• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Control of Heterogeneous-Susceptible-Exposed-Infectious-Recovered-Susceptible Malware Propagation Model in Heterogeneous Degree-Based Wireless Sensor Networks

    2022-08-08 05:47:38ZHANGHongSHENShigen沈士根WUGuowen吳國文CAOQiying曹奇英XUHongyun許洪云
    關(guān)鍵詞:吳國

    ZHANG Hong(張 紅), SHEN Shigen(沈士根), WU Guowen(吳國文),CAO Qiying(曹奇英), XU Hongyun(許洪云)

    1 School of Computer Science and Technology, Donghua University, Shanghai 201620, China 2 Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China 3 Faculty of Business Information, Shanghai Business School, Shanghai 201400, China

    Abstract: Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation, because of their low configuration and weak defense mechanism. Therefore, an optimality system for HWSNs is developed to suppress malware propagation in this paper. Firstly, a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs. Secondly, the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved, and then an optimal control strategy for the problem is derived by the optimal control theory. Thirdly, the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle, and the corresponding optimality system is derived. Finally, the effectiveness of the optimality system is validated by the experimental simulations, and the results show that the infectious HSNs will fall to an extremely low level at a low cost.

    Key words: heterogeneous wireless sensor network(HWSN); malware propagation; optimal control; Pontryagin’s minimum principle

    Introduction

    Heterogeneous wireless sensor networks(HWSNs)are a kind of wireless sensor networks(WSNs),composed of a great many of resource constrained and heterogeneous sensor nodes(HSNs)to detect physical environmental conditions.These HSNs have different computing resources, energy, and communication, and that HWSNs have the advantages of strong pertinence, high flexibility, and low cost[1].With these characteristics, HWSNs thus have been deployed in many practical applications, such as smart life, biological medicine, environmental monitoring, and military[2].

    In HWSNs, there exists the failure of HSNs caused by malware, which is an application with malicious intent, ruining the normal work of HWSNs by injecting malicious data, blocking communication channels, or occupying computing units.Besides, the HSNs systems have no strong hardware and software with limited resources, which make the defense mechanism weak, so that the malware in HWSNs is prone to propagation[3-4].To solve this problem, many researchers have studied the methods and processes of malware propagation in HWSNs.For example, Illiano and Lupu[5]presented many methods of malicious data injection in WSNs.Ho[6]presented on demand software-attestation based scheme to defend against worm propagation in WSNs.

    The propagation process of malware in HWSNs is similar to that of diseases in human populations[7], and thus epidemiology is commonly applied to study malware propagation.The classic epidemic models include susceptible-infectious(SI), susceptible-infectious-susceptible(SIS), and susceptible-infectious-recovered(SIR)[8-10].In this paper, we propose a heterogeneous susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model, containing statesS,E,I,Rto describe all the states of HSNs infected by malware.We add the statesEandSto the classical epidemic model SIR.Because some malware may have an incubation period in reality.That is to say, when HSNs are infected by malware, they may propagate malware to other HSNs with delay.Besides, when the recovered HSNs encounter unknown malware, they usually lack of immunity, and thus the state will change fromRtoS.

    There are generally two ways to solve the problem with malware propagation in HWSNs.One is based on the qualitative analysis[11-13], such as proving the existence of equilibrium points and attaining the basic reproduction number governing the stability of the equilibrium points; the other is based on the optimal control theory[14-17], which is defined by an optimal strategy to achieve a low level of infectious HSNs at a low cost.The second way is more suitable for solving the problem of active defense malware propagation in HWSNs.In this paper, we thus apply it to suppress malware propagation in HWSNs by defining a dynamic optimal control strategy.Using the communication channels of HWSNs, the patches corresponding to malware can be sent to some infectious HSNs to defend their systems, which are effective in enhancing the overall defense capability of HWSNs.

    Our contributions are summarized as follows.

    (1)An HSEIRS model is proposed, which is the major work to describe the state dynamics of HSNs in HWSNs.

    (2)The existence of an optimal control problem based on the HSEIRS model is proved, and then an optimal control strategy for the problem is derived using the optimal control theory.

    (3)Using the Pontryagin’s minimum principle, the optimal control strategy based on the HSEIRS model is transformed into the corresponding Hamiltonian, and an optimality system based on the HSEIRS model is derived.

    The difficulty of this paper lies in proving the existence of an optimal control problem based on the HSEIRS model, and deriving the optimality system based on the HSEIRS model.

    The rest of the paper is presented as follows.In section 1, the related works are reviewed.In section 2, an HSEIRS model is proposed.In section 3, an optimality system based on the HSEIRS model is derived, and the theoretical analysis of the optimization problem is presented.In section 4, a calculation algorithm is presented to validate the optimality system and the results of data analyses are also shown using the relevant parameters.Finally, the conclusions of the paper are given.

    1 Related Works

    Many researchers have illustrated various extended epidemic models for WSNs.For example, a susceptible-exposed-infectious-susceptible-recovered-vaccination(SEIRSV)model containing the statesS,E(exposed),I,R, andV(vaccination)[18]; a susceptible-infected-immunized(SII)model[19]; a worm propagation model considering the spatial-temporal perspective[20]; a susceptible-active-dormant-immune(SADI)model considering the hierarchical topology structure[21]; and a susceptible-infected-susceptible-vaccinated(SISV)model[22].

    Furthermore, various methods have been presented to solve the problems with malware propagation in WSNs.Liuetal.[23]used the stochastic game to propose a method for WSNs to predict the probability of malware adopting the spread behavior.Shenetal.[24]developed traditional epidemic theory and constructed a malware propagation model by differential equations to represent the dynamics between states.They considered HWSNs and set up a dependability assessment mechanism for HWSNs with malware propagation[25].They also considered a clustered WSNs under epidemic-malware propagation conditions[26].Jiangetal.[27]established a new attack-defense game based on Stackelberg game.Acaralietal.[28]thought of the epidemic modeling to the Internet of things(IOT)networks consisting of WSNs.Wangetal.[29]proposed a method using the pulse differential equation and the epidemic theory for WSNs preventing from malware propagation.Shenetal.[30]proposed a malware detection infrastructure realized by an intrusion detection system(IDS)with cloud and fog computing to preserve the privacy of smart objects in the IOT networks and suppress malware propagation.

    In addition, some researchers have applied the optimal control theory to study the infected networks.Zhangetal.[31]proposed a time-varying control mechanism of an SIQRS epidemic model of the network in terms of vaccination, quarantine and treatment by the optimal control theory.Xuetal.[32]proposed a novel SIVRS mathematical model for epidemic spreading based on complex networks, where an optimal control problem was formulated to maximize the recovered agents with the limited resource.Dongetal.[33]presented a general formulation for the optimal control problem to a class of fuzzy probability differential systems relating to SIR and SEIR epidemic models.Darajatetal.[34]discussed an optimal control on the spread of SLBS computer virus model.Zhang and Huang[35]solved an optimal control problem for the combined impact of reinstalling system and network topology on the spread of computer viruses based on scale-free networks.Ganetal.[36]proposed a novel dynamical model with an external compartment to control the level of infected computers based on the optimal control theory.Bietal.[37]addressed the development of a cost effective dynamic control strategy of disruptive viruses.Yangetal.[38]presented the optimal control problem for capturing the optimal dynamical immunization based on a controlled heterogeneous node-based SIRS model.

    The dynamical optimal control strategy based on HWSNs has not been worked out yet.The first issue is how to characterize the feature of HSNs in infected HWSNs; the second issue is how to formulate the optimal control problem with installing effective antivirus programs for infectious HSNs.Here, we focus on the first issue by proposing an HSEIRS model based on epidemiology.After that, we handle the second issue by deriving the optimality system based on the Pontryagin’s minimum principle, which is proved to be effective by experimental simulations and data analysis.

    2 Description of HSEIRS Model

    From the perspective of network topology, HSNs are divided into two categories.One is data nodes randomly distributed in the detection area, which are responsible for collecting and transmitting data; the other is gateway nodes, which are responsible for aggregating data and transmitting control information.Obviously, the gateway nodes are better than the data nodes in terms of the processing capacity, storage capacity and calculation capacity.In this paper, we characterize HSNs on the basis of the heterogeneity of the degrees.According to the degree number of an HSN, they are divided intoMgroups, whereMmeans the number of HSN groups, the HSNs have the same degree in each group.For simplicity, we identify the degree of HSN groupi∈{1, 2, …,M} withi∈{1, 2, …,M}, and letSi(t),Ei(t),Ii(t), andRi(t)be the probabilities of the HSN groupi∈{1, 2, …,M} in statesS,E,I, andRat timet, respectively.As shown in Fig.1, according to the degree of an HSN group, all HSNs can be divided into group 1, group 3 and group 4.

    Fig.1 HWSNs topology

    In terms of the other malware propagation models, we assume that the initial probability of HSN groupi∈{1, 2, …,M} in stateIisp,i.e.,

    Ii(0)=p, 0

    (1)

    We also assume that

    Ei(0)=Ri(0)=0.

    (2)

    In this manner, we obtain

    Si(0)=1-p.

    (3)

    (4)

    whereBi(t)denotes the probability of a susceptible HSN in groupiencountering infectious HSNs, denotes the average degree of the HWSNs,δidenotes the probability of an HSN with degreei, andγidenotes the infectious ability of an HSN with degreei.Naturally, these parameters satisfy

    (5)

    and

    (6)

    According to the characteristics of HSNs, we construct a state diagram about the behaviors of HSNs in HWSNs.In the state diagram, there is one state from five possible states at a certain time for an HSN.Specifically, if an HSN is in stateSat timet, it means that it is prone to being infected by malware but has not been infected yet; if it is in stateEat timet, it means that it has been infected by malware, but cannot propagate malware to its adjacent nodes by transmitting data or control information; if it is in stateIat timet, it denotes that it has been infected by malware and can propagate the malware to its adjacent nodes by transmitting data or control information; if it is in stateRat timet, it denotes that it is immune to malware.In addition, if it is in stateDat timet, it denotes that it loses all functions, as it has either entirely consumed its energy or been damaged by malware.

    Fig.2 State diagram for an HSN

    Motivated by the above, we propose the following HSEIRS model with delay timeτ, wherepdenotes the initial fraction of HSN groupiin stateI.

    (7)

    (8)

    (9)

    (10)

    subject to

    (11)

    3 Optimal Control Strategy Based on HSEIRS Model

    In this section, the sufficient and necessary conditions of the optimal control strategy are presented.

    With regard to installing effective antivirus programs for infectious HSNs belonging to groupi, we adopt the central patch allocation strategy.An HSN in stateIbelonging to groupiis installed effective antivirus programs and becomes recovered with probabilityθi(t)per unit time.In order to describeθi(t)clearly, let us make some assumptions on theθi(t).

    (a)Fori∈{1, 2,…,M},θi(t)∈L2[0,tf].

    (b)θi(t)is measurable.

    (d)Letθi(·)=(θ1(·),θ2(·),…,θM(·)).

    From these facts, we now consider an optimal control problem to minimize the objective function:

    (12)

    satisfying

    (13)

    subject to

    Si(σ)>0,Ei(σ)>0,Ii(σ)>0,Ri(σ)>0.

    (14)

    whereσ∈[-τ, 0]denotes the admissible time in the incubation period.

    In order to find an optimality system, we firstly find the Lagrange and Hamiltonian for the optimal control problem.In fact, the Lagrange of the optimal control problem is given by

    (15)

    whereξdenotes the cost of installing effective antivirus programs for infectious HSNs, and it is a small positive constant.To find the optimal control function for the optimal control problem, we define the corresponding Hamiltonian as

    (16)

    where

    (17)

    which are the adjoint functions of the optimal control problem.

    3.1 Existence of an optimal control problem based on HSEIRS model

    In order to prove the existence of an optimal control problem based on the HSEIRS model, six lemmas are established here.

    Lemma1 With regard to the optimal control problem(12), system(13)can be rewritten as

    (18)

    withx(t)∈Ω, wheref(t,x,θ)denotes the states function of the HSEIRS model, andΩis the positively invariant for system(13).The problem has an optimal control if the following five conditions are satisfied at the same time.

    (a)f(t,x,θ)is bounded by a linear function inx, the first partial derivatives are consecutive, and there is a constantZsuch that

    |f(t,x,θ)|≤Z,

    (19)

    |fθ(t,x,θ)|≤Z,

    (20)

    and

    |fx(t,x,θ)|≤Z(1+|θ|),

    (21)

    wherefθ(t,x,θ)is the first partial derivatives of the functionf(t,x,θ)toθ,fx(t,x,θ)is the first partial derivatives of the functionf(t,x,θ)tox.

    (b)There isθ(·)∈θadsuch that system(18)is solvable.

    (c)θadis convex and closed.

    One night, the girl caught ill. In moment of fluster9() , instead of calling her parents, she dialed the new boy s cell phone. The boy was already asleep but his cell phone was still on.

    (d)L(x,θ)is convex onθad.

    Next, we show the correctness of those five conditions by introducing and proving Lemmas 2-5.

    Lemma2f(t,x,θ)is bounded by a linear function inx, the first partial derivatives are consecutive, and there is a constantZsuch that systems(19)-(21)are satisfied.

    ProofFor simple description, the system(13)is rewritten as

    (22)

    We can obtain

    |f(t, 0, 0)|=|(μ0 0 0)T|,

    (23)

    (24)

    (25)

    Lemma3The system(18)is solvable.

    (26)

    Thus, the proof is complete.

    Lemma4θadis convex and closed.

    ProofLet

    (27)

    (28)

    and let 0<ε<1.SetL2[0,tf]denotes the control functionθi(t)which is integrable and bounded during the time period[0,tf].As(L2[0,tf])2Mis a real vector space, we get

    (1-ε)θ(1)(·)+εθ(2)(·)∈(L2[0,tf])2M.

    (29)

    So, the convexity ofθadfollows by the observation that, for 1≤i≤M, we have

    (30)

    Let

    θ(·)=(θ1(·),θ2(·),…,θM(·))T,

    (31)

    be a limit point ofθad, and let

    (32)

    be a sequence of points inθadsuch that

    (33)

    It comes from the completeness of(L2[0,T])2Nthat

    (34)

    So the closeness ofθadcomes from the observation that, for 1≤i≤M, we have

    (35)

    Thus, the proof is complete.

    Lemma5L(x,θ)is convex onθad.

    (36)

    Here,

    (37)

    (38)

    We can obtain

    (39)

    Thus, the proof is complete.

    ProofWe can chooseο1=ξ/2,ι=2.ο2is the lower bound onI, which is similar to that in Ref.[39].We can obtain

    (40)

    Further,

    (41)

    Thus, the proof is complete.

    ProofLemmas 2-6 show that the five conditions in Lemma 1 are all satisfied.Thus, the existence of the optimal control follows from Lemma 1.

    3.2 Optimality system based on HSEIRS model

    In this subsection, we present a necessary condition for the optimal control problems(12)and(13).

    (42)

    with transversality conditions

    (43)

    (44)

    ProofTo determine the adjoint equations and the transversality conditions, we differentiate the Hamiltonian, and obtain the adjoint system as

    (45)

    Thus, the adjoint system can be rewritten as system(42).By the optimal conditions, we have

    (46)

    From Theorem 2, we derive the following optimality system(47)and(48)for the optimal control problems(12)and(13).

    (47)

    and

    (48)

    4 Validating Optimal Control Strategy of HSEIRS Model

    Here, we validate the optimality system based on the HSEIRS model using Python.In our experiments, the HWSNs are composed of 1 000 HSNs,i.e.,M=1 000.The intervaltfis 10 time steps.We construct the HWSNs topology and set the experimental parameters referring to Ref.[40], the minimum degree of HSNs is 2, the maximum degree of HSNs is 20, and the mean degree 〈d〉 is 4.

    Using the forward and backward difference approximation, the calculation algorithm is described in Fig.3, where the step sizeh>0,τ=mh, andtf-t0=nh.

    Fig.3 Calculation algorithm to the optimality system based on the HSEIRS model

    Figure 4 shows the changeable probability trends of susceptible HSNs belonging to group 3 under different values of control variableθ.We observe different trends.Forθ=0.1,θ=θ*, andθ=0.8, the probabilities of susceptible HSNs gradually increase to 0.88, 0.88 and 0.95 in the first 22 time steps, respectively, these probabilities then slowly increase to 0.915, 0.925 and 0.975 after 8 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of susceptible HSNs.

    Fig.4 Changeable probability trends of susceptible HSNs under different values of control variable θ

    Figure 5 shows the changeable probability trends of infectious HSNs belonging to group 3 under different values of control variableθ.We observe different trends.Forθ=0.1,θ=θ*, andθ=0.8, the probabilities of infectious HSNs gradually decrease to 0.06, 0.06, and 0 in the first 13 time steps, respectively.These probabilities then slowly decrease to 0.025, 0, and 0 in the 20 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of infectious HSNs.

    Fig.5 Changeable probability trends of infectious HSNs under different values of control variable θ

    Figure 6 shows the changeable probability trends of recovered HSNs belonging to group 3 under different values of control variableθ.We observe some different trends.Forθ3=0.1, the probability of recovered HSNs gradually increases to 0.1 in the first 10 time steps, then slowly decreases to 0.075 in the 30 time steps.Forθ=θ*, the probability of recovered HSNs gradually increases to 0.15 in the first 15 time steps, then slowly decreases to 0.08 in the next 30 time steps.Forθ=0.8, the probability of recovered HSNs fast increases to 0.175 in the first 2 time steps, then slowly decreases to 0.04 in then 30 time steps.Obviously, forθ=θ*, it has taken an effective control of the probability of recovered HSNs.

    Fig.6 Changeable probability trends of recovered HSNs under different values of control variable θ

    Figure 7 shows the changeable probability trends of control variableθunder different values of delayτ.We observe some different trends.Forτ1=1,τ2=2, andτ3=3, the probabilities of control variableθgradually increase to 0.50, 0.43, and 0.38, respectively in the first 15 time steps, then slowly increase to a stable value.It can tell us that the optimal control variableθdeceases whenτincreases from 1 to 3.

    Fig.7 Changeable probability trends of control variable θ under different values of delay τ

    Figure 8 shows the changeable probability trends of control variableθunder different values.We observe different trends.Forθ=θ*, the probability of control variableθgradually increases from 0 to 0.5 in 30 time steps.

    Fig.8 Changeable probability trends of control variable θ under different values

    Figure 9 shows the changeable probability trends of control variableθunder different values of degreei.We observe different trends.Fori1=3,i2=10, andi3=20, the probabilities of control variableθgradually increase to 0.35, 0.50, and 0.80 in the first 15 time steps, respectively, then slowly increase to a stable value.It can tell us that the optimal control variableθincreases when the degreeiincreases from 3 to 20.

    Fig.9 Changeable probability trends of control variable θ under different values of degree i

    5 Conclusions

    In this paper, we have studied an optimal control to malware propagation by installing effective antivirus programs for infectious HSNs in controlled HWSNs.We firstly proposed an HSEIRS model to describe the HSNs state dynamics of malware propagation in HWSNs, involving the exposed state and degree heterogeneity of HSNs.After that, we derived an optimality system to achieve a low level of infectious HSNs at a low cost based on the HSEIRS model through a series of theoretical analysis.Finally, using the forward and backward difference approximation, we validated the effectiveness of the optimality system by the calculation algorithm and data analyses.

    猜你喜歡
    吳國
    Deep Multi-Module Based Language Priors Mitigation Model for Visual Question Answering
    車身間隙面差在線測量技術(shù)及應(yīng)用
    GLOBAL STRONG SOLUTION AND EXPONENTIAL DECAY OF 3D NONHOMOGENEOUS ASYMMETRIC FLUID EQUATIONS WITH VACUUM?
    吳國良花鳥畫選
    三十六計(jì)第十九計(jì):釜底抽薪
    小讀者之友(2021年6期)2021-07-29 08:54:00
    吳國平
    書香兩岸(2020年3期)2020-06-29 12:33:45
    書法古詩
    一所學(xué)校 一名老師 一輩子堅(jiān)守
    糧食也是武器
    糧食也是武器
    日韩制服骚丝袜av| av一本久久久久| 高清黄色对白视频在线免费看 | 18禁在线播放成人免费| 亚洲精品久久久久久婷婷小说| 久久久久久久久久成人| 久久久久久久亚洲中文字幕| 日本欧美国产在线视频| 亚洲国产欧美在线一区| 肉色欧美久久久久久久蜜桃| 亚洲精品第二区| 女性被躁到高潮视频| 青青草视频在线视频观看| 国产男人的电影天堂91| av播播在线观看一区| 国产乱人视频| 亚洲色图av天堂| 免费看光身美女| 久久国产精品男人的天堂亚洲 | 欧美丝袜亚洲另类| 午夜福利视频精品| 免费观看无遮挡的男女| 成人影院久久| 久久精品国产鲁丝片午夜精品| 亚洲综合精品二区| 校园人妻丝袜中文字幕| 国产亚洲欧美精品永久| 一级毛片 在线播放| 草草在线视频免费看| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级专区第一集| 亚洲精品自拍成人| av网站免费在线观看视频| 精品国产露脸久久av麻豆| 亚洲国产高清在线一区二区三| h日本视频在线播放| 久久久欧美国产精品| 精品视频人人做人人爽| 丝袜喷水一区| 最近最新中文字幕大全电影3| 欧美高清性xxxxhd video| 婷婷色av中文字幕| 亚洲成人一二三区av| 在线 av 中文字幕| 国产免费一区二区三区四区乱码| 久久综合国产亚洲精品| 国产精品欧美亚洲77777| xxx大片免费视频| 国产精品国产三级国产av玫瑰| 在线观看一区二区三区| 少妇人妻一区二区三区视频| 国产午夜精品久久久久久一区二区三区| av在线观看视频网站免费| 国产永久视频网站| 国产爱豆传媒在线观看| 国产女主播在线喷水免费视频网站| 1000部很黄的大片| 日本黄大片高清| 成人亚洲精品一区在线观看 | 成年美女黄网站色视频大全免费 | 丰满乱子伦码专区| 99久久中文字幕三级久久日本| 亚洲精品自拍成人| 制服丝袜香蕉在线| 在线看a的网站| 91精品一卡2卡3卡4卡| 欧美高清成人免费视频www| 免费看不卡的av| 欧美+日韩+精品| 内射极品少妇av片p| 免费看光身美女| 日本免费在线观看一区| 国产精品一区二区性色av| 精品人妻偷拍中文字幕| 成人毛片60女人毛片免费| 亚洲av欧美aⅴ国产| 日日啪夜夜撸| 自拍偷自拍亚洲精品老妇| 99热国产这里只有精品6| 精品一区二区免费观看| 国产男人的电影天堂91| 超碰av人人做人人爽久久| 亚洲欧美日韩卡通动漫| 少妇猛男粗大的猛烈进出视频| 91久久精品国产一区二区成人| 高清日韩中文字幕在线| 又大又黄又爽视频免费| 日日啪夜夜撸| 少妇人妻一区二区三区视频| av在线观看视频网站免费| 婷婷色综合大香蕉| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 亚洲av福利一区| 狂野欧美激情性xxxx在线观看| 女人十人毛片免费观看3o分钟| 我要看黄色一级片免费的| 黄色视频在线播放观看不卡| 成年免费大片在线观看| 性色av一级| 熟妇人妻不卡中文字幕| 夜夜爽夜夜爽视频| 熟女av电影| 大陆偷拍与自拍| 制服丝袜香蕉在线| 亚洲精品乱码久久久久久按摩| 国产精品无大码| 亚洲国产精品专区欧美| 国产男女内射视频| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜爱| 日本av手机在线免费观看| 久久 成人 亚洲| 18禁在线无遮挡免费观看视频| 男人和女人高潮做爰伦理| 国产乱来视频区| 国产91av在线免费观看| 99热这里只有是精品50| 久久久精品免费免费高清| 久久av网站| 一个人看的www免费观看视频| 麻豆成人av视频| 国产在线免费精品| 天堂中文最新版在线下载| 三级国产精品欧美在线观看| av网站免费在线观看视频| 亚洲精品亚洲一区二区| 在线观看免费日韩欧美大片 | a级毛色黄片| 婷婷色av中文字幕| 日韩一区二区视频免费看| 国产精品国产av在线观看| 免费看不卡的av| 久久久久国产网址| 国产高清不卡午夜福利| av.在线天堂| 天天躁夜夜躁狠狠久久av| 寂寞人妻少妇视频99o| 国产精品一区二区性色av| 一区二区三区精品91| 亚洲av男天堂| 亚州av有码| 搡老乐熟女国产| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 国产人妻一区二区三区在| 啦啦啦啦在线视频资源| 欧美 日韩 精品 国产| 精品亚洲成国产av| kizo精华| 精品酒店卫生间| 色网站视频免费| 永久网站在线| 久久久午夜欧美精品| 国产一区二区三区av在线| 最近最新中文字幕免费大全7| 久久影院123| 久久韩国三级中文字幕| 高清欧美精品videossex| 51国产日韩欧美| 亚洲不卡免费看| 日韩欧美一区视频在线观看 | 精品亚洲成a人片在线观看 | 成人国产av品久久久| 精品一区二区三卡| 日韩一区二区视频免费看| 中文资源天堂在线| 成人免费观看视频高清| 1000部很黄的大片| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 精品久久国产蜜桃| 天天躁日日操中文字幕| a 毛片基地| 美女高潮的动态| 久久精品国产a三级三级三级| 一级毛片aaaaaa免费看小| 看免费成人av毛片| 男女啪啪激烈高潮av片| 亚洲怡红院男人天堂| 欧美少妇被猛烈插入视频| 一区二区三区四区激情视频| 夜夜骑夜夜射夜夜干| 亚洲av综合色区一区| 成年av动漫网址| 又黄又爽又刺激的免费视频.| 99久久精品一区二区三区| av视频免费观看在线观看| h日本视频在线播放| 亚洲精品日韩在线中文字幕| 久久99热这里只有精品18| 欧美性感艳星| 久久国内精品自在自线图片| 黄色视频在线播放观看不卡| 中文在线观看免费www的网站| 伊人久久精品亚洲午夜| av.在线天堂| 少妇丰满av| 搡老乐熟女国产| 毛片女人毛片| 日本黄色片子视频| 中文在线观看免费www的网站| 欧美高清成人免费视频www| av福利片在线观看| 自拍偷自拍亚洲精品老妇| 最近最新中文字幕免费大全7| 搡老乐熟女国产| 我要看黄色一级片免费的| 蜜桃亚洲精品一区二区三区| 99久久精品一区二区三区| 国产av码专区亚洲av| 午夜福利在线在线| 99热国产这里只有精品6| 大片电影免费在线观看免费| 国产成人免费无遮挡视频| 99热这里只有是精品在线观看| 久久精品国产鲁丝片午夜精品| 日韩成人伦理影院| 亚洲中文av在线| 国产精品偷伦视频观看了| 日日撸夜夜添| 亚洲国产精品一区三区| 亚洲四区av| 国产精品欧美亚洲77777| 深爱激情五月婷婷| 一区二区三区免费毛片| 亚洲精品中文字幕在线视频 | av卡一久久| 一级黄片播放器| 联通29元200g的流量卡| 性高湖久久久久久久久免费观看| 人妻夜夜爽99麻豆av| 亚洲欧美成人综合另类久久久| av一本久久久久| 国产免费一区二区三区四区乱码| 亚洲精品456在线播放app| 赤兔流量卡办理| 国产免费一级a男人的天堂| 一级毛片 在线播放| 在线观看免费高清a一片| 久久99热6这里只有精品| 午夜视频国产福利| 亚洲欧美精品自产自拍| 国产亚洲5aaaaa淫片| 男女边吃奶边做爰视频| 我要看黄色一级片免费的| 狠狠精品人妻久久久久久综合| 久久毛片免费看一区二区三区| 最近中文字幕2019免费版| 国产一区二区在线观看日韩| 男女国产视频网站| 2021少妇久久久久久久久久久| 嘟嘟电影网在线观看| 日日摸夜夜添夜夜添av毛片| 日日啪夜夜撸| 免费av中文字幕在线| 久久久色成人| 精品久久久噜噜| 国产高清不卡午夜福利| 91午夜精品亚洲一区二区三区| 美女国产视频在线观看| 国产免费一区二区三区四区乱码| 蜜桃亚洲精品一区二区三区| 91精品一卡2卡3卡4卡| 午夜福利网站1000一区二区三区| 18禁裸乳无遮挡动漫免费视频| 好男人视频免费观看在线| 国产欧美日韩一区二区三区在线 | 激情五月婷婷亚洲| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 国产av码专区亚洲av| 我的女老师完整版在线观看| 国产免费视频播放在线视频| 国产精品伦人一区二区| 欧美变态另类bdsm刘玥| 在线看a的网站| 各种免费的搞黄视频| 热99国产精品久久久久久7| 亚洲精品一区蜜桃| 大香蕉久久网| 看非洲黑人一级黄片| av在线播放精品| 内地一区二区视频在线| 三级经典国产精品| 国产成人免费观看mmmm| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久v下载方式| 久久av网站| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 国产精品99久久99久久久不卡 | 精品人妻一区二区三区麻豆| 亚洲最大成人中文| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 亚洲四区av| 女的被弄到高潮叫床怎么办| 国产亚洲av片在线观看秒播厂| 欧美人与善性xxx| 午夜福利网站1000一区二区三区| 少妇的逼好多水| 简卡轻食公司| 老师上课跳d突然被开到最大视频| 夫妻性生交免费视频一级片| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品一区三区| 色视频在线一区二区三区| 丝袜脚勾引网站| 久久久久久久大尺度免费视频| 亚洲三级黄色毛片| 欧美激情极品国产一区二区三区 | 波野结衣二区三区在线| 国产精品无大码| 舔av片在线| 欧美xxxx性猛交bbbb| 免费看不卡的av| 天堂中文最新版在线下载| 久久久久久伊人网av| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 人妻夜夜爽99麻豆av| 欧美另类一区| 午夜激情福利司机影院| 亚洲欧美成人精品一区二区| 在线观看免费日韩欧美大片 | 亚洲精品一二三| 黄片无遮挡物在线观看| 久久99热这里只频精品6学生| 特大巨黑吊av在线直播| 特大巨黑吊av在线直播| 免费播放大片免费观看视频在线观看| 国产色婷婷99| 黄片无遮挡物在线观看| 高清午夜精品一区二区三区| 伦理电影大哥的女人| 寂寞人妻少妇视频99o| 久久久精品94久久精品| 男人爽女人下面视频在线观看| 久久国产精品男人的天堂亚洲 | 三级国产精品欧美在线观看| 有码 亚洲区| 秋霞在线观看毛片| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美国产在线视频| av在线老鸭窝| 色网站视频免费| 自拍欧美九色日韩亚洲蝌蚪91 | 最近的中文字幕免费完整| 99re6热这里在线精品视频| 亚洲av成人精品一二三区| 最近手机中文字幕大全| 国产成人a区在线观看| 欧美精品人与动牲交sv欧美| 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 免费久久久久久久精品成人欧美视频 | 最近中文字幕高清免费大全6| 一级av片app| 看十八女毛片水多多多| 久久久久久久久大av| 51国产日韩欧美| 99国产精品免费福利视频| 看非洲黑人一级黄片| 国产精品久久久久成人av| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| 偷拍熟女少妇极品色| 午夜精品国产一区二区电影| 高清视频免费观看一区二区| 男女下面进入的视频免费午夜| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 不卡视频在线观看欧美| 国产伦精品一区二区三区视频9| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| freevideosex欧美| 久久 成人 亚洲| 国产爽快片一区二区三区| 男女免费视频国产| 久久人人爽av亚洲精品天堂 | 自拍偷自拍亚洲精品老妇| 18禁在线播放成人免费| 蜜桃亚洲精品一区二区三区| 大香蕉久久网| 精品午夜福利在线看| 人妻系列 视频| 国产欧美亚洲国产| xxx大片免费视频| 51国产日韩欧美| 国产在线免费精品| 麻豆国产97在线/欧美| 国产乱来视频区| 岛国毛片在线播放| 97超视频在线观看视频| 日本欧美国产在线视频| 人人妻人人爽人人添夜夜欢视频 | 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| av女优亚洲男人天堂| 91精品一卡2卡3卡4卡| 精品久久久久久电影网| 乱系列少妇在线播放| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 内地一区二区视频在线| 天天躁夜夜躁狠狠久久av| 青春草亚洲视频在线观看| 国产爽快片一区二区三区| 成人毛片a级毛片在线播放| 啦啦啦视频在线资源免费观看| 成人美女网站在线观看视频| 22中文网久久字幕| 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 亚洲熟女精品中文字幕| av不卡在线播放| 亚洲,欧美,日韩| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 免费观看av网站的网址| 久久影院123| 久久精品国产a三级三级三级| 欧美精品一区二区大全| 色视频在线一区二区三区| av在线app专区| 国产高潮美女av| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 男女下面进入的视频免费午夜| 国产精品99久久99久久久不卡 | 欧美人与善性xxx| 国产成人免费观看mmmm| 狂野欧美激情性bbbbbb| 性高湖久久久久久久久免费观看| 亚洲av福利一区| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 美女内射精品一级片tv| 18+在线观看网站| 日本vs欧美在线观看视频 | 国产精品国产三级国产专区5o| 肉色欧美久久久久久久蜜桃| 久久精品久久精品一区二区三区| 成人综合一区亚洲| 少妇丰满av| 秋霞在线观看毛片| 高清视频免费观看一区二区| 99视频精品全部免费 在线| 18禁在线播放成人免费| 日本欧美视频一区| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看| 国产男女超爽视频在线观看| 欧美一区二区亚洲| 国产免费又黄又爽又色| 最新中文字幕久久久久| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 久久97久久精品| 日韩成人伦理影院| 亚洲av福利一区| 丝瓜视频免费看黄片| 日日啪夜夜撸| 久久久久网色| 成人亚洲精品一区在线观看 | 成年人午夜在线观看视频| 亚洲av二区三区四区| 国产综合精华液| 中文资源天堂在线| 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 99热国产这里只有精品6| 免费在线观看成人毛片| 身体一侧抽搐| 国产免费一区二区三区四区乱码| 国产伦理片在线播放av一区| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久丰满| 精品久久久久久久久亚洲| 久久人人爽人人片av| av网站免费在线观看视频| 亚洲va在线va天堂va国产| 伦理电影大哥的女人| 天美传媒精品一区二区| 国产伦精品一区二区三区四那| 日日撸夜夜添| 免费黄网站久久成人精品| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 日本免费在线观看一区| 国产黄片视频在线免费观看| 日韩在线高清观看一区二区三区| 在线观看三级黄色| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 高清欧美精品videossex| 亚洲中文av在线| 中国国产av一级| 成人午夜精彩视频在线观看| 国产精品人妻久久久影院| 熟妇人妻不卡中文字幕| 日本av免费视频播放| 亚洲精品第二区| 高清黄色对白视频在线免费看 | 国产高清有码在线观看视频| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| 少妇被粗大猛烈的视频| 国产精品久久久久久精品古装| 这个男人来自地球电影免费观看 | 在线观看人妻少妇| 久久精品国产自在天天线| 久久精品久久久久久久性| 久久久午夜欧美精品| 久久久色成人| 国产高清不卡午夜福利| 嫩草影院入口| 精品少妇黑人巨大在线播放| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| av免费在线看不卡| av线在线观看网站| 国产一区二区在线观看日韩| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品专区久久| 少妇人妻精品综合一区二区| 国产爱豆传媒在线观看| 五月天丁香电影| 大话2 男鬼变身卡| 毛片女人毛片| 成人免费观看视频高清| 高清不卡的av网站| 久久久久国产网址| 久久97久久精品| 欧美激情极品国产一区二区三区 | 日韩亚洲欧美综合| 亚洲欧美一区二区三区黑人 | 蜜臀久久99精品久久宅男| 少妇 在线观看| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻一区二区| 国产精品一区二区性色av| 五月天丁香电影| 国产成人精品久久久久久| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看| 日韩免费高清中文字幕av| 免费观看av网站的网址| 一本久久精品| 国产有黄有色有爽视频| 春色校园在线视频观看| 欧美日韩综合久久久久久| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 99久久综合免费| 亚洲成人av在线免费| 最近手机中文字幕大全| 亚洲国产高清在线一区二区三| 我要看黄色一级片免费的| 久久人妻熟女aⅴ| 日韩亚洲欧美综合| 亚洲av欧美aⅴ国产| 日本欧美国产在线视频| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 国产高潮美女av| 水蜜桃什么品种好| 日日啪夜夜撸| 亚洲av综合色区一区| 在线观看一区二区三区| 亚洲美女搞黄在线观看| 成人国产麻豆网| 中文字幕人妻熟人妻熟丝袜美| 国产成人91sexporn| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| 99热这里只有是精品50| 一级片'在线观看视频| 午夜视频国产福利| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| 久久国产亚洲av麻豆专区| 一个人看的www免费观看视频| 亚洲国产最新在线播放| 免费观看在线日韩| 国产片特级美女逼逼视频| 日韩av不卡免费在线播放| 色视频www国产| 久久精品国产自在天天线| 日日啪夜夜爽| 大码成人一级视频| 亚洲av中文字字幕乱码综合| 舔av片在线| 日本黄色日本黄色录像| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| 一区在线观看完整版| 亚洲不卡免费看| 亚州av有码| 99国产精品免费福利视频| 久久青草综合色| 最近中文字幕2019免费版|