽宁省| 桦南县| 扶余县| 定边县| 双城市| 高淳县| 都兰县| 伊川县| 封丘县| 东兰县|