葛 瑜,王曉靜,朱光輝,3,王紅艷
基于Petri網(wǎng)基礎(chǔ)標(biāo)識的分散式故障診斷方法研究
葛 瑜1,王曉靜2,朱光輝1,3,王紅艷1
(1.許昌學(xué)院電氣與機械工程學(xué)院,河南 許昌 461000;2.河南輕工職業(yè)學(xué)院機電工程系,河南 鄭州 450008;3.澳門科技大學(xué)系統(tǒng)工程研究所,澳門 999078)
電子信息技術(shù)的飛速發(fā)展催生了很多包含眾多組件的復(fù)雜系統(tǒng),故障診斷技術(shù)致力于及時、準(zhǔn)確地檢測這些系統(tǒng)中的故障,從而為快速恢復(fù)系統(tǒng)功能提供重要支撐?;赑etri網(wǎng)數(shù)學(xué)模型提出分散式的故障診斷方法,分別針對分散式架構(gòu)中的診斷站點和協(xié)調(diào)者設(shè)計故障診斷算法,并提出相應(yīng)的診斷協(xié)議。站點診斷算法基于Petri網(wǎng)基礎(chǔ)標(biāo)識和基礎(chǔ)向量構(gòu)建,避免窮舉所有與觀測序列一致的變遷序列,有效提高診斷效率。提出的分散式診斷方法比傳統(tǒng)的集中式方法具有更高的計算效率和更好的穩(wěn)定性。相對于其他已存在的分散式方法,該方法具有更小的Petri網(wǎng)結(jié)構(gòu)假設(shè)限制和更廣的適用范圍。
Petri網(wǎng);故障診斷;分散式結(jié)構(gòu);離散事件系統(tǒng)
隨著信息技術(shù)的飛速發(fā)展,涌現(xiàn)了很多組件繁多、功能復(fù)雜的電子系統(tǒng),如高壓輸電系統(tǒng)、智能交通系統(tǒng)、分布式軟件系統(tǒng)等,這些系統(tǒng)的復(fù)雜性增大了故障發(fā)生的風(fēng)險。故障擾亂系統(tǒng)原定的運行流程,降低生產(chǎn)效率,甚至導(dǎo)致發(fā)生重大生產(chǎn)事故。故障診斷致力于及時、準(zhǔn)確地識別故障的數(shù)量和位置,從而為快速恢復(fù)系統(tǒng)正常功能提供重要支撐。
為給故障診斷提供理論指導(dǎo)和定性分析,許多基于模型的故障診斷方法被提出[1-4]。最近幾十年,基于離散事件系統(tǒng)(Discrete Event System)模型的故障診斷方法被廣泛研究,形成了豐富的理論成果[5-14]。Petri網(wǎng)是一種典型的離散事件系統(tǒng)模型,具有清晰的圖形化描述和準(zhǔn)確的數(shù)學(xué)定義,許多現(xiàn)實系統(tǒng)可以抽象建模為Petri網(wǎng)模型。本文基于Petri網(wǎng)模型提出一種分散式的(decentralized)故障診斷方法。
文獻[14]首次提出面向離散事件系統(tǒng)的故障診斷方法,使用自動機建模系統(tǒng),并用不可觀事件表示系統(tǒng)故障,通過構(gòu)建診斷器判定故障的可診斷性并進行故障診斷。為了緩和自動機建模中的狀態(tài)爆炸問題,許多文獻基于Petri網(wǎng)模型研究故障診斷問題。
文獻[15]通過監(jiān)測與P不變量關(guān)聯(lián)的庫所中的托肯數(shù)從而診斷核力發(fā)電廠中的故障。文獻[16]擴展文獻[14]中的自動機方法,通過構(gòu)建一個Petri網(wǎng)診斷器進行加標(biāo)Petri網(wǎng)的在線故障診斷。文獻[17-18]基于Petri網(wǎng)模型提出高效的電力系統(tǒng)故障診斷方法。為了進一步提高Petri網(wǎng)模型下的故障診斷效率,提出了許多基于基礎(chǔ)標(biāo)識或線性規(guī)劃的方法。
文獻[19]首次提出Petri網(wǎng)基礎(chǔ)標(biāo)識的概念,并在此基礎(chǔ)上設(shè)計Petri網(wǎng)的故障診斷算法,避免了窮舉與觀測序列一致的所有變遷序列,提高了診斷效率。之后,許多基于基礎(chǔ)標(biāo)識的診斷方法被進一步研究和應(yīng)用。文獻[20-21]基于基礎(chǔ)標(biāo)識提出基礎(chǔ)可達圖的概念,基礎(chǔ)可達圖避免了窮舉所有可達結(jié)點,有效提高診斷效率。文獻[22-24]基于Petri網(wǎng)狀態(tài)等式設(shè)計用于故障診斷的整數(shù)線性規(guī)劃模型,通過為規(guī)劃模型分配不同的目標(biāo)函數(shù)計算故障診斷結(jié)果。
上述診斷方法均基于集中式結(jié)構(gòu)進行設(shè)計,只有一臺計算設(shè)備用于故障診斷,當(dāng)系統(tǒng)規(guī)模較大時,此種結(jié)構(gòu)不能保證診斷的及時性和有效性。為了緩和此種情況,提出一些基于分散式結(jié)構(gòu)的故障診斷方法。文獻[25]基于基礎(chǔ)標(biāo)識提出加標(biāo)Petri網(wǎng)的分散式診斷方法,設(shè)計三種不同的診斷協(xié)議,并依次提出相應(yīng)的診斷算法。文獻[26]擴展文獻[22]中的方法到分散式場景,分散式場景中的每個站點通過求解不同的整數(shù)線性規(guī)劃問題計算診斷結(jié)果。
本文基于加標(biāo)Petri網(wǎng)模型提出分散式的故障診斷方法,分散式結(jié)構(gòu)包含多臺具有相同計算能力的診斷站點,站點并行運行,各自計算其診斷結(jié)果,然后由協(xié)調(diào)者收集各站點的診斷數(shù)據(jù)并做出最終診斷。本文提出的分散式診斷方法利用多臺診斷設(shè)備對系統(tǒng)進行并行診斷,保證了復(fù)雜系統(tǒng)故障診斷的及時性和有效性。主要貢獻如下:
(1) 提出的分散式診斷方法相對于傳統(tǒng)集中式方法[3,19-23]具有更高的計算效率和穩(wěn)定性;
(2) 相比其他分散式方法[25-26],提出的方法不需要遵守特定的假設(shè)限制,擴大了方法的適用范圍。
故障診斷依據(jù)觀測到的系統(tǒng)輸出推斷系統(tǒng)中的故障數(shù)量和位置。依據(jù)不同的診斷架構(gòu),故障診斷分為集中式診斷和分散式診斷。集中式診斷使用單個診斷器,診斷算法更易設(shè)計和實施,但由于單個診斷器計算能力有限,不適用于大規(guī)模系統(tǒng)。分散式診斷包含多個計算能力相同的診斷器,并行計算診斷結(jié)果,有效提高大規(guī)模系統(tǒng)的診斷效率,保證診斷的及時性。
本文基于加標(biāo)Petri網(wǎng)數(shù)學(xué)模型,提出一種分散式的故障診斷方法,適用于如圖1所示的應(yīng)用場景。
圖1 應(yīng)用場景
圖1所示的應(yīng)用場景包含三部分主體,分別為:
(1) 系統(tǒng)。建模為加標(biāo)Petri網(wǎng)數(shù)學(xué)模型,其輸出表現(xiàn)為一串標(biāo)簽序列。
(2) 診斷站點1和2。分別可以觀測到一部分系統(tǒng)輸出(觀測區(qū)域可能重疊),它們合作觀測整個系統(tǒng);每個站點具備較強的計算能力,依據(jù)觀測數(shù)據(jù)計算各自的診斷結(jié)果,并發(fā)送診斷結(jié)果到協(xié)調(diào)者。
(3) 協(xié)調(diào)者。具備較弱的計算能力,通過診斷協(xié)議與診斷站點交互數(shù)據(jù),并根據(jù)站點的局部診斷結(jié)果計算最終的全局診斷結(jié)果。
在Petri網(wǎng)模型下,分散式診斷框架如圖2所示,上述問題場景中的系統(tǒng)、診斷站點和協(xié)調(diào)者分別對應(yīng)于下述(1)、(2)、(3)。
圖2 分散式診斷框架
假設(shè)1 是Petri網(wǎng)故障診斷方法經(jīng)常遵循的假設(shè),主要作用為:(1) 防止系統(tǒng)運行在一個由不可觀變遷組成的環(huán)里,從而導(dǎo)致站點永遠觀測不到系統(tǒng)輸出;(2) 為Petri網(wǎng)在不可觀子網(wǎng)中的可達性提供充要條件。用于表示站點診斷結(jié)果的診斷器定義如下所述。
其對應(yīng)的觸發(fā)向量集定義為
最小觸發(fā)向量集定義為
其中,
圖3 站點診斷算法流程圖
(4) 對所有變遷
診斷協(xié)議約定了診斷站點和協(xié)調(diào)者之間的通信內(nèi)容和格式,協(xié)調(diào)者依據(jù)診斷協(xié)議接收站點的局部診斷結(jié)果,計算全局診斷結(jié)果。診斷協(xié)議與協(xié)調(diào)者可由圖4描述。
圖4 診斷協(xié)議
表1 二元操作符
綜上所述,協(xié)調(diào)者的診斷流程如算法2所示。
算法2:協(xié)調(diào)者診斷算法
(2) 等待直到接收到局部診斷結(jié)果
(6) 返回行(2)
單個診斷站點本質(zhì)上以調(diào)用集中式診斷算法的方式工作,當(dāng)多個診斷站點基于分散式架構(gòu)診斷系統(tǒng)時,可從分散式診斷結(jié)果推理出集中式診斷結(jié)果。
圖5所示的加標(biāo)Petri網(wǎng)模擬了一個生產(chǎn)螺絲和螺母的生產(chǎn)線,共分成三部分:左邊部分為原材料運輸部分,右上部為螺絲生產(chǎn)線,右下部為螺母生產(chǎn)線。
圖5 生產(chǎn)螺絲和螺母的產(chǎn)品線Petri網(wǎng)模型
表2 仿真結(jié)果
Table 2 Simulation result
表3 不同方法運行時間對比(以s為單位)
更形象化的對比結(jié)果如圖6所示,在相同觀測標(biāo)簽數(shù)量情況下,文獻[3]、文獻[21]和文獻[23]中方法的計算時間明顯長于本文,并且隨著觀測標(biāo)簽數(shù)量的增多,它們的計算時間均呈現(xiàn)逐漸增長的趨勢,而本文提出的方法的計算時間不會增長。
圖6 不同方法運行時間對比
基于加標(biāo)Petri網(wǎng)數(shù)學(xué)模型提出分散式架構(gòu)下的故障診斷方法,相對于傳統(tǒng)的集中式診斷,分散式方法包含多個診斷站點,保證了診斷的及時性和有效性。文中提出的診斷協(xié)議比其他分散式協(xié)議具有更少的假設(shè)限制,擴展了診斷方法的適用范圍。
[1] 魏勇, 崔俊彬, 劉辛彤, 等. 基于改進動態(tài)故障樹的電力系統(tǒng)廣域保護通信系統(tǒng)可靠性分析方法[J]. 電力系統(tǒng)保護與控制, 2021, 49(23): 171-177.
WEI Yong, CUI Junbin, LIU Xintong, et al. A reliability analysis method power system wide area protection communication system based on an improved dynamic fault tree[J]. Power System Protection and Control, 2021, 49(23): 171-177.
[2] 何寧輝, 朱洪波, 李秀廣, 等. 基于貝葉斯網(wǎng)絡(luò)和假設(shè)檢驗的變壓器故障診斷[J]. 電力科學(xué)與技術(shù)學(xué)報, 2021, 36(6): 20-27.
HE Ninghui, ZHU Hongbo, LI Xiuguang, et al. Transformer fault diagnosis based on Bayesian network and hypothesis testing[J]. Journal of Electric Power Science and Technology, 2021, 36(6): 20-27.
[3] ZHU G, FENG L, LI Z, et al. An efficient fault diagnosis approach based on integer linear programming for labeled Petri nets[J]. IEEE Transactions on Automatic Control, 2020, 66(5): 2393-2398.
[4] XIA Y, GOU B, XU Y. A new ensemble-based classifier for IGBT open-circuit fault diagnosis in three-phase PWM converter[J]. Protection and Control of Modern Power Systems, 2018, 3(4): 364-372.
[5] CASSANDRAS C G, LAFORTUNE S. Introduction to discrete event systems[M]. New York: Springer, 2009.
[6] 李欣悅, 李鳳婷, 尹純亞, 等. 直流雙極閉鎖故障下送端系統(tǒng)暫態(tài)過電壓計算方法[J]. 電力系統(tǒng)保護與控制, 2021, 49(1): 1-18.
LI Xinyue, LI Fengting, YIN Chunya, et al. Transient overvoltage calculation method of HVDC sending-end system under DC bipolar blocking[J]. Power System Protection and Control, 2021, 49(1): 1-18.
[7] LAFORTUNE S, LIN F, HADJICOSTIS C N. On the history of diagnosability and opacity in discrete event systems[J]. Annual Reviews in Control, 2018, 45(1): 257-266.
[8] 孫湛冬, 焦嬌, 李偉, 等. 基于改進蟻群算法的電力云數(shù)據(jù)中心任務(wù)調(diào)度策略研究[J]. 電力系統(tǒng)保護與控制, 2022, 50(2): 95-101.
SUN Zhandong, JIAO Jiao, LI Wei, et al. A task scheduling strategy for a power cloud data center based on an improved ant colony algorithm[J]. Power System Protection and Control, 2022, 50(2): 95-101.
[9] 方如舉, 葛瑜, 孫偉, 等. 基于WSNs的智能配電網(wǎng)通信數(shù)據(jù)傳輸帶寬的優(yōu)化分配策略[J]. 電力系統(tǒng)保護與控制, 2021, 49(23): 88-95.
FANG Ruju, GE Yu, SUN Wei, et al. Transmission bandwidth optimal allocation strategy of communication data for a smart distribution grid based on WSNs[J]. Power System Protection and Control, 2021, 49(23): 88-95.
[10]胡列翔, 王蕾, 董明楓, 等. 基于改進時間約束Petri網(wǎng)的綜合能源系統(tǒng)運行優(yōu)化及可靠性評估[J]. 中國電力, 2020, 53(10): 123-132, 139.
HU Liexiang, WANG Lei, DONG Mingfeng, et al. Operation optimization and reliability evaluation of integrated energy system based on improved timing constraint Petri net[J]. Electric Power, 2020, 53(10): 123-132, 139.
[11]劉久富, 劉文良, 周建勇, 等. 改進的部分可觀Petri網(wǎng)系統(tǒng)在線故障診斷器設(shè)計[J]. 控制理論與應(yīng)用, 2015, 32(7): 866-872.
LIU Jiufu, LIU Wenliang, ZHOU Jianyong, et al. An improved design of online fault diagnosis for partially observed Petri net systems[J]. Control Theory & Applications, 2015, 32(7): 866-872.
[12]闕蔡雄, 劉富春, 趙銳, 等. 基于Petri網(wǎng)診斷器的離散事件系統(tǒng)模式故障的在線診斷[J]. 控制理論與應(yīng)用, 2020, 37(7): 1621-1627.
QUE Caixiong, LIU Fuchun, ZHAO Rui, et al. On-line pattern diagnosis of discrete event systems with Petri net diagnosers[J]. Control Theory & Applications, 2020, 37(7): 1621-1627.
[13]楊雯, 劉元琦, 吳小忠, 等. 計及死區(qū)故障的3/2接線變電站的Petri網(wǎng)故障診斷方法[J]. 電力系統(tǒng)保護與控制, 2017, 45(20): 29-37.
YANG Wen, LIU Yuanqi, WU Xiaozhong, et al. A fault diagnosis method of 3/2 connection substation based on Petri nets with dead-zone fault taken into account[J]. Power System Protection and Control, 2017, 45(20): 29-37.
[14]SAMPATH M, SENGUPTA R, LAFORTUNE S, et al. Diagnosability of discrete-event systems[J]. IEEE Transactions on Automatic Control, 1995, 40(9): 1555-1575.
[15] PROCK J. A new technique for fault detection using Petri nets[J]. Automatica, 1991, 27(2): 239-245.
[16]GENC S, LAFORTUNE S. Distributed diagnosis of discrete-event systems using Petri nets[C] // Proceedings of International Conference on Application and Theory of Petri Nets, May 27, 2003: 316-336.
[17] 楊斐然, 于永進. 基于時間約束的分層模糊Petri網(wǎng)的配電網(wǎng)故障診斷[J]. 電力系統(tǒng)保護與控制, 2020, 48(2): 99-106.
YANG Feiran, YU Yongjin. Fault diagnosis of distribution network based on time constrained hierarchical fuzzy Petri nets[J]. Power System Protection and Control, 2020, 48(2): 99-106.
[18] 陳偉偉, 呂盼, 紀(jì)鳳坤, 等. 基于多維度檢測與Petri網(wǎng)的變電站接地故障風(fēng)險評估[J]. 電力系統(tǒng)保護與控制, 2019, 47(23): 152-159.
CHEN Weiwei, Lü Pan, JI Fengkun, et al. Risk assessment of substation grounding fault based on multidimensional detection and Petri net[J]. Power System Protection and Control, 2019, 47(23): 152-159.
[19]GIUA A, SEATZU C. Fault detection for discrete event systems using Petri nets with unobservable transitions[C] // Proceedings of the 44th IEEE Conference on Decision and Control, December 15, 2005, Seville, Spain: 6323-6328.
[20] CABASINO M P, GIUA A, SEATZU C. Fault detection for discrete event systems using Petri nets with unobservable transitions[J]. Automatica, 2010, 46(9): 1531-1539.
[21] CABASINO M P, GIUA A, POCCI M, et al. Discrete event diagnosis using labeled Petri nets: an application to manufacturing systems[J]. Control Engineering Practice, 2011, 19(9): 989-1001.
[22] DOTOLI M, FANTI M P, MANGINI A M, et al. On-line fault detection in discrete event systems by Petri nets and integer linear programming[J]. Automatica, 2009, 45(11): 2665-2672.
[23]FANTI M P, MANGINI A M, UKOVICH W. Fault detection by labeled Petri nets in centralized and distributed approaches[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(2): 392-404.
[24]WANG Y, ZHU G, WU N. Fault diagnosis of backward conflict-free Petri nets by generalized markings[J]. IEEE Access, 2020, 8(2): 154871-154880.
[25] CABASINO M P, GIUA A, PAOLI A, et al. Decentralized diagnosis of discrete-event systems using labeled Petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(6): 1477-1485.
[26] CONG X, FANTI M P, MANGINI A M, et al. Decentralized diagnosis by Petri nets and integer linear programming[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(10): 1689-1700.
Decentralized fault diagnosis of labeled Petri nets by basis markings
GE Yu1, WANG Xiaojing2, ZHU Guanghui1, 3, WANG Hongyan1
(1. School of Electrical and Mechanical Engineering, Xuchang University, Xuchang 461000, China; 2. Department of Mechanical and Electrical Engineering, Henan Light Industry Vocational College, Zhengzhou 450008, China;3. Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China)
The rapid development of electronic information technology has spawned many complex systems which include a considerable number of components. Fault diagnosis aims to accurately detect faults in these systems in a timely manner, thus providing important support for the rapid recovery of system functions. This paper proposes a decentralized fault diagnosis approach based on Petri nets. Two algorithms for each diagnosis site and the coordinator in the decentralized architecture are provided. In addition, a diagnosis protocol used between diagnosis sites and the coordinator is developed. The diagnosis algorithm of each site is constructed based on Petri net basis markings and vectors. Thus, exhaustive enumeration of all transition sequences consistent with the observed label sequence is avoided, leading to better computational efficiency. The proposed decentralized diagnosis approach enjoys higher computational efficiency and better stability than the traditional centralized methods. Compared with existing approaches, that described here requires fewer assumptions on the structure of a net system and has broader applicability.
Petri net; fault diagnosis; decentralized structure; discrete event system
10.19783/j.cnki.pspc.220652
2022-05-05;
2021-07-04
葛 瑜(1973—),女,碩士,副教授,從事控制理論與應(yīng)用方面的研究;E-mail:gy_73@163.com
王曉靜(1976—),女,碩士,副教授,從事電氣控制方面的研究;E-mail: oney139@163.com
朱光輝(1986—),男,通信作者,博士,講師,從事離散事件系統(tǒng)理論與應(yīng)用、信息安全方面的研究。E-mail: ghzhu@must.edu.mo
國家自然科學(xué)基金項目資助(62103349);河南省高等學(xué)校重點科研項目資助(21B470009)
This work is supported by the National Natural Science Foundation of China (No. 62103349).
(編輯 許 威)