• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種帶吡啶懸臂大環(huán)異雙核Zn(Ⅱ)-Ni(Ⅱ)配合物的合成、晶體結(jié)構(gòu)及其DNA結(jié)合/切割性質(zhì)

    2022-09-16 09:29:16丁佩佩閆俊濤王春蕾毛佳偉
    關(guān)鍵詞:春蕾檢驗(yàn)所大學(xué)化學(xué)

    丁佩佩 李 銘 吳 宇 閆俊濤 王春蕾 王 洋 毛佳偉*,

    (1武漢輕工大學(xué)化學(xué)與環(huán)境工程學(xué)院,武漢 430023)(2成都市產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)所,成都 610100)

    0 Introduction

    It has been studied that DNA is the primary intracellular target of many cancer drugs because the interaction between complexes and DNA can induce DNA damage in cancer cells,and inhibit the division of aggressive growing cells leading to cell death[1-3].As the most important step for DNA activity,the binding interaction of transition metal complexes with DNA has been extensively explored[4-5].To design effective anticancer drugs,the choice of metal ion and the environment of the ligand which dominates the DNA-binding and cleavage ability are the key factors.The Zn(Ⅱ)ion has the potential to influence many aspects of cellular signally through its effect on Zn-binding proteins because there are many transcription facts and enzymes containing Zn-binding sites[6].Macrocyclic Schiff-base complexes with the Ni(Ⅱ)ions have great application in DNA binding and are used as cleavage agents[7].

    Recently,the macrocycles bearing pendant arms and their metal complexes have received considerable attention,because the functionalized pendant arms can provide additional donors,enhance the stability of complexes and allow for modification of the environment of the ligand[8-9].Haines et al.studied the methylnaphthalene pendant providing steric bulk around the macrocycle[10].Furfural pendant arms attached to the macrocyclic complex were reported with the binding constant on the order of 104[11].Pan et al.synthesized thiophenoethyl pendant armed macrocyclic complexes whose pendant arms do not coordinate with the metal ions and result in the highly twisted saddle-form configurations matching with the double-helical DNA[12].

    In previous work,we reported an unsymmetrical phenyl pendant-armed macrocyclic with heterobinuclear Cu(Ⅱ)-Ni(Ⅱ) complex[13],which showed good phosphate hydrolysis and DNA binding illustrating that the rigid aromatic ring in the macrocycle ligand may have a synergistic effect in DNA.To further clarify the influence of pendant arms in the complex during the DNA binding process,we prepared a new Zn(Ⅱ)-Ni(Ⅱ) heterobinuclear macrocyclic complex bearing two pyridyl pendant arms(Scheme 1).The binding property and cleavage activity of the complex to calf thymus DNA(CT-DNA)have been investigated through UV-Vis spectrophotometry and agarose gel electrophoresis.

    Scheme 1 Synthetic route for the preparation of the Zn(Ⅱ)-Ni(Ⅱ) complex

    1 Experimental

    1.1 Materials and instruments

    The chemicals such as paraformaldehyde,hydrobromic acid,2-methyl pyridine,5-methylbenzaldehyde,and triethylamine were of analytical grade obtained from commercial sources.The solvents,namely methanol,ethanol,andN,N-dimethylformamide(DMF),were purified according to the literature[14].Tetra(n-butyl)ammonium perchlorate (TBAP)was redistilled three times and then dried in a vacuum before use.CT-DNA was supplied by Sigma.The supercoiled pBR322 DNA,trimethylammonium(Tris),agarose gel,and bromophenol blue were purchased from Toyobo Co.

    IR spectra were measured on an FT-IR spectrome-ter with samples prepared as KBr disk.The contents of carbon,hydrogen,and nitrogen element were determined on a Perkin-Elmer 240c element automatic analyzer.UV-Vis spectra were run on a Shimadzu UV-2450 spectrophotometer in a range of 200-700 nm using a cuvette of 1 cm path length.ES-MS spectra were recorded on a Finnigan LCQ ES-MS mass spectrograph using acetonitrile as the mobile phase with an approximate concentration of 1.0 mmol·L-1.

    1.2 Synthesis of the complex

    The ligand 3,3′-((ethane-1,2-diylbis((pyridin-2-ylmethyl)azanediyl))bis(methylene))bis(2-hydroxy-5-methylbenzaldehyde)(H2L)was synthesized according to the literature[15].A solution of Zn(OAc)2·2H2O(0.055 g,0.25 mmol)in absolute ethanol(10 mL)was added dropwise to an solution(10 mL)of H2L(0.55 g,0.25 mmol)in anhydrous ethanol.The mixture was stirred for 2 h at room temperature,then the ethanol solution(10 mL)of ethylenediamine(0.015 g,0.25 mmol)was added slowly.The resulting green soluting was stirred for 4 h,then the Ni(Ⅱ)perchlorate hexahydrate(0.091 g,0.25 mmol)dissolved in 10 mL anhydrous methanol was added slowly.The mixture was stirred for 5 h resulting in a red solution.After filtration,the solution was evaporated for three weeks at ambient temperature,and red diamond single crystals of[ZnNi(L)](ClO4)2·H2O suitable for X-ray diffraction analysis were obtained.Yield:0.131 g(58%).Anal.Calcd.for C68H76Cl4N12Ni2O22Zn2(%):C,45.29;H,4.25;N,9.32.Found(%):C,45.35;H,4.21;N,9.42.

    1.3 Determination of the crystal structure

    The crystal structure of the complex was measured on a Bruker Smart Apex-Ⅱ CCD diffractometer at 173.15 K using graphite monochromatic MoKαradiation(λ=0.071 073 nm).Data reduction and cell refinement were performed by the SAINT program.The structure was obtained by direct methods(SHELXS)and refined onF2by full-matrix least-squares(SHELXS)using all unique data.The non-hydrogen atoms were refined with anisotropic displacement parameters.All hydrogen atoms in the structure were located in calculated positions and refined using riding constraints.The summary of the crystallographic data is listed in Table 1.

    Table 1 Crystal data and structure refinement for the complex

    CCDC:2045334.

    1.4 DNA binding experiments

    All the experiments involving the interaction of the complexes with DNA were carried out in Tris-HCl buffer(100 mL,50 mmol·L-1Tris-HCl,50 mmol·L-1NaCl,pH=7.2)kept at 0℃for less than 4 d.

    Absorption spectral studies.CT-DNA(20 mg)was dissolved in Tris-HCl buffer.The ratio of UV absorbance at 260 and 280 nm was in a range of 1.8-2.0 indicating that CT-DNA was free from protein[16].The concentration of CT-DNA in terms of nucleotide was calculated from its absorption intensity at 260 nm with a molar extinction coefficient of 6 600 L·mol-1·cm-1[17].The complex was dissolved in DMF at a concentration of 50 μmol·L-1.The UV absorption titration experiments were performed by keeping the complex concentration constant and varying the CT-DNA concentration.The complex-DNA solution was incubated for 30 min at room temperature before measurements were taken.The binding ability of the complex was calculated by the intrinsic binding constantKbaccording to Eq.1[18]:

    WherecDNAis the concentration of DNA;εa,εf,andεbare the molar extinction coefficient of solutions containing both complex and DNA,free complex,and the complex fully binding to DNA,respectively.When we takecDNA/(εa-εf)as the ordinate andcDNAas the abscissa to draw the graph,the slope of the plot gives the value of 1/(εb-εf),while the intercept is equal to 1/[Kb(εb-εf)].

    Electrochemical studies.The cyclic voltammetric technique is useful for probing the mode of the binding of metal complexes to DNA.Electrochemical measurements were carried out on a CHI 750 electrochemical analyzer with a three-electrode cell system with a glassy carbon as the working electrode,a platinum wire as the counter electrode,and an Ag/AgCl electrode as the reference electrode.The scanning rates were in a range of 20-200 mV·s-1.The solution was deoxygenated by purging with a nitrogen atmosphere before measurements.

    Viscosity measurements.Viscosity measurement was performed using a capillary viscometer in a thermostatic water bath maintained at 25℃.Flow times were recorded with a digital stopwatch.Each sample was measured three times.

    1.5 DNA cleavage experiment

    The cleavage of plasmid DNA by the complex was monitored using agarose gel electrophoresis.A mixture of Tris-HCl buffer,pBR322 DNA(0.25 μg·μL-1),and different amounts of the complexes(dissolved in DMF)was incubated for 3 h at 37℃.The reaction in the samples was quenched by the addition of sterile solution(1 μL,0.25% bromophenol blue solution,0.4 g·mL-1sucrose solution).The samples were then analyzed by electrophoresis for 0.8 h at 100 V in TAE buffer(40 mmol·L-1Tris,20 mmol·L-1acetic acid,and 1 mmol·L-1EDTA,pH=7.4).The gel was stained with ethidium bromide(EB,1 μg·μL-1)for 0.5 h after electrophoresis and then photographed.

    2 Results and discussion

    2.1 Synthesis and characterization

    The synthetic route for the preparation of the Zn(Ⅱ)-Ni(Ⅱ) complex is depicted in Scheme 1.In the IR spectrum of the complex,the appearance of sharp stretching vibration at 1 617 cm-1(νC=N)and the absence of the stretching vibrations between 1 740 and 1 720 cm-1(νC=O)confirm the formation of the Schiff base macrocyclic framework and the aldehyde groups has been completely converted into imine groups[19].A strong intensity band at 1 090 cm-1and one medium intensity band at 624 cm-1correspond toν3andν4absorptions of perchlorate ions.The sharp instead of broad peak at 1 090 cm-1assigns that the perchlorate ions are not coordinated to the metal ions and are present as counter ions in the crystal lattice,which was in agreement with the crystal structure[20].Further,the appearance of a band in the region of 1 550-1 571 cm-1refers to the phenolate bridging with the metal ions[21].The complex exhibited a band centered between 3 400 and 3 500 cm-1originating from νO—Hof water present.Although in absence of structural information,the IR data might be useful in determining the coordination geometry of metal in the[N4O2]coordination site.

    The ES-MS spectrum of the complex was measured in acetonitrile solution(Supporting information).The dominant molecular ion peaks appear atm/z743.33 corresponding to the solvation species[ZnNi(L)(C2H3N)(H2O)]2+,where the complex lost two ClO4-,and break into two same units.And the peaks that appeared atm/z342.33 are attributed to the ligand H2L.This chromatographic behavior suggests that perchlorate ion dissociated from[ZnNi(L)](ClO4)2.The other observed peaks may be assigned to various fragments arising from the thermal cleavage of the complex.

    2.2 Crystal structure of[ZnNi(L)](ClO4)2·H2O

    The perspective view of[ZnNi(L)]2+and the metal coordination environment polyhedron are given in Fig.1.Selected bond lengths and angles relevant to the Zn(Ⅱ) and Ni(Ⅱ) coordination spheres of the complex are listed in Table 2.The heterobinuclear Zn(Ⅱ)-Ni(Ⅱ)complex consists of two[ZnNi(L)]2+cations,four ClO-4anions as counter ions,and two water molecules,the corresponding formula is[ZnNi(L)]2(ClO4)4·(H2O)2.The complex contains two similar macrocyclic units(Fig.1,A and B),and each unit is just like a butterfly waving its wings.The two pyridine pendant arms play the roles of wings which are situated in the same sidepiece of the mean molecular plane.

    Fig.1 Perspective view of[ZnNi(L)]2+at 30% probability thermal ellipsoids with hydrogen atoms omitted for clarity

    Table 2 Selected bond distances(nm)and angles(°)for complex

    Each unit of the complex shows that the Zn(Ⅱ)center coordinated with four nitrogen donors and two phenoxide atoms to yield an overall metal coordination geometry of six while the Ni(Ⅱ)ion resides at the[N(imine)2O2]site in four coordinated compartments with a square plane topology.The coordination geometry of Zn(Ⅱ)can be described as a distorted trigonal prism.The Ni(Ⅱ)ion with ad8electronic configuration tends to form four-coordinated planar complexes[15].The bond distances around the Zn(Ⅱ)ion are in a range of 0.203 1(3)-0.243 6(3)nm,which are comparable with those reported in other similar heterobinuclear complexes[20-21],and longer than the mononuclear and homobinuclear complex[22-23].The basal bond distances around the Ni(Ⅱ)ion range from 0.184 2(3)to 0.186 3(3)nm,which are shorter than the homobinuclear complex[24].The Zn—Ni distance bridged by two phenolic oxygens is 0.303 63(6)nm,which is an effective metal-metal distance for phosphomonoesterase mimics[9].The Zn(Ⅱ)ions lie out of the approximate[N(amine)2O2]planar by 0.096 83 nm in A and 0.095 39 nm in B,and Ni(Ⅱ)ions lie almost on the[N(imine)2O2]plane for A and B with the deviation of-0.001 99 and-0.001 90 nm,respectively,which indicates the Zn(Ⅱ)and Ni(Ⅱ)are in the opposite side of the planar.The dihedral angle between the[N(amine)2O2]and[N(imine)2O2]planes is 18.092(71)°.The average distances of Zn1 and Zn2 to the 18-member macrocyclic ring are 0.152 9 and 0.153 2 nm,which are longer than the literature reported before[25].It may be decided by the number of carbon atoms related to imine nitrogen atoms.The fewer carbon atoms lead to smaller microcycles ring size and shorter bond distances between metal atoms and coordinating atoms,then Zn2+lies more away from the macrocyclic ring.

    2.3 DNA-binding activity

    2.3.1 Absorption spectral studies

    Electronic absorption spectroscopy is universally used to determine the binding characteristics of a metal complex with DNA.The absorption spectra of the complex in the absence and presence of increasing amounts of CT-DNA(0-75 μmol·L-1)are shown in Fig.2.In general,hypochromicity and redshift are considered evidence of the intercalative mode of binding between the aromatic chromophore of the complex and the base pairs of DNA[26].In the UV region,the mixture of complex and CT-DNA showed a big hypochromism(15%)at the band of 380 nm with a small amount of redshift(2 nm)at a ratio ofcDNA/ccomplexof 3.The moderate change observed in the absorption spectra indicates that the binding of complex to DNA double-helix is an intercalative mode[27].The mechanism could explain the hypochromism and red-shift:after the complex intercalates the base pairs of DNA through diffusion,theπ-orbital of the base pairs couple with theπ*-orbital of the intercalated ligand,thus decreasing theπ-π*transition energy and resulting the red-shift.At the same time,electrons partially fill the couplingπ*-orbital and then decrease the probabilities of transition resulting in hypochromism.

    Fig.2 Absorption spectra of the Zn(Ⅱ)-Ni(Ⅱ) complex in the absence and presence of increasing amounts of CT-DNA(0-75 μmol·L-1)at 25 ℃ in 50 mmol·L-1Tris-HCl/NaCl(pH=7.2)

    The intrinsic binding constantKbwas calculated from the ratio of slope to intercept of the plot ofcDNA/(εa-εf)vscDNA(Fig.3)and found to be 1.05×105L·mol-1.Hence,the binding affinity of the complex is higher than the previously reported symmetric heterobinuclear Zn(Ⅱ)-Ni(Ⅱ) complex[28].We can deduce that the Zn(Ⅱ)-Ni(Ⅱ) complex binds to DNA by intercalation.The pyridyl nitrogen took part in the coordination,which leads to the distorted pyridyl ring plane,and the methyl electron-donating effect on the benzene ring resulted in the decrease of the planar rigidity,then lead to moderate intercalation.

    Fig.3 Plot of cDNA/(εa-εf)vs cDNAfor UV-Vis absorption titration of the complex with CT-DNA

    2.3.2 Electrochemical study

    To further prove the complex intercalation to DNA,the electrochemical properties of the complex were studied by cyclic voltammetry in 50 mmol·L-1Tris-HCl/50 mmol·L-1NaCl buffer solution(pH=7.2)using TBAP as supporting electrolytes in a sweeping range of-1.4 to-0.4 V at room temperature.It was delineated that the cathodic and anodic peak potential both shifted toward negative or positive value,which means the intercalation of the complex into the base pairs of the DNA,while the different shift means the grooving and electrostatic interaction of the complex with DNA[29].The cyclic voltammogram of the complex(0.5 mmol·L-1)in the absence and presence of CT-DNA is shown in Fig.4.In the absence of CT-DNA,the cathodic peak potential(Epc)and the anodic peak potential(Epa)were-0.832 and-0.689 V,respectively.The separation(ΔE)of the anodic and cathodic peak potentials was 0.143 V which was bigger than 0.059 V,suggesting a pseudo-reversible electrochemical process.The addition of CT-DNA to the complex resulted in a decrease in the cathodic and anodic peak currents and both peak potentials shifted to bigger values withEpc=-0.815 V andEpa=-0.607 V.The reduction in peak current intensity and positive shift in potential in the presence of CT-DNA is due to the intercalation binding of this complex with CT-DNA[11].By comparison,in the reported cyclic voltammogram of heterobinuclear Zn(Ⅱ)-Ni(Ⅱ) complex[30],irreversible redox processes were observed withEpc=-1.58 V.The behavior was similar to the reported complexes with diamino propane lateral chains instead of the diaminoethane chain in this complex[28].

    Fig.4 Cyclic voltammogram of the complex in the absence(a)and presence(b)of CT-DNA

    2.3.3 Viscosity titration

    Viscosity measurement is regarded as the most critical test in evaluating the binding interactions of the complex with DNA due to that the viscosity of DNA is sensitive to its length[31].A classical intercalation model leads to the CT-DNA helix lengthening as base pairs are separated to accommodate the binding ligand,which results in the viscosity enhancement,while the grooving and electrostatic binding would exert no such effect on the viscosity[32].As shown in Fig.5,with the increasing amount of the complex,the relative viscosity of DNA increased steadily,which indicates that the complex bind to DNA through intercalation mode.This result is according to the absorption spectroscopy and cyclic voltammogram studies.

    Fig.5 Effect of increasing amounts of the complex on the relative viscosity of DNA

    2.4 DNA cleavage activity

    The supercoiled pBR322 DNA cleavage ability has been investigated with various concentrations of the complex by agarose gel electrophoresis experiment since the synthesized complex satisfies one of the primary criteria for catalyzing hydrolytic cleavage of DNA,i.e.coordination of the phosphate moiety of DNA to the metal center of complex[25].The cleavage efficacy of the complex is shown in Fig.6.This complex could transform Form Ⅰ(supercoil form)to Form Ⅱ(open circular form)at 200 μmol·L-1.No linear coil form was found indicating that the complex was involved in single-strand breaking.Compared with other macrocyclic complexes,the DNA cleavage activity of this complex[24]was lower for it cleaved SC DNA to NC DNA in higher concentration.This may be due to the pyridyl N taking part in the coordination and destroying the planarity of the complex.

    Fig.6 Agarose gel electrophoresis of pBR322 plasmid DNA in the presence of different concentrations of the complex

    3 Conclusions

    This work involved the synthesis and structurally characterization of a new bis-pyridine pendant-armed macrocyclic heterbinuclear Zn(Ⅱ)-Ni(Ⅱ) complex.The studies of UV-Vis absorption,viscosity,and cyclic voltammetry of the mixture of the complex and DNA showed high binding capacity.The binding ability is affected by the substituents in the ligand and the size of the ring cavity.Compared with theKbvalue,the complex has a moderate stronger binding than some reported similar complexes.Moreover,this heterobinuclear complex showed an efficient cleavage activity toward pBR322 DNA in the absence of any external agents.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    春蕾檢驗(yàn)所大學(xué)化學(xué)
    北京市醫(yī)療器械檢驗(yàn)所
    北京市醫(yī)療器械檢驗(yàn)所
    北京市醫(yī)療器械檢驗(yàn)所
    北京市醫(yī)療器械檢驗(yàn)所簡(jiǎn)介
    基于SCIE的大學(xué)化學(xué)學(xué)科文獻(xiàn)計(jì)量學(xué)研究——以河南大學(xué)為例
    信息技術(shù)在大學(xué)化學(xué)專業(yè)英語(yǔ)教學(xué)中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    春蕾圓夢(mèng) 高考助學(xué)在行動(dòng)
    海峽姐妹(2015年8期)2015-02-27 15:12:33
    春蕾之花 美麗綻放——百名“春蕾之星”尋訪記
    關(guān)于《大學(xué)化學(xué)》編輯部新網(wǎng)頁(yè)開通的通知
    關(guān)于《大學(xué)化學(xué)》編輯部新網(wǎng)頁(yè)開通的通知
    亚州av有码| 男人爽女人下面视频在线观看| 女性生殖器流出的白浆| 国产精品久久久久久精品古装| 最近的中文字幕免费完整| 亚洲aⅴ乱码一区二区在线播放| 日韩强制内射视频| 成人国产av品久久久| 欧美激情国产日韩精品一区| 亚洲精品456在线播放app| 少妇人妻精品综合一区二区| 精品人妻熟女av久视频| 欧美成人a在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩无卡精品| 三级经典国产精品| 久久久a久久爽久久v久久| 久久精品国产亚洲网站| 国产在视频线精品| 亚洲成人手机| 在线观看美女被高潮喷水网站| 欧美日韩综合久久久久久| 久久久久国产精品人妻一区二区| 中国国产av一级| 2022亚洲国产成人精品| 联通29元200g的流量卡| 丰满少妇做爰视频| 亚洲熟女精品中文字幕| 国产熟女欧美一区二区| 男女无遮挡免费网站观看| 免费黄网站久久成人精品| 麻豆精品久久久久久蜜桃| 中文乱码字字幕精品一区二区三区| 免费观看的影片在线观看| 最近中文字幕高清免费大全6| 国产视频首页在线观看| 久久久国产一区二区| 久久99蜜桃精品久久| 中文天堂在线官网| 香蕉精品网在线| 亚洲va在线va天堂va国产| 爱豆传媒免费全集在线观看| 国产爱豆传媒在线观看| 亚洲成色77777| 另类亚洲欧美激情| 国产日韩欧美亚洲二区| 韩国高清视频一区二区三区| 99久国产av精品国产电影| 青春草亚洲视频在线观看| 一区二区三区精品91| 女性生殖器流出的白浆| 99热这里只有是精品50| 男人狂女人下面高潮的视频| av不卡在线播放| 国国产精品蜜臀av免费| 久久久久久伊人网av| 精品国产三级普通话版| 视频区图区小说| 精品久久久久久久久亚洲| 亚洲欧美精品专区久久| 日韩成人伦理影院| 国产深夜福利视频在线观看| 国产美女午夜福利| 国产精品一区www在线观看| 夜夜骑夜夜射夜夜干| 噜噜噜噜噜久久久久久91| 黑人高潮一二区| 一边亲一边摸免费视频| xxx大片免费视频| 狂野欧美白嫩少妇大欣赏| 亚洲国产最新在线播放| 黄色怎么调成土黄色| 国产亚洲最大av| a级毛片免费高清观看在线播放| 黑丝袜美女国产一区| 97在线人人人人妻| 久久青草综合色| 亚洲国产欧美在线一区| 亚洲精品aⅴ在线观看| 大陆偷拍与自拍| 成人免费观看视频高清| 日韩成人伦理影院| 日韩在线高清观看一区二区三区| av在线老鸭窝| 又黄又爽又刺激的免费视频.| 在线观看人妻少妇| 精品一品国产午夜福利视频| 久久久久久久国产电影| 久久精品国产亚洲网站| 国产人妻一区二区三区在| 中文字幕精品免费在线观看视频 | 黄片wwwwww| 亚洲激情五月婷婷啪啪| 亚洲电影在线观看av| 国产精品一区二区三区四区免费观看| 国产成人精品一,二区| 狠狠精品人妻久久久久久综合| 国产乱人偷精品视频| 又黄又爽又刺激的免费视频.| 秋霞伦理黄片| 国产精品人妻久久久久久| 91狼人影院| 看免费成人av毛片| 在线观看免费视频网站a站| 国产日韩欧美亚洲二区| 中文在线观看免费www的网站| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| 亚洲av不卡在线观看| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜爱| 亚洲婷婷狠狠爱综合网| 欧美日韩国产mv在线观看视频 | 国产免费又黄又爽又色| 少妇的逼水好多| 精品少妇黑人巨大在线播放| 日韩成人伦理影院| 亚洲成色77777| 国产成人精品久久久久久| 全区人妻精品视频| 国产高清三级在线| 国产美女午夜福利| a级毛色黄片| 国产成人免费无遮挡视频| 国产欧美另类精品又又久久亚洲欧美| 男女边吃奶边做爰视频| 国产黄频视频在线观看| 女人久久www免费人成看片| 国产成人精品福利久久| 亚洲欧美日韩东京热| 亚洲国产日韩一区二区| 夫妻性生交免费视频一级片| 人体艺术视频欧美日本| 这个男人来自地球电影免费观看 | 日韩不卡一区二区三区视频在线| 亚洲美女黄色视频免费看| 久久99精品国语久久久| 日韩欧美 国产精品| 亚洲成人av在线免费| 人人妻人人看人人澡| 成人美女网站在线观看视频| 涩涩av久久男人的天堂| 亚洲av在线观看美女高潮| 久热久热在线精品观看| 国产一级毛片在线| 极品教师在线视频| 特大巨黑吊av在线直播| 亚洲图色成人| 国产男女超爽视频在线观看| 亚洲精品中文字幕在线视频 | 欧美三级亚洲精品| 插逼视频在线观看| 欧美日韩一区二区视频在线观看视频在线| av网站免费在线观看视频| 亚洲天堂av无毛| 视频区图区小说| xxx大片免费视频| 在线观看美女被高潮喷水网站| 18禁在线无遮挡免费观看视频| 在线观看美女被高潮喷水网站| a级毛片免费高清观看在线播放| 久久久精品94久久精品| 午夜免费鲁丝| 99久久精品国产国产毛片| 色视频www国产| 日韩 亚洲 欧美在线| 成年免费大片在线观看| 狠狠精品人妻久久久久久综合| 在线观看人妻少妇| 日日摸夜夜添夜夜添av毛片| 黄色配什么色好看| 高清黄色对白视频在线免费看 | 日韩,欧美,国产一区二区三区| 国产欧美亚洲国产| 国产男女超爽视频在线观看| 日韩国内少妇激情av| 国产熟女欧美一区二区| 午夜免费观看性视频| a级一级毛片免费在线观看| 久久精品国产亚洲av天美| 黄色视频在线播放观看不卡| 男人和女人高潮做爰伦理| 嫩草影院入口| 国产精品一区二区在线不卡| 免费久久久久久久精品成人欧美视频 | 男女边吃奶边做爰视频| 黑人高潮一二区| 天堂8中文在线网| 99久国产av精品国产电影| 97精品久久久久久久久久精品| 亚洲av不卡在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品999| www.av在线官网国产| 在线观看一区二区三区激情| 国产爽快片一区二区三区| 久久久久久久国产电影| 欧美成人精品欧美一级黄| 欧美极品一区二区三区四区| 国产爽快片一区二区三区| videos熟女内射| 成人综合一区亚洲| 18+在线观看网站| 免费大片黄手机在线观看| 高清午夜精品一区二区三区| 国产永久视频网站| 一区在线观看完整版| 日韩中文字幕视频在线看片 | 国产成人aa在线观看| 狂野欧美白嫩少妇大欣赏| 国产乱来视频区| 干丝袜人妻中文字幕| 狠狠精品人妻久久久久久综合| 国产亚洲av片在线观看秒播厂| 成人高潮视频无遮挡免费网站| 22中文网久久字幕| 少妇丰满av| 男女国产视频网站| 天堂8中文在线网| videossex国产| 嘟嘟电影网在线观看| 女的被弄到高潮叫床怎么办| 免费黄色在线免费观看| 韩国av在线不卡| av黄色大香蕉| 免费看不卡的av| 精品熟女少妇av免费看| 日韩av在线免费看完整版不卡| 在线观看一区二区三区| 91久久精品国产一区二区三区| 精品久久久久久久末码| 秋霞在线观看毛片| 成人美女网站在线观看视频| 精品少妇黑人巨大在线播放| 成人毛片a级毛片在线播放| 中文欧美无线码| 国产成人91sexporn| 色视频在线一区二区三区| 美女cb高潮喷水在线观看| 亚洲精品国产av成人精品| 欧美成人a在线观看| 国产黄片视频在线免费观看| 欧美精品亚洲一区二区| 在线免费十八禁| 直男gayav资源| 99久久人妻综合| 99久久精品一区二区三区| 国产高清国产精品国产三级 | 色视频www国产| 午夜精品国产一区二区电影| 又黄又爽又刺激的免费视频.| 人体艺术视频欧美日本| 少妇被粗大猛烈的视频| 成人影院久久| 精品人妻熟女av久视频| 国产 一区 欧美 日韩| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 亚洲怡红院男人天堂| 校园人妻丝袜中文字幕| 乱系列少妇在线播放| 久久精品国产a三级三级三级| 国产精品99久久久久久久久| .国产精品久久| 国产高潮美女av| 久久精品久久久久久噜噜老黄| 97超视频在线观看视频| 丰满乱子伦码专区| 日本一二三区视频观看| 国产精品伦人一区二区| 国产一区有黄有色的免费视频| 尾随美女入室| 精品国产露脸久久av麻豆| 在线观看免费日韩欧美大片 | 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频 | 另类亚洲欧美激情| 精品熟女少妇av免费看| 国产亚洲5aaaaa淫片| 少妇丰满av| 激情五月婷婷亚洲| 美女cb高潮喷水在线观看| 中文字幕亚洲精品专区| 免费看不卡的av| 亚洲av二区三区四区| 日本午夜av视频| 中文精品一卡2卡3卡4更新| 久久ye,这里只有精品| 老司机影院成人| 国产91av在线免费观看| 久久婷婷青草| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| 99久久中文字幕三级久久日本| 国国产精品蜜臀av免费| 国产av国产精品国产| 建设人人有责人人尽责人人享有的 | 一区二区av电影网| 视频中文字幕在线观看| 女性被躁到高潮视频| 亚洲精品一区蜜桃| 国产在线免费精品| 欧美精品一区二区免费开放| 在线观看三级黄色| 国产在视频线精品| 精品人妻一区二区三区麻豆| 国产成人freesex在线| 少妇人妻一区二区三区视频| 色哟哟·www| 欧美成人a在线观看| 在线 av 中文字幕| 丝袜脚勾引网站| 国产爽快片一区二区三区| 99热这里只有精品一区| 亚洲人成网站高清观看| 日本欧美视频一区| 精品一品国产午夜福利视频| 99视频精品全部免费 在线| 熟女电影av网| 日韩不卡一区二区三区视频在线| 美女国产视频在线观看| 成人漫画全彩无遮挡| 精品久久久精品久久久| 亚洲人成网站在线播| 国产伦在线观看视频一区| 国产黄色免费在线视频| 日日撸夜夜添| 午夜免费鲁丝| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美 | 99国产精品免费福利视频| 人体艺术视频欧美日本| 欧美精品一区二区免费开放| 色婷婷av一区二区三区视频| 亚洲精品国产成人久久av| 精品久久国产蜜桃| 一区二区三区四区激情视频| 男人和女人高潮做爰伦理| 国产深夜福利视频在线观看| 伦精品一区二区三区| 男女啪啪激烈高潮av片| 99热网站在线观看| 国产av国产精品国产| 狂野欧美激情性bbbbbb| 欧美97在线视频| 插逼视频在线观看| 少妇丰满av| 欧美国产精品一级二级三级 | 人体艺术视频欧美日本| 欧美xxⅹ黑人| av免费观看日本| 我要看日韩黄色一级片| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6| 熟妇人妻不卡中文字幕| 人人妻人人澡人人爽人人夜夜| 久久久久久伊人网av| 男人爽女人下面视频在线观看| 久久久欧美国产精品| av在线蜜桃| 精品午夜福利在线看| 欧美成人a在线观看| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| 少妇人妻 视频| 精品一区二区三区视频在线| 大又大粗又爽又黄少妇毛片口| 三级经典国产精品| 观看av在线不卡| av在线播放精品| 久久精品国产a三级三级三级| 肉色欧美久久久久久久蜜桃| 国产男人的电影天堂91| 一本一本综合久久| 国产成人午夜福利电影在线观看| 亚洲天堂av无毛| 一级毛片我不卡| 精品亚洲成a人片在线观看 | av国产精品久久久久影院| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 我要看日韩黄色一级片| 国内精品宾馆在线| 精品99又大又爽又粗少妇毛片| 国产伦理片在线播放av一区| 亚洲av日韩在线播放| 国产精品人妻久久久影院| av卡一久久| 精品视频人人做人人爽| 久久人妻熟女aⅴ| 亚州av有码| 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 精品人妻视频免费看| 国产精品一区二区在线不卡| 国产精品一区www在线观看| 国产成人午夜福利电影在线观看| 哪个播放器可以免费观看大片| 亚洲婷婷狠狠爱综合网| av在线app专区| 日韩欧美 国产精品| 黄色怎么调成土黄色| 乱码一卡2卡4卡精品| 亚洲欧美一区二区三区黑人 | 国产在线男女| 午夜福利在线在线| 91在线精品国自产拍蜜月| 日本欧美视频一区| 精品人妻偷拍中文字幕| 国产男女内射视频| 中文字幕精品免费在线观看视频 | 久久久久久久久久久丰满| 亚洲无线观看免费| 国产真实伦视频高清在线观看| videossex国产| 大又大粗又爽又黄少妇毛片口| 亚洲av中文av极速乱| 深爱激情五月婷婷| 大话2 男鬼变身卡| 国产精品精品国产色婷婷| 久久久久久久久久久丰满| 啦啦啦在线观看免费高清www| 黄色一级大片看看| 三级国产精品欧美在线观看| 国产精品三级大全| 国产高清不卡午夜福利| 18禁裸乳无遮挡动漫免费视频| 最近2019中文字幕mv第一页| 色综合色国产| 欧美精品国产亚洲| 亚洲精品成人av观看孕妇| 欧美激情国产日韩精品一区| 久久久久视频综合| 国产精品嫩草影院av在线观看| h视频一区二区三区| 午夜福利在线在线| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 人妻制服诱惑在线中文字幕| 少妇被粗大猛烈的视频| 一级毛片我不卡| 国产av一区二区精品久久 | 哪个播放器可以免费观看大片| 欧美xxxx黑人xx丫x性爽| 成年女人在线观看亚洲视频| 亚洲欧美日韩无卡精品| 一级毛片我不卡| 国产午夜精品一二区理论片| 久久精品国产自在天天线| 老司机影院成人| 人妻一区二区av| 亚洲欧美成人综合另类久久久| 男人和女人高潮做爰伦理| 免费看光身美女| 亚州av有码| 亚洲国产精品成人久久小说| 伦精品一区二区三区| 亚洲伊人久久精品综合| 国产成人aa在线观看| 色网站视频免费| 一级毛片久久久久久久久女| 亚洲av成人精品一区久久| 国产精品久久久久成人av| 18禁动态无遮挡网站| 在线看a的网站| 国产高清有码在线观看视频| 亚洲电影在线观看av| 黑人猛操日本美女一级片| 国产一级毛片在线| 在线天堂最新版资源| 欧美一区二区亚洲| 免费黄频网站在线观看国产| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 男人添女人高潮全过程视频| av国产免费在线观看| 在现免费观看毛片| 一个人看的www免费观看视频| 成人国产麻豆网| 18禁裸乳无遮挡免费网站照片| videos熟女内射| 国产免费福利视频在线观看| 女人十人毛片免费观看3o分钟| 久久久久久人妻| 九九在线视频观看精品| 九色成人免费人妻av| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品| 好男人视频免费观看在线| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 老司机影院成人| 成人亚洲精品一区在线观看 | 男女下面进入的视频免费午夜| 国产乱来视频区| 国产男女超爽视频在线观看| 舔av片在线| 成人综合一区亚洲| 在线观看一区二区三区| 免费在线观看成人毛片| 精品国产露脸久久av麻豆| 久久综合国产亚洲精品| 国产高清三级在线| 亚洲欧美日韩无卡精品| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区三区| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 日韩国内少妇激情av| 久久久国产一区二区| 久久99热6这里只有精品| 亚洲电影在线观看av| 欧美少妇被猛烈插入视频| 亚洲国产成人一精品久久久| 国产成人精品久久久久久| 国产黄片视频在线免费观看| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄| 韩国av在线不卡| 熟女电影av网| 国产男女内射视频| 亚洲精品乱码久久久v下载方式| av网站免费在线观看视频| 美女福利国产在线 | 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 熟妇人妻不卡中文字幕| 22中文网久久字幕| 一级毛片我不卡| 日韩成人伦理影院| 精品久久国产蜜桃| 国产日韩欧美亚洲二区| 99热国产这里只有精品6| 99热6这里只有精品| av在线蜜桃| 性色avwww在线观看| 亚洲中文av在线| 色视频在线一区二区三区| 夜夜爽夜夜爽视频| 成人黄色视频免费在线看| 国产中年淑女户外野战色| 国产高清不卡午夜福利| 亚洲精品国产色婷婷电影| 自拍欧美九色日韩亚洲蝌蚪91 | 熟妇人妻不卡中文字幕| 在线观看一区二区三区| 亚洲人成网站在线播| av在线蜜桃| 国产精品熟女久久久久浪| 日本免费在线观看一区| 一级二级三级毛片免费看| 国产日韩欧美在线精品| 十分钟在线观看高清视频www | 亚洲精品国产av成人精品| 欧美区成人在线视频| 能在线免费看毛片的网站| 99精国产麻豆久久婷婷| 亚洲婷婷狠狠爱综合网| 亚洲成人av在线免费| 男男h啪啪无遮挡| 日韩成人伦理影院| 亚洲av福利一区| 国产大屁股一区二区在线视频| 最黄视频免费看| 美女视频免费永久观看网站| 日本与韩国留学比较| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 国产成人精品婷婷| av在线老鸭窝| 只有这里有精品99| 毛片女人毛片| 97超碰精品成人国产| 激情 狠狠 欧美| 日日摸夜夜添夜夜添av毛片| 一级毛片久久久久久久久女| 一个人看视频在线观看www免费| 黄色怎么调成土黄色| 免费大片黄手机在线观看| 国产高清有码在线观看视频| av专区在线播放| 五月玫瑰六月丁香| 成年av动漫网址| 在线观看一区二区三区| 成年av动漫网址| 99久久精品热视频| 久久久a久久爽久久v久久| 亚洲精品色激情综合| 亚洲av中文字字幕乱码综合| 激情五月婷婷亚洲| 熟女av电影| 超碰av人人做人人爽久久| 内射极品少妇av片p| 六月丁香七月| 人妻夜夜爽99麻豆av| 在现免费观看毛片| 日韩人妻高清精品专区| 妹子高潮喷水视频| 在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| 日日撸夜夜添| 日韩视频在线欧美| 国产精品一区二区在线不卡| 国产精品99久久久久久久久| 国产成人a∨麻豆精品| 国产av精品麻豆| 日本欧美国产在线视频| 日韩一本色道免费dvd|