• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Up/down-conversion luminescence of monoclinic Gd2O3:Er3+nanoparticles prepared by laser ablation in liquid

    2022-08-01 05:59:24HuaWeiDeng鄧華威andDiHuChen陳弟虎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:華威

    Hua-Wei Deng(鄧華威) and Di-Hu Chen(陳弟虎)

    State Key Laboratory of Optoelectronic Materials and Technologies,School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou 510275,China

    Keywords: Gd2O3,nanoparticles,luminescence,laser ablation in liquid

    1. Introduction

    Rare earth luminescent materials have attracted much attention in recent years due to the unique electronic structure and physical properties of rare earth ions.[1–4]At present,rare earth luminescent materials have been widely used in lighting, display and other fields.[5–10]Rare earth-doped gadolinium oxide is a kind of good luminescent material.[11]On the one hand,the physical and chemical properties of gadolinium oxide are stable.[12]On the other hand,gadolinium ions can be easily substituted by other rare earth ions to get controllable luminescence.[13]In addition, the phonon energy of gadolinium oxide is low, which contributes to the efficiency of upconversion luminescence.[14]Due to the unique energy level structure of Er3+ion, Er3+ion possesses both up-conversion and down-conversion luminescence properties.[15,16]For this reason, compared with other rare earth ions, erbium ion may have more applications.Tunable fluorescent color is a requirement in the application of fluorescent materials.[17–19]It is worth to mention that there exist cross relaxation processes among adjacent Er3+ions.[20]Therefore, the electron distribution in corresponding energy levels can be easily tuned by simply adjusting the doping concentration of Er3+ions, and thus getting controllable fluorescence. In addition, applying nanomaterials to bioimaging is popular in recent years.[21–27]Due to the good tissue penetration of up-conversion excitation light,the application of up-conversion fluorescent materials in bio-imaging has attracted much attention.[28,29]Erbium-doped gadolinium oxide is a good kind of up-conversion fluorescent material.[30]

    At present, the studies on monoclinic rare earth-doped gadolinium oxide nanoparticles are rare.[15]The most popular methods for synthesizing monoclinic gadolinium oxide are combustion method and solid-state method.[31]The nanoparticles synthesized by combustion method usually float in the air after burning, which may cause dust pollution. While for solid-state method, it is usually not easy to synthesize nanosized particles. To date,more and more researchers have been dedicating to the research of preparing nanomaterials by laser ablation in liquid(LAL)method.[32–43]Compared with solidstate method,monoclinic gadolinium oxide nanoparticles can be easier to synthesize by LAL.[44]Additionally, nanoparticles synthesized by LAL can be easily collected compared with combustion method because they are dispersed in liquid as they are prepared.

    In this work,erbium-doped monoclinic gadolinium oxide nanoparticles were successfully prepared by LAL technique.The nanoparticles can be used as down-conversion phosphors as well as up-conversion phosphors. We got tunable luminescence by simply adjusting the concentration of erbium. In addition,the results of cytotoxicity and fluorescence imaging of living cells indicate that the material has the potential for applications in bioimaging.

    2. Experimental details

    2.1. Material synthesis

    The detailed method of material preparation has been reported in previous work.[45]There are two steps in the preparation process. The first step is to prepare targets. The raw materials (Gd2O3and Er2O3powders) for preparing the targets were purchased from Aladdin Chemistry(China). First,grind the Gd2O3and Er2O3powders with different atomic ratios(Er/(Gd+Er)=0.5%,2%,5%,10%,20%)in a mortar to make them fully mixed. Then an appropriate amount of polyvinyl alcohol (PVA) glue (10 wt%) was added and mixed with the powders.After the powders were dried,they were compressed into tablets. Finally, the tablets were sintered at 1550°C for 6 hours to make ceramic targets. The second step is to synthesize nanoparticles. The target was immersed in deionized water,and then a beam of pulsed laser(wavelength=532 nm,pulse duration = 5 ns, focal length = 200 mm, pulse power=90 mJ,repetition rate=5 Hz)was focused on the target to ablate the target for 15 minutes. Finally, the obtained colloid solution was collected for further characterization.

    2.2. Characterization

    The morphology of the nanoparticles was observed by using a transmission electron microscope (TEM, FEI Tecnai G2 F30). Dynamic light scattering(DLS)measurements were carried out with an EliteSizer Omni instrument(Brookhaven).The crystal structure of the nanoparticles was characterized by using an x-ray diffraction (XRD) diffractometer (Rigaku,SmartLabx). The fluorescence spectrum and fluorescence lifetime were measured by using a fluorescence spectrometer(FLS980,Edinburgh).

    2.3. Cytotoxicity assay

    RAW264.7 cells which were purchased from Forevergen Biotechnology Co., Ltd (Guangzhou, China) were incubated with different concentrations of Gd2O3:2%Er3+nanoparticles(20 μg/mL,40 μg/mL,80 μg/mL,and 160 μg/mL)and culture media (DMEM, as the negative control) in their logarithmic growth period. All groups were cultured in a cell incubator for 24 hours. Cell viability assay was carried out by using the Cell Counting Kit-8 (CCK-8) colorimetric solution. And the absorbance at 450 nm was measured by using a microplate reader(Multiskan Ex Primary EIA V,ThermoFisher,USA).

    2.4. Fluorescence imaging of cells

    RAW264.7 cells were incubated with the Gd2O3:2%Er3+nanoparticles(100 μg/mL)for 12 hours. After co-incubation,the cells were then washed with PBS solution to remove excess particles and dead cells. Fluorescence imaging of the cells was performed on a two-photon confocal laser scanning microscopy(LSM 710 NLO, Carl Zeiss, Jena, Germany)operating at an excitation wavelength of 980 nm.

    3. Results and discussion

    The crystal structure of the samples prepared by LAL were characterized by XRD. The XRD patterns are shown in Fig.1.

    For samples with Er3+concentration of 0.5% to 10%,the XRD patterns match the standard card of monoclinic gadolinium oxide (PDF#42-1465). While for the sample Gd2O3:20%Er3+, there is obvious impurity phase. By comparing with standard PDF cards, it can be found that the impurity phase matches the cubic gadolinium oxide (PDF#11-0604). The results indicate that the crystal structure is monoclinic phase at lower Er3+concentration, while cubic phase will appear in the case of high Er3+concentration. Figure 2(a)is a TEM image of the typical sample Gd2O3:2%Er3+. It can be seen from Fig.2(a)that the sample is nanosized. According to TEM data, a statistical analysis which is inserted in Fig. 2(a) of 160 particles indicated that the average size of sample 2%Er is 22.2±7.6 nm. The particle size distribution of the nanoparticles in solution was monitored by DLS measurement. As shown in Fig.2(b),the peaks of the particle hydrodynamic diameter distribution of Gd2O3:xEr3+(x=0.5%,2%,5%,10%,20%)nanoparticles locate at 214 nm,286 nm,227 nm,239 nm,and 265 nm respectively.

    Fig.3. Excitation spectrum of Gd2O3:2%Er3+ nanoparticles.

    The typical excitation spectrum of Gd2O3:2%Er3+nanoparticles monitored at 548 nm is shown in Fig.3. There are mainly three characteristic absorption peaks in the excitation spectrum. The absorption peaks at 367 nm, 379 nm,and 408 nm correspond to4I15/2→2G9/2,4I15/2→4G11/2,and4I15/2→2H9/2transitions of Er3+ion, respectively. The absorption at 379 nm is the strongest, therefore, 379 nm was chosen as the excitation wavelength for the study of downconversion luminescence. Figure 4(a) are emission visible light spectra of Gd2O3:xEr (x= 0.5%, 2%, 5%, 10%, and 20%)nanoparticles under the excitation of 379 nm. The emission peaks at 527 nm, 548 nm, and 670 nm correspond to2H11/2→4I15/2,4S3/2→4I15/2, and4F9/2→4I15/2transitions of Er3+ion respectively. The near-infrared emission spectra under the excitation of 379 nm were also measured as shown in Fig. 4(b). The emission peaks at 978 nm and 1540 nm correspond to4I11/2→4I15/2and4I13/2→4I15/2transitions of Er3+ion respectively. In addition,it can be seen from Fig. 4(a) that with the increase of the Er3+ion concentration the intensity ratio of 548-nm emission band to 670-nm emission band(I548nm/I670nm)gradually decreases. Thereby fluorescence color was tuned by simply adjusting the concentration of Er3+ion. This phenomenon can be attributed to the increase of the concentration of Er3+ion. When an ion has been excited, there are two types of de-excitation: radiative transition and nonradiative transition. If the exciton undergoes a radiative transition from excited to lower state,photons will be emitted. In addition to luminescence,there is the possibility of nonradiative de-excitation;that is,a process in which the ion can reach its ground state by a mechanism other than the emission of photons.[46]The main nonradiative transition processes include multiphonon emission and energy transfer.[46]According to Dexter’s energy transfer theory,the dependence onR,whereRis the separation between two ions,of the transfer probability can be written as follows:[47,48]

    wheresis a positive integer taking the values of 6,8,10,and those values correspond to dipole–dipole,dipole–quadrupole,and quadrupole–quadrupole interactions,respectively. Therefore, the probability of energy transfer between erbium ions increases with the erbium ion concentration. Energy transfer processes between same ions can be mainly divided into two kinds of processes, namely general resonant transfer and cross-relaxation which is a special case of nonradiative resonant transfer.[49,50]In case of general resonant transfer, the initial de-excited state of sensitizer and the final excited state of activator are same. Therefore, the emission color does not change because the population of electrons in excited state does not change. In case of cross-relaxation, one of the ions transfers a part of its excitation energy to the other center,different from the general resonant transfer,the initial de-excited state of sensitizer and the final excited state of activator are different in cross-relaxation process. Hence, the population of electrons in some excited states can be changed by crossrelaxation, and the emission color changes accordingly. In our experiment, the ratio of red to green intensity changed significantly with the increase of Er3+ion concentration. In general energy transfer processes between same ions, only the cross-relaxation process results in a significant change in color. Therefore, we consider this experimental phenomenon results from the cross-relaxation caused by the concentration change. There are also some articles have reported the crossrelaxation between Er3+ions and suggested that the change of the red–green intensity ratio with the change of Er ion concentration is caused by cross-relaxation.[20,51–54]The fluorescence lifetime of 548 nm of Gd2O3:xEr (x=0.5%, 2%, 5%,10%, and 20%)nanoparticles under the excitation of 379 nm had been measured.The results are shown in Fig.5.The decay curves conform to double exponential fitting[55]

    whereIis fluorescent intensity which is proportional to the counts in Fig.5,tis decay time,τ1andτ2are fitted lifetimes,I0,A1, andA2are constants. The average lifetime values are calculated by the following formula[55]

    As shown in Fig.5,the average lifetime of characteristic emission peak of Er3+decreases with the increase of the amount of Er3+. The significant change in fluorescence lifetime reflects the strong energy transfer between Er3+ions. From the fitting results, there are two decay rates. One of them reflects the decay of a conventional emission. We suppose the other results from the defects on nanoparticles. It has been reported that the defects on nanoparticles can cause double exponential decay rate.[56]Moreover, the oxide nanoparticles synthesized by laser in liquid usually have many defects.[32]There are many studies that aim to alter materials properties by creating defects using laser ablation in liquid(LAL)technology.[32]Those studies are also called laser defect-engineering in liquid(LDL).[32]Therefore,we suppose that the double exponential decay rate may result from the defects on nanoparticles.

    Fig. 4. (a) Visible emission spectra and (b) near infrared emission spectra of Gd2O3:xEr3+ (x=0.5, 2%, 5%, 10%, 20%)nanoparticles under the excitation of 379 nm.

    The up-conversion visible fluorescence spectra of Gd2O3:xEr (x=0.5%, 2%, 5%, 10%, and 20%) nanoparticles under excitation at 980 nm are shown in Fig.6(a). Three main peaks at 527 nm, 548 nm, and 671 nm are observed.Those emission bands are assigned as the2H11/2→4I15/2,4S3/2→4I15/2,and4F9/2→4I15/2transitions of Er3+ion respectively. The near-infrared emission spectra under the excitation of 980 nm were also measured as shown in Fig. 6(b).Since the measurement range cannot include the excitation wavelength, the emission spectrum from 900 nm to 1100 nm was not measured under 980-nm excitation. The emission peak at 1540 nm correspond to4I13/2→4I15/2transition of Er3+ion.It can be seen from the up-conversion emission spectra of all samples that with the increase of the Er3+ion concentration the intensity ratio of 548-nm emission band to 671-nm emission band (I548nm/I670nm) gradually decreases. In our opinion, this phenomenon is caused by the cross-relaxation process between erbium ions. It has been reported that the up-conversion emission intensity and pump power follow the following relationship[57]

    whereIis the emission intensity,Pis the pump power,andnis the number of the photons involved in up-conversion photoluminescence process. The value ofnis the slop of the linear fitting equation which can be obtained by fitting the plots of lnIversus lnP. As shown in Fig. 7, the value ofnfor green emission band at 548 nm is 1.79 and the value ofnfor red emission band at 671 nm is 1.71. The results that the fitted n is close to two suggest that two photons absorption process is involved in green and red up-conversion photoluminescence processes. This deviation from the expected phenomenon is due to the saturation effects.[58]The valuen=2 is the ideal value for pure saturation processes. The number of the luminescence center is a constant and does not change with the pump power. Therefore,the saturation effect is obviously under higher power excitation.[59]In addition, it was reported that higher pump power can increase the competition between linear decay and the upconversion process of the intermediate excited states,which results in a reduced slope.[59,60]

    Fig.5. Decay curves and lifetime values of Gd2O3:xEr3+(x=0.5,2%,5%,10%,20%)nanoparticles(λex=379 nm,λem=548 nm).

    Fig. 6. (a) Visible emission spectra and (b) near-infrared emission spectra of Gd2O3:xEr3+ (x=0.5, 2%, 5%, 10%, 20%)nanoparticles under the excitation of 980 nm.

    Fig.7.Double logarithmic plots of up-conversion emission intensities versus pump powers in Gd2O3:2%Er3+ nanoparticles under 980-nm excitation.

    In order to better understand the luminescence process of up-conversion and down-conversion processes, the energy level diagram of Er3+ions and the possible energy transfer processes are shown in Fig.8. The possible down-conversion process is shown in the left side of Fig.8. Under the excitation of 379 nm,ground-state(4I15/2)electrons of Er3+ions absorb photons and populate the excited states(4G11/2).The electrons in the excitedstate4G11/2can easily relax to the lower excited states (2H11/2,4S3/2, and4F9/2) via no-radiative relaxation process. Finally, the electrons transfer from excited state to ground state through photon emission. For the up-conversion luminescence under excitation of 980 nm,there are mainly two luminescence processes. One is green emission process. First,the ground state electron transfers to the4I11/2state through ground state absorption (GSA), and then the electron in the4I11/2state absorbs another photon and transfers to the4F7/2state. Then, the electron in the4F7/2state transfers to the2H11/2or4S3/2states through non-radiative relaxation. Finally, the electron transfers from the2H11/2or4S3/2states back to the ground state and the energy is released in the form of green luminescence. Another luminescence process is red emission process. The electron in4I11/2state transfers to the lower4I13/2state through non-radiative relaxation,and then it transfers to the4F9/2state by absorbing another photon. Finally, the electron transfers back to the ground state through photon emission. As the concentration of Er3+ions increases,the probability of cross-relaxation between adjacent Er3+ions will increase,thereby the relative intensity of red emission increases and the relative intensity of green emission decreases.For the up-conversion process,the number of electrons occupying the4I11/2energy level greatly increases due to the GSA process. In this case, the cross-relaxation process is mainly4F7/2,4I11/2→4F9/2,4F9/2.

    Fig. 8. The possible scheme of energy transfer process of Gd2O3:Er3+nanoparticles.

    As shown in Fig.6(a),there are five samples,and the visible luminescence intensity of two samples(sample 10%Er and sample 20%Er) is close to that of sample 2%Er. Therefore,we think the visible fluorescence imaging of sample 2%Er is representative and may show the upconversion fluorescence imaging capability of most samples. So, we choose sample 2%Er for fluorescence imaging application. To explore the feasibility of using Gd2O3:Er3+nanoparticles for biological imaging, firstly the biocompatibility of the Gd2O3:Er3+nanoparticles should be evaluated. As shown in Fig. 9,RAW264.7 cells are employed to assay the cells viability of the Gd2O3:2%Er3+nanoparticles. After 24 hours of incubation with RAW264.7 cell,the nanoparticles had no significant effect on the cell viability of RAW264.7 cell. This shows that the cytotoxicity of the products is low. In order to test the capability of the provided Gd2O3:Er3+nanoparticles for bio-imaging,two-photon fluorescent confocal imaging experiment was conducted. Figures 10(a), 10(b), and 10(c) are the bright-filed image,fluorescence image,and merged image of RAW264.7 cells incubated with Gd2O3:2%Er3+nanoparticles respectively. It is obvious that nanoparticles can be swallowed by cells, and no significant damage of cells was found. Additionally, nanoparticles in cells can emit fluorescence under the irradiation of 980-nm laser. Therefore, the provided Gd2O3:Er3+nanoparticle is a potential candidate for bio-imaging.

    In general,color could be represented by the Commission International del’Eclairage (CIE) 1931 chromaticity coordinates.The color coordinates for the phosphors were calculated based on the corresponding emission spectra. Figure 11 is the CIE chromaticity diagram of Gd2O3:xEr(x=0.5%,2%,5%,10%, 20%) under the excitation of 379 nm or 980 nm. As shown in Fig. 11, with the increase of erbium concentration,the color gradually changes from green to orange. The results show that the fluorescent color can be tuned by simply controlling the Er concentration,and the LAL-prepared nanoparticles could be considered as a promising candidate for luminescent material.

    Fig.9. Normalized viability of RAW264.7 cells co-incubated with different concentrations of Gd2O3:2%Er3+ nanoparticles. The mass in this figure is the mass of nanoparticles,means±s.d.,n=8.

    Fig. 10. Fluorescence imaging of RAW264.7 cells incubated with Gd2O3:2%Er3+ nanoparticles. (a) Bright field image; (b) fluorescence image;(c)merged image.

    Fig.11. CIE chromaticity coordinates for Gd2O3:xEr3+ (x=0.5,2%,5%,10%,20%)under 379-nm and 980-nm excitations.

    4. Conclusion

    In summary, monoclinic Er3+-doped Gd2O3nanoparticles were successfully synthesized by LAL technique. The effect of the concentration of Er3+ion on the fluorescence properties has been studied. The fluorescent color can be tuned by controlling the amount of erbium. For cellular fluorescence imaging, the cytotoxicity is low, and the fluorescence in cell is strong enough. The results indicate that the Gd2O3:Er3+nanoparticles synthesized by LAL technique are promising candidates for bio-imaging or other fields that require controllable fluorescence.

    猜你喜歡
    華威
    張?zhí)煲怼度A威先生》的敘述人稱與經(jīng)典生成
    藝術(shù)家(2023年2期)2023-09-13 10:13:09
    中國重汽湖北華威公司:再獲“高新技術(shù)企業(yè)”榮譽
    商用汽車(2020年6期)2020-08-14 06:00:26
    紅門贊
    孔華威:用儒家之道“武裝”創(chuàng)業(yè)者
    華東科技(2016年10期)2016-11-11 06:17:49
    睡眠止疼術(shù)
    20世紀40年代官場中的阿Q
    雪蓮(2015年9期)2015-12-15 20:50:54
    華威先生(節(jié)選)
    英國小鮮肉熱心做慈善
    汽車生活(2014年11期)2014-12-03 12:51:05
    《華威先生》反諷情境下的悖論敘事
    羅文倩 最執(zhí)著的事
    投資與合作(2009年3期)2009-05-08 10:02:10
    午夜日韩欧美国产| 麻豆一二三区av精品| 国产精品亚洲美女久久久| 亚洲国产高清在线一区二区三| 久久人人精品亚洲av| 99re在线观看精品视频| 在线观看美女被高潮喷水网站 | 成人欧美大片| 久久久久久久久中文| 中文字幕人成人乱码亚洲影| 日韩 欧美 亚洲 中文字幕| 亚洲精品在线美女| 老汉色∧v一级毛片| 日韩欧美 国产精品| 好男人电影高清在线观看| 成人av一区二区三区在线看| 久久精品91蜜桃| 精品国产超薄肉色丝袜足j| 大型黄色视频在线免费观看| 18禁黄网站禁片免费观看直播| 国产蜜桃级精品一区二区三区| 日本精品一区二区三区蜜桃| 亚洲精品美女久久久久99蜜臀| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美人成| 亚洲欧美日韩高清专用| 亚洲 欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 啦啦啦免费观看视频1| 欧美性猛交╳xxx乱大交人| 亚洲成人久久爱视频| 91老司机精品| 亚洲人成网站在线播放欧美日韩| 免费在线观看完整版高清| 精品久久久久久久末码| 99热这里只有精品一区 | 香蕉久久夜色| 精华霜和精华液先用哪个| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 两个人的视频大全免费| 欧美一区二区国产精品久久精品 | 久热爱精品视频在线9| 男女下面进入的视频免费午夜| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| av中文乱码字幕在线| 床上黄色一级片| www.www免费av| 亚洲第一电影网av| 亚洲精品在线美女| 久久精品综合一区二区三区| 成年免费大片在线观看| 精品高清国产在线一区| 国产精品久久久久久久电影 | 国产精品久久久av美女十八| 亚洲国产欧美一区二区综合| 丰满人妻熟妇乱又伦精品不卡| 国语自产精品视频在线第100页| 国产不卡一卡二| 亚洲精品中文字幕一二三四区| 欧美3d第一页| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| а√天堂www在线а√下载| 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区| 国产真人三级小视频在线观看| 亚洲七黄色美女视频| www国产在线视频色| 精品高清国产在线一区| 啦啦啦免费观看视频1| 亚洲精品中文字幕一二三四区| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 免费看a级黄色片| 舔av片在线| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 亚洲 国产 在线| 亚洲精品美女久久av网站| 麻豆国产av国片精品| 最近最新中文字幕大全电影3| 午夜激情av网站| 男人舔女人下体高潮全视频| 制服丝袜大香蕉在线| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| 此物有八面人人有两片| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| 日本黄大片高清| 88av欧美| 好男人在线观看高清免费视频| 怎么达到女性高潮| 村上凉子中文字幕在线| a在线观看视频网站| 高清在线国产一区| 日本黄大片高清| 琪琪午夜伦伦电影理论片6080| 午夜激情福利司机影院| 亚洲专区字幕在线| 国产一区二区在线观看日韩 | 国产午夜精品久久久久久| 无人区码免费观看不卡| 国内精品一区二区在线观看| 亚洲,欧美精品.| 真人一进一出gif抽搐免费| 中文字幕最新亚洲高清| 亚洲熟女毛片儿| 国产一区二区三区视频了| 丰满人妻一区二区三区视频av | 美女 人体艺术 gogo| 成人精品一区二区免费| 午夜a级毛片| 国模一区二区三区四区视频 | 国产一区二区三区视频了| 精品乱码久久久久久99久播| 最近视频中文字幕2019在线8| 国产精品久久久久久人妻精品电影| 欧美zozozo另类| a级毛片在线看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看成人毛片| 国内久久婷婷六月综合欲色啪| netflix在线观看网站| 亚洲一区二区三区色噜噜| 久久亚洲精品不卡| 亚洲中文av在线| 这个男人来自地球电影免费观看| 女人被狂操c到高潮| 成人精品一区二区免费| 身体一侧抽搐| 色综合亚洲欧美另类图片| 在线观看美女被高潮喷水网站 | 国产亚洲精品一区二区www| 成人三级黄色视频| 青草久久国产| 一本综合久久免费| 亚洲自拍偷在线| 久久中文字幕人妻熟女| 久久中文字幕一级| tocl精华| 久久久久久大精品| 午夜免费激情av| 伦理电影免费视频| 国产精品一区二区三区四区免费观看 | 国产野战对白在线观看| 久久中文看片网| 18美女黄网站色大片免费观看| 99热这里只有精品一区 | 国内揄拍国产精品人妻在线| 欧美黄色淫秽网站| 亚洲av中文字字幕乱码综合| 黄色 视频免费看| 国产蜜桃级精品一区二区三区| 一夜夜www| 精品一区二区三区四区五区乱码| 中文字幕久久专区| 亚洲电影在线观看av| 黄色女人牲交| 99国产精品一区二区蜜桃av| 欧美黄色淫秽网站| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看 | 日韩欧美在线乱码| 日本 av在线| 午夜成年电影在线免费观看| 亚洲国产欧美人成| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 神马国产精品三级电影在线观看 | 亚洲成人久久爱视频| 两个人看的免费小视频| 最近最新免费中文字幕在线| 精品午夜福利视频在线观看一区| 9191精品国产免费久久| 我的老师免费观看完整版| 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看 | 色综合亚洲欧美另类图片| 国模一区二区三区四区视频 | 国产激情欧美一区二区| 悠悠久久av| 19禁男女啪啪无遮挡网站| 首页视频小说图片口味搜索| 亚洲成av人片在线播放无| 身体一侧抽搐| 69av精品久久久久久| 国产精品永久免费网站| 18禁观看日本| 大型av网站在线播放| 中文字幕久久专区| 国产蜜桃级精品一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 性色av乱码一区二区三区2| 久9热在线精品视频| 亚洲天堂国产精品一区在线| 日日摸夜夜添夜夜添小说| 精品国产超薄肉色丝袜足j| 国产精品免费一区二区三区在线| 美女黄网站色视频| 男女视频在线观看网站免费 | 国产精品亚洲美女久久久| 999久久久国产精品视频| 久久精品综合一区二区三区| 亚洲人成伊人成综合网2020| netflix在线观看网站| 亚洲全国av大片| 嫩草影院精品99| 好男人在线观看高清免费视频| 成人18禁高潮啪啪吃奶动态图| 亚洲最大成人中文| 中文字幕人成人乱码亚洲影| 大型av网站在线播放| 人妻久久中文字幕网| www日本在线高清视频| 亚洲自拍偷在线| 国产伦人伦偷精品视频| 女人被狂操c到高潮| 9191精品国产免费久久| 婷婷精品国产亚洲av在线| 国产三级黄色录像| 很黄的视频免费| 中文字幕av在线有码专区| 日本五十路高清| 99国产综合亚洲精品| 国产69精品久久久久777片 | 亚洲 欧美 日韩 在线 免费| 国产私拍福利视频在线观看| 在线观看午夜福利视频| 久久久久久久久免费视频了| 两个人的视频大全免费| 日本免费a在线| 黄色a级毛片大全视频| 午夜两性在线视频| 99国产综合亚洲精品| 黄色a级毛片大全视频| 五月伊人婷婷丁香| 欧美丝袜亚洲另类 | 亚洲18禁久久av| 免费看日本二区| 黄色 视频免费看| 欧美黑人巨大hd| 中文字幕高清在线视频| 国产91精品成人一区二区三区| 国产69精品久久久久777片 | 99国产综合亚洲精品| 欧美一级a爱片免费观看看 | 成人一区二区视频在线观看| 国产欧美日韩一区二区三| 午夜福利视频1000在线观看| 国产午夜精品论理片| 波多野结衣高清作品| 精品日产1卡2卡| 午夜福利高清视频| 桃红色精品国产亚洲av| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 国内精品久久久久精免费| 国产精品av视频在线免费观看| 国产日本99.免费观看| 999精品在线视频| 久久久久久久精品吃奶| 超碰成人久久| 国产一区二区激情短视频| 午夜久久久久精精品| 国产野战对白在线观看| 精品一区二区三区四区五区乱码| 18禁观看日本| 在线观看免费午夜福利视频| 妹子高潮喷水视频| 日本一二三区视频观看| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕熟女人妻在线| 久久国产精品人妻蜜桃| 黄色 视频免费看| 一个人免费在线观看电影 | 又粗又爽又猛毛片免费看| 免费看十八禁软件| 国产精品免费视频内射| 日本a在线网址| 亚洲成av人片在线播放无| 一二三四社区在线视频社区8| 国内久久婷婷六月综合欲色啪| 亚洲国产精品999在线| 99久久国产精品久久久| 大型黄色视频在线免费观看| 国产熟女午夜一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 久久久久免费精品人妻一区二区| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| 男人舔女人下体高潮全视频| 校园春色视频在线观看| 国产三级在线视频| 亚洲免费av在线视频| 变态另类成人亚洲欧美熟女| 五月玫瑰六月丁香| 可以在线观看的亚洲视频| 精品福利观看| 欧美黑人巨大hd| 日韩国内少妇激情av| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| 成年免费大片在线观看| www.自偷自拍.com| 久久这里只有精品19| 日本黄大片高清| 嫁个100分男人电影在线观看| 婷婷亚洲欧美| 免费搜索国产男女视频| 欧美激情久久久久久爽电影| 51午夜福利影视在线观看| 成人精品一区二区免费| 黄色女人牲交| 午夜激情福利司机影院| 女生性感内裤真人,穿戴方法视频| 日本a在线网址| 91大片在线观看| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 一个人免费在线观看的高清视频| 国产成人欧美在线观看| av免费在线观看网站| 亚洲18禁久久av| 真人一进一出gif抽搐免费| 两个人免费观看高清视频| 18禁国产床啪视频网站| 两个人免费观看高清视频| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 五月伊人婷婷丁香| 欧美成人一区二区免费高清观看 | 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看| 国产午夜精品久久久久久| 亚洲人成伊人成综合网2020| 熟妇人妻久久中文字幕3abv| 国产精品av视频在线免费观看| 又大又爽又粗| 欧美久久黑人一区二区| 国产av在哪里看| 亚洲五月天丁香| 久久久久久久久中文| 免费av毛片视频| 老司机午夜十八禁免费视频| av福利片在线观看| or卡值多少钱| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 久久精品91蜜桃| 一二三四社区在线视频社区8| 中文字幕精品亚洲无线码一区| 久久精品国产综合久久久| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆| 很黄的视频免费| 亚洲中文日韩欧美视频| 国产精品久久久久久精品电影| 日韩有码中文字幕| 国产精品乱码一区二三区的特点| 亚洲精品美女久久av网站| 操出白浆在线播放| 成人高潮视频无遮挡免费网站| 久久国产精品影院| 国产精品乱码一区二三区的特点| 一区二区三区高清视频在线| 欧美一区二区国产精品久久精品 | 美女扒开内裤让男人捅视频| 国产精品免费视频内射| 亚洲av成人av| 97超级碰碰碰精品色视频在线观看| 一本大道久久a久久精品| 日韩精品免费视频一区二区三区| 精品日产1卡2卡| 99久久精品国产亚洲精品| 岛国在线观看网站| 久久久久久久久久黄片| 免费在线观看黄色视频的| 精品久久久久久久人妻蜜臀av| 国产不卡一卡二| tocl精华| 国产精品亚洲美女久久久| 女人高潮潮喷娇喘18禁视频| videosex国产| www国产在线视频色| 老汉色∧v一级毛片| 午夜福利在线观看吧| 怎么达到女性高潮| 日本免费一区二区三区高清不卡| 啪啪无遮挡十八禁网站| 男男h啪啪无遮挡| 亚洲激情在线av| 亚洲欧美激情综合另类| 老司机靠b影院| 中亚洲国语对白在线视频| 午夜日韩欧美国产| 五月玫瑰六月丁香| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| bbb黄色大片| 激情在线观看视频在线高清| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 欧美日韩乱码在线| 校园春色视频在线观看| 身体一侧抽搐| 亚洲成人国产一区在线观看| av福利片在线| 免费在线观看日本一区| 男人舔女人的私密视频| 啪啪无遮挡十八禁网站| 久久久久久久久中文| 久久精品国产清高在天天线| 老司机午夜十八禁免费视频| 午夜激情av网站| 最近视频中文字幕2019在线8| 欧美色欧美亚洲另类二区| 悠悠久久av| a在线观看视频网站| 无限看片的www在线观看| 九色成人免费人妻av| 特大巨黑吊av在线直播| 少妇粗大呻吟视频| a级毛片在线看网站| 欧美日本视频| 国产高清视频在线观看网站| 特大巨黑吊av在线直播| 亚洲全国av大片| 日韩国内少妇激情av| 久久国产乱子伦精品免费另类| 精品久久蜜臀av无| 亚洲乱码一区二区免费版| 99久久国产精品久久久| 在线视频色国产色| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 婷婷精品国产亚洲av| 国产高清有码在线观看视频 | 无遮挡黄片免费观看| 一进一出抽搐动态| 日本黄色视频三级网站网址| 中亚洲国语对白在线视频| 小说图片视频综合网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产野战对白在线观看| 欧美国产日韩亚洲一区| 欧美黑人欧美精品刺激| 久久 成人 亚洲| 亚洲av电影在线进入| 亚洲一区二区三区不卡视频| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| av超薄肉色丝袜交足视频| 精品不卡国产一区二区三区| av福利片在线| 午夜福利18| 欧洲精品卡2卡3卡4卡5卡区| 长腿黑丝高跟| 韩国av一区二区三区四区| 俄罗斯特黄特色一大片| 国产激情欧美一区二区| 久久中文看片网| 亚洲精品国产一区二区精华液| 国产不卡一卡二| 天堂影院成人在线观看| 视频区欧美日本亚洲| 亚洲自偷自拍图片 自拍| av超薄肉色丝袜交足视频| 12—13女人毛片做爰片一| 97超级碰碰碰精品色视频在线观看| 亚洲精品久久成人aⅴ小说| 精品久久久久久久久久久久久| 欧美午夜高清在线| 久久午夜综合久久蜜桃| 亚洲激情在线av| 欧美大码av| 99精品欧美一区二区三区四区| 正在播放国产对白刺激| 男女下面进入的视频免费午夜| 中出人妻视频一区二区| 久久国产乱子伦精品免费另类| 亚洲免费av在线视频| 亚洲乱码一区二区免费版| 国产69精品久久久久777片 | 色综合亚洲欧美另类图片| 91大片在线观看| 免费在线观看完整版高清| 亚洲人成网站高清观看| 亚洲男人天堂网一区| 99热这里只有是精品50| 欧美黑人欧美精品刺激| 怎么达到女性高潮| 久久久水蜜桃国产精品网| 黄色毛片三级朝国网站| 久久精品影院6| 国产精品野战在线观看| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区| 波多野结衣巨乳人妻| a级毛片a级免费在线| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 免费av毛片视频| 窝窝影院91人妻| 大型av网站在线播放| 免费在线观看影片大全网站| 欧美成人免费av一区二区三区| 国产精品一区二区三区四区久久| 亚洲一区二区三区不卡视频| 国产亚洲av嫩草精品影院| 亚洲自拍偷在线| 99热这里只有是精品50| 男女之事视频高清在线观看| 国产精品免费视频内射| 国内精品久久久久久久电影| 少妇被粗大的猛进出69影院| 亚洲成av人片在线播放无| 久久精品成人免费网站| 亚洲真实伦在线观看| 亚洲avbb在线观看| 欧美一区二区国产精品久久精品 | 亚洲av日韩精品久久久久久密| 国产熟女xx| cao死你这个sao货| 18禁观看日本| 国产av一区在线观看免费| av有码第一页| 在线a可以看的网站| 欧美色欧美亚洲另类二区| 宅男免费午夜| 国产午夜精品论理片| 给我免费播放毛片高清在线观看| 搡老岳熟女国产| 国产99久久九九免费精品| 久久精品国产亚洲av高清一级| 两个人的视频大全免费| 亚洲国产中文字幕在线视频| a级毛片a级免费在线| 久久香蕉精品热| 国产成人欧美在线观看| 99在线人妻在线中文字幕| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| 高清毛片免费观看视频网站| 亚洲真实伦在线观看| 国产精品一区二区免费欧美| 久久精品国产亚洲av高清一级| 久久久久久九九精品二区国产 | АⅤ资源中文在线天堂| 老司机在亚洲福利影院| 日本撒尿小便嘘嘘汇集6| 国产精品一及| 欧美 亚洲 国产 日韩一| 成人av在线播放网站| 男女下面进入的视频免费午夜| 看黄色毛片网站| 国产成人精品久久二区二区91| 国产视频一区二区在线看| 99久久国产精品久久久| 男女做爰动态图高潮gif福利片| 久久精品国产综合久久久| 两性夫妻黄色片| avwww免费| 久久精品国产综合久久久| 成年人黄色毛片网站| 啦啦啦免费观看视频1| 一级毛片高清免费大全| 欧美成人一区二区免费高清观看 | 岛国在线免费视频观看| 又粗又爽又猛毛片免费看| 最新美女视频免费是黄的| 日日干狠狠操夜夜爽| 日韩精品青青久久久久久| 老汉色av国产亚洲站长工具| 欧美绝顶高潮抽搐喷水| 久9热在线精品视频| 国产免费av片在线观看野外av| 欧美高清成人免费视频www| 成年人黄色毛片网站| 日本 av在线| 欧美日韩国产亚洲二区| 精品熟女少妇八av免费久了| 久久精品国产清高在天天线| www日本在线高清视频| 非洲黑人性xxxx精品又粗又长| 深夜精品福利| 国产成+人综合+亚洲专区| 在线观看免费午夜福利视频| 国产91精品成人一区二区三区| 在线十欧美十亚洲十日本专区| 热99re8久久精品国产| 国产精品,欧美在线| 国产精品一区二区三区四区免费观看 |