王曉銘,李長(zhǎng)河,張彥彬,楊敏,周宗明,陳云,劉波,王大中
特邀綜述
微量潤(rùn)滑賦能霧化與供給系統(tǒng)關(guān)鍵技術(shù)研究進(jìn)展
王曉銘1,李長(zhǎng)河1,張彥彬1,楊敏1,周宗明2,陳云3,劉波4,王大中5
(1.青島理工大學(xué) 機(jī)械與汽車工程學(xué)院,山東 青島 266520;2.漢能(青島)潤(rùn)滑科技有限公司,山東 青島 266100;3.成都工具研究所有限公司,成都,610500;4.四川明日宇航工業(yè)有限責(zé)任公司,四川 什邡 618400;5.上海工程技術(shù)大學(xué) 航空運(yùn)輸學(xué)院,上海 201620)
傳統(tǒng)金屬切削液會(huì)對(duì)環(huán)保、人體健康及制造成本產(chǎn)生負(fù)面影響,難以滿足綠色制造的發(fā)展需求。微量潤(rùn)滑是一種介于澆注式和干式加工的潤(rùn)滑劑綠色供給技術(shù),利用壓縮空氣將少量可降解的生物潤(rùn)滑劑霧化,形成微液滴,從而起到潤(rùn)滑和抗磨減摩的作用。然而,尚無相關(guān)研究針對(duì)霧化微液滴精準(zhǔn)輸運(yùn)技術(shù)的規(guī)律進(jìn)行總結(jié),無法為微量潤(rùn)滑供給參數(shù)提供科學(xué)指導(dǎo)。為此,綜述了微量潤(rùn)滑賦能霧化和供給系統(tǒng)關(guān)鍵技術(shù)的研究進(jìn)展。揭示了微量潤(rùn)滑兩相流氣動(dòng)霧化液滴粒徑和霧化錐角隨供給參數(shù)的演變規(guī)律,提出了靜電霧化微量潤(rùn)滑賦能供給新方法,分析了靜電賦能霧化性能調(diào)控機(jī)制和荷電流體滲透特性,闡述了超聲賦能霧化液滴均一化機(jī)理和工藝參數(shù)優(yōu)化策略。進(jìn)一步分析了基于流體動(dòng)力學(xué)模型的刀具/砂輪–工件界面流場(chǎng)分布規(guī)律,闡明了噴嘴結(jié)構(gòu)對(duì)液滴輸運(yùn)的影響規(guī)律,為噴嘴位姿參數(shù)的選取提供了理論支撐。此外,論述了噴嘴位姿參數(shù)化調(diào)控裝置的研究進(jìn)展,解決了潤(rùn)滑介質(zhì)參數(shù)化供給難題。最后,展望了微量潤(rùn)滑復(fù)合增效和智能供給關(guān)鍵技術(shù),以期為微量潤(rùn)滑技術(shù)的工程應(yīng)用提供理論支持和技術(shù)指導(dǎo)。
微量潤(rùn)滑;霧化;切削;磨削;流場(chǎng);噴嘴
掃碼查看文章講解
在金屬切/磨削過程中,伴隨著材料去除,刀具/砂輪–工件接觸界面會(huì)發(fā)生劇烈摩擦,單位體積材料的去除需要消耗大量的能量[1-2],因而切/磨削區(qū)內(nèi)部存在較高的熱流密度[3-4]。熱量積聚使工件處于高溫狀態(tài),進(jìn)而導(dǎo)致工件發(fā)生熱損傷,如燒傷、微裂紋、殘余應(yīng)力、組織變化等[5-8]。采用金屬切削液來提升零件切/磨削性能已有數(shù)百年的應(yīng)用歷史。傳統(tǒng)金屬切削液通常采用礦物油作為基礎(chǔ)潤(rùn)滑劑,通過液壓管路輸運(yùn)澆注至切削摩擦界面,并經(jīng)凈化裝置處理后循環(huán)使用。雖然傳統(tǒng)澆注式供給實(shí)現(xiàn)了冷卻潤(rùn)滑作用,但會(huì)產(chǎn)生不可忽視的負(fù)面影響。礦物基油的生物降解性較差,一些企業(yè)非法泄露、排放和燃燒礦物基油,這會(huì)對(duì)土壤環(huán)境、水資源、大氣環(huán)境造成不可逆轉(zhuǎn)的負(fù)面影響[9]。在加工過程中,技術(shù)人員接觸冷卻潤(rùn)滑劑、細(xì)菌及各種化學(xué)添加劑后容易罹患皮膚疾病[10]。同時(shí),切削液的處理成本較高[11]。此外,受到刀具撞擊及切/磨削區(qū)高熱量載荷的影響,金屬切削液易飄散、蒸發(fā)至空氣中,從而對(duì)操作人員的呼吸道系統(tǒng)造成損傷[12]。
傳統(tǒng)制造模式粗放式發(fā)展帶來的環(huán)境影響已經(jīng)不能滿足當(dāng)前綠色制造的發(fā)展需求。自工業(yè)革命后,礦物油的普及使用改善了切/磨削加工過程的潤(rùn)滑。然而,在碳達(dá)峰、碳中和要求的嚴(yán)峻國(guó)際大背景下,傳統(tǒng)制造向綠色、可持續(xù)制造轉(zhuǎn)變勢(shì)在必行。為了消除傳統(tǒng)金屬切削液帶來的嚴(yán)重負(fù)面影響,研究人員對(duì)綠色切/磨削技術(shù)進(jìn)行了深入的研究。20世紀(jì)90年代,有學(xué)者提出將潤(rùn)滑介質(zhì)通過氣動(dòng)霧化方式噴射至切削區(qū),將微量的潤(rùn)滑介質(zhì)供給至摩擦區(qū)域[13]。潤(rùn)滑介質(zhì)以微液滴的形式被輸運(yùn)至切/磨削區(qū)界面,以實(shí)現(xiàn)刀具/砂輪–工件間的有效潤(rùn)滑,從而保證了工件的表面完整性[14]。微量潤(rùn)滑技術(shù)在保障加工精度的同時(shí)也兼顧了綠色制造,是一項(xiàng)澆注式切削液供給方式較為理想的替代技術(shù)[15-16]。
微量潤(rùn)滑技術(shù)已在航空航天、軌道交通等領(lǐng)域得到了廣泛推廣與應(yīng)用[17]。典型的工件材料包括鋁合金、碳素鋼、低合金鋼、灰口鑄鐵和球墨鑄鐵等。微量潤(rùn)滑供給參數(shù)的選取與潤(rùn)滑介質(zhì)微液滴的穿透性和冷卻能力緊密相關(guān),如果參數(shù)選取不當(dāng),通常會(huì)導(dǎo)致高熱量的產(chǎn)生[18-21]。這不僅會(huì)促進(jìn)刀具/砂輪的快速磨損,還會(huì)降低工件的表面完整性[22-23]。為了實(shí)現(xiàn)微量潤(rùn)滑介質(zhì)的精準(zhǔn)輸運(yùn),有必要針對(duì)微量潤(rùn)滑霧化系統(tǒng)及切/磨削加工流場(chǎng)開展科學(xué)研究,以提升有效流量率,進(jìn)而解決切削/磨削熱損傷技術(shù)的瓶頸問題。文中擬揭示微量潤(rùn)滑兩相流霧化性能及其隨參數(shù)的演變規(guī)律,包括氣動(dòng)霧化、靜電賦能霧化和超聲賦能霧化,進(jìn)一步分析切/磨削區(qū)內(nèi)的流體動(dòng)力學(xué)行為,闡述噴嘴優(yōu)化的設(shè)計(jì)思路,擬為噴嘴位姿優(yōu)化調(diào)整提供理論支撐。此外,還擬剖析國(guó)內(nèi)外微量潤(rùn)滑介質(zhì)智能供給裝置,對(duì)微量潤(rùn)滑復(fù)合增效和智能供給關(guān)鍵技術(shù)進(jìn)行展望,旨在為微量潤(rùn)滑技術(shù)基礎(chǔ)研究和工程應(yīng)用提供參考。
潤(rùn)滑劑的霧化性能與其在切削區(qū)的潤(rùn)滑成膜特性密切相關(guān)[24]。最早微量潤(rùn)滑切/磨削加工通過將壓縮空氣霧化成微液滴,并噴射至摩擦區(qū)域,以改變材料去除力學(xué)行為[25-27]。隨著技術(shù)的應(yīng)用,學(xué)者們發(fā)現(xiàn)氣動(dòng)霧化液滴的粒徑分布不均,且具有一定的隨機(jī)性。在較高氣壓霧化過程中產(chǎn)生的微細(xì)液滴易產(chǎn)生懸浮可吸入顆粒,這會(huì)威脅操作技術(shù)人員的身體健康。由此,將靜電與超聲場(chǎng)賦能于霧化過程,從而提升微液滴的粒徑可控性,已成為技術(shù)發(fā)展的趨勢(shì)[28-29]。靜電賦能霧化和超聲賦能霧化降低了液滴粒徑分布跨度,進(jìn)而降低了懸浮可吸入小液滴的質(zhì)量濃度[30]。
氣動(dòng)霧化指微量潤(rùn)滑介質(zhì)在與壓縮氣體相互作用下破裂分散為微小液滴的過程。噴嘴氣液兩相流霧化示意圖如圖1所示,在軸向主要分為霧化區(qū)、液滴密集區(qū)和液滴稀疏區(qū)[31]。在霧化區(qū),微量潤(rùn)滑介質(zhì)被分解成液塊、液絲和液滴。液滴密集區(qū)包括液塊、液絲的二次破裂及液滴間的相互作用,例如碰撞和聚結(jié)。液絲通常存在于霧化區(qū)和液滴密集區(qū),表現(xiàn)為非球形液片。液滴稀疏區(qū)以球狀液滴為主。氣動(dòng)霧化是氣液兩相相互作用的過程,是外力與液滴的表面張力和黏滯力之間動(dòng)態(tài)作用的結(jié)果。霧化微液滴的分布取決于壓縮空氣壓力、霧化器尺寸、微量潤(rùn)滑介質(zhì)的流量及理化特性。在氣動(dòng)霧化中,霧化微液滴呈錐形分布。液滴速度在噴霧軸線處最大,因與周圍空氣的相互作用,液滴速度在徑向上較小[32]。
圖1 兩相流氣動(dòng)霧化[31]
微量潤(rùn)滑微液滴輸運(yùn)可依據(jù)兩相流輸運(yùn)管路的不同,分為單通道系統(tǒng)和雙通道系統(tǒng)。如圖2a所示,單通道系統(tǒng)將潤(rùn)滑介質(zhì)霧化為微液滴后儲(chǔ)存在容器內(nèi),然后利用壓差將容器內(nèi)的微液滴通過管路和常規(guī)噴嘴輸運(yùn)至切削區(qū)。如圖2b—c所示,雙通道系統(tǒng)通過霧化噴嘴將液相破裂為微液滴后,直接噴射至切削區(qū)的摩擦界面。單通道系統(tǒng)的結(jié)構(gòu)簡(jiǎn)單、維護(hù)方便,但它對(duì)輸運(yùn)通道提出了要求。單通道系統(tǒng)液滴群的輸運(yùn)易受到液滴碰撞凝結(jié)、管道液滴破裂、管道內(nèi)壁油膜形成、管道內(nèi)壁油膜破裂等因素的影響[33],這些影響因素使得潤(rùn)滑介質(zhì)的性質(zhì)(黏度和表面張力)、管道長(zhǎng)度、液滴分布密度等受到了限制。由此可見,使用雙通道系統(tǒng)更便捷,限制條件更少,對(duì)輸運(yùn)管路的要求更低。此外,根據(jù)雙通道系統(tǒng)液相的輸運(yùn)方式,將其分為有泵式和無泵式。無泵式利用文丘里效應(yīng)控制液體的流量,有泵式通過精密潤(rùn)滑泵控制微量潤(rùn)滑介質(zhì)的流量[34-37]。在該系統(tǒng)中,可分別調(diào)節(jié)壓縮空氣和潤(rùn)滑介質(zhì)的流量,并在專用噴嘴中混合,使霧化微液滴通過壓縮空氣噴射至切/磨削區(qū)。在微量潤(rùn)滑技術(shù)發(fā)展早期,由于泵和閥承受沖擊的脈沖頻率較高,雙通道系統(tǒng)部件的可靠性備受關(guān)注。在近30年的實(shí)踐中,微量潤(rùn)滑泵的可靠性已被證實(shí)能夠滿足工業(yè)生產(chǎn)的需求。此外,連續(xù)供給精密潤(rùn)滑泵的推廣應(yīng)用改善了液相脈沖供給導(dǎo)致的不連續(xù)霧化缺陷。與其他潤(rùn)滑介質(zhì)供給方式相比,采用連續(xù)供給的精密潤(rùn)滑泵輸運(yùn)能夠?qū)崿F(xiàn)霧化性能的精準(zhǔn)控制。
圖2 單通道與雙通道霧化器結(jié)構(gòu)[33]
與雙通道系統(tǒng)相比,單通道系統(tǒng)的霧化液滴粒徑更小,通常能夠達(dá)到10 μm以下。雙通道微液滴粒徑較大,一般在數(shù)十微米至上百微米。液滴粒徑的大小主要受到霧化器尺寸、壓縮氣體和潤(rùn)滑劑理化特性的影響。在目前的研究中,雙通道供給系統(tǒng)的霧化壓力一般為0.4~0.8 MPa,潤(rùn)滑介質(zhì)的流量為10~200 mL/h。Park等[38]通過小波變換研究了微量潤(rùn)滑霧化微液滴粒徑及分布隨噴嘴距離和氣壓的變化規(guī)律,研究結(jié)果表明,噴嘴壓力越高,提供的液滴數(shù)量越多;隨著噴嘴距離的增加,獲得的液滴尺寸越小,且沉積在表面的液滴越少。Balan等[39]通過數(shù)值模擬也發(fā)現(xiàn),液滴尺寸隨著霧化壓力的增加而減小,數(shù)值模擬結(jié)果與現(xiàn)有經(jīng)驗(yàn)?zāi)P秃蛯?shí)驗(yàn)測(cè)量值一致。霧化壓力較高的中等直徑液滴可穿透高壓氣障層,并有效潤(rùn)滑磨削區(qū)。Emami等[40]研究發(fā)現(xiàn),微量潤(rùn)滑氣動(dòng)霧化中的液滴尺寸受到潤(rùn)滑介質(zhì)的流速、氣體流速和所用潤(rùn)滑劑的物理性質(zhì)等的影響,通過增加進(jìn)入霧化氣體的壓力,氣體流速呈指數(shù)增加。隨著壓縮空氣流速的增加,噴嘴出口處的液滴尺寸減小。此外,潤(rùn)滑介質(zhì)流速的增加會(huì)導(dǎo)致液滴尺寸的增加。高速相機(jī)捕獲的圖片也顯示,低氣體流速會(huì)導(dǎo)致液滴尺寸變大,高氣體流速會(huì)導(dǎo)致液滴尺寸變小、射流速度升高和液滴數(shù)量的大幅提高。印度學(xué)者Sai等[41]研究發(fā)現(xiàn),液滴的平均直徑和中值直徑均隨著霧化空氣壓力的增加而顯著降低。Maruda等[42]認(rèn)為,較大的霧化錐角使得液滴不會(huì)在空氣中產(chǎn)生相互作用,確保液滴的直徑更小。
在氣動(dòng)霧化中,通常以較高的霧化氣壓提高其霧化性能,包括降低液滴粒徑、增加液滴速度等,進(jìn)而提升液滴的浸潤(rùn)性能,改善界面摩擦性能。隨著霧化壓力的增大,霧滴譜的均勻性、霧滴的表面能、浸潤(rùn)特性、霧滴的運(yùn)動(dòng)軌跡不能實(shí)現(xiàn)主動(dòng)、有效、可控,微量潤(rùn)滑劑不能發(fā)揮最大的效能。在霧化過程中會(huì)產(chǎn)生大量可吸入的霧滴粒子,細(xì)小的霧滴粒子在高速氣流的擾動(dòng)下很容易飛逸飄散。飄散的霧滴粒子會(huì)對(duì)環(huán)境和工人健康造成傷害,因此工業(yè)生產(chǎn)應(yīng)用面臨極大的技術(shù)瓶頸和環(huán)保壓力挑戰(zhàn)[43-44]。
為了解決氣動(dòng)霧化不能實(shí)現(xiàn)參數(shù)化可控輸運(yùn)的技術(shù)難題,青島理工大學(xué)李長(zhǎng)河教授團(tuán)隊(duì)和浙江工業(yè)大學(xué)許雪峰教授團(tuán)隊(duì)在國(guó)內(nèi)率先開展了靜電賦能霧化微量潤(rùn)滑加工探索性研究。靜電賦能霧化技術(shù)是利用高壓靜電場(chǎng)將液體霧化并荷電的一項(xiàng)新型技術(shù)。霧化后的液滴經(jīng)過高壓靜電場(chǎng)形成的電暈區(qū)與帶電粒子碰撞,從而獲得電荷,荷電后的潤(rùn)滑介質(zhì)在庫侖力的影響下使得表面張力降低,液滴產(chǎn)生了二次或多次破碎,進(jìn)而形成荷電液滴群。靜電賦能霧化所產(chǎn)生的液滴粒徑較小,均一化程度較高,同時(shí)還可改變電場(chǎng)強(qiáng)度,實(shí)現(xiàn)對(duì)液滴粒徑的調(diào)控。將靜電場(chǎng)賦能于微量潤(rùn)滑中,能夠極大地改善微液滴粒徑的可控性。該技術(shù)顯著提高了潤(rùn)滑劑液滴的穿透性和潤(rùn)濕性,并減小了液滴尺寸[30]。
青島理工大學(xué)李長(zhǎng)河教授團(tuán)隊(duì)開展了靜電賦能霧化微量潤(rùn)滑磨削加工的研究工作。Guo等[45]發(fā)現(xiàn),電壓幅值對(duì)工件所受磨削力的影響較大,隨著電壓的增大,工件所受磨削力逐漸減小。工件表面粗糙度也隨著電壓幅值的增大呈現(xiàn)逐漸下降的趨勢(shì)。張曉陽等[46]建立了靜電霧化微量潤(rùn)滑下的霧化動(dòng)力學(xué)模型,并發(fā)現(xiàn)霧化液滴粒徑呈駝峰式分布。如圖3所示[47],施加電壓分別為0、?20、?25、?30、?35、?40 kV,橫坐標(biāo)表示液滴粒徑,縱坐標(biāo)表示液滴粒徑的概率密度()。靜電賦能霧化液滴粒徑分布隨著電壓的變化產(chǎn)生了顯著變化,隨著施加電壓的增加,霧化錐角隨之上升,峰值粒徑變小,峰值間距變小,峰值概率增加。與常規(guī)氣動(dòng)霧化相比,靜電賦能霧化粒徑變小且分布集中。此外,靜電霧化錐角大于氣動(dòng)式霧化錐角。當(dāng)電壓為?60~0 kV時(shí),在電壓為?50 kV時(shí)得到了最大霧化錐角。賈東洲等[48]發(fā)現(xiàn),荷電大豆油在磨削區(qū)微通道內(nèi)產(chǎn)生了電潤(rùn)濕效應(yīng),提升了微量潤(rùn)滑介質(zhì)在磨削區(qū)內(nèi)的遷移活性,改善了磨削區(qū)砂輪/工件接觸界面的潤(rùn)滑效果。此外,賈東洲等[49]還研究了卵磷脂對(duì)大豆油表面張力、動(dòng)態(tài)黏度、電導(dǎo)率和液滴質(zhì)荷比的影響,揭示了植物油霧化成膜潤(rùn)滑過程中靜電場(chǎng)和卵磷脂的作用機(jī)理,并確定了最佳的卵磷脂混合比例。浙江工業(yè)大學(xué)許雪峰教授團(tuán)隊(duì)在靜電霧化微量潤(rùn)滑車削/銑削加工中開展了廣泛研究。許雪峰教授等[50]研究發(fā)現(xiàn),電壓和氣壓是影響靜電賦能霧化技術(shù)應(yīng)用的重要因素,靜電賦能霧化不僅能降低刀具磨損和切削力,還能延長(zhǎng)刀具壽命、改善表面質(zhì)量。黃水泉等[51]發(fā)現(xiàn),靜電場(chǎng)的存在改善了液滴的潤(rùn)濕和滲透能力,減小了液滴直徑,提升了潤(rùn)滑劑進(jìn)入接觸界面的能力。呂濤等[52]發(fā)現(xiàn),石墨烯納米流體的油霧濃度低于油基靜電霧化微量潤(rùn)滑,石墨烯的存在使得帶電液滴的沉積性能得到改善。此外,許雪峰教授團(tuán)隊(duì)還發(fā)現(xiàn),水基氧化鋁和二氧化硅納米流體具有較強(qiáng)的荷電能力,表現(xiàn)出更低的表面張力和接觸角,以及更好的油霧抑制能力[43-44]。江蘇科技大學(xué)研究團(tuán)隊(duì)蘇宇等[53]發(fā)現(xiàn),與氣動(dòng)霧化微量潤(rùn)滑相比,靜電賦能霧化潤(rùn)滑與靜電賦能霧化納米流體潤(rùn)滑的刀具磨損和油霧濃度顯著降低,油霧濃度隨著電壓的增加而降低。同時(shí),油水復(fù)合靜電賦能霧化荷電性能高于常規(guī)靜電賦能霧化,更易產(chǎn)生小粒徑液滴[54]。此外,增加水基納米流體的電壓、流速和納米顆粒的體積分?jǐn)?shù),以及減小噴嘴靶距,可以顯著增強(qiáng)靜電霧化的臨界熱流量[55]。
圖3 靜電賦能霧化液滴粒徑分布[47]
國(guó)外學(xué)者也針對(duì)靜電賦能微量潤(rùn)滑技術(shù)開展了相關(guān)工作。Bartolomeis等[56]在第五屆CIRP CSI會(huì)議上報(bào)告了靜電賦能微量潤(rùn)滑加工鎳基合金的切削實(shí)驗(yàn)研究,報(bào)告指出,靜電賦能微量潤(rùn)滑在航空航天領(lǐng)域難加工材料的切削加工方面具有很強(qiáng)的競(jìng)爭(zhēng)力。韓國(guó)學(xué)者Lee等[57]認(rèn)為,納米流體液滴可以更有效、穩(wěn)定地注入砂輪–工件接觸區(qū)域。印度學(xué)者Shah等[58]研究發(fā)現(xiàn),靜電賦能微量潤(rùn)滑技術(shù)改善了工件的表面粗糙度。此外,Shah等[59]研究還發(fā)現(xiàn),當(dāng)電壓為0~ 25 kV時(shí),在電壓20 kV下觀察到了相對(duì)最佳的摩擦學(xué)和加工性能。與傳統(tǒng)微量潤(rùn)滑工況相比,在靜電霧化微量潤(rùn)滑工況下刀具的磨損降低了38%。靜電賦能霧化微量潤(rùn)滑技術(shù)改善了霧化質(zhì)量,提升了液滴進(jìn)入切削區(qū)的穿透能力。
施加靜電場(chǎng)具有改善液相霧化效果及提高潤(rùn)滑性能的作用。靜電賦能霧化的效果優(yōu)于氣動(dòng)霧化,隨著電壓的升高,霧化錐角呈現(xiàn)變大的趨勢(shì),但在電壓增大到一定值時(shí),霧化錐角反而下降。隨著氣壓的升高,霧化錐角呈現(xiàn)逐漸減小的趨勢(shì)。液滴粒子的平均直徑隨著氣體壓強(qiáng)、噴嘴距離的增大而減小[47]。
超聲賦能霧化利用高頻次的微小的定向振動(dòng)沖擊使微量潤(rùn)滑介質(zhì)表面隆起并破裂,從而形成微液滴。超聲賦能霧化技術(shù)已應(yīng)用于吸入藥物輸送、燃料燃燒和空氣凈化等方面。液滴直徑可以通過改變超聲波換能器的功率和頻率來控制。相較于傳統(tǒng)氣動(dòng)霧化微量潤(rùn)滑,超聲賦能霧化在控制液滴粒徑及分布方面具有優(yōu)勢(shì)。
青島理工大學(xué)楊敏等[60]開發(fā)了一種超聲聚焦輔助三級(jí)霧化冷卻裝置,將醫(yī)用納米流體經(jīng)氣動(dòng)?超聲?靜電三級(jí)霧化后得到超細(xì)液滴,利用超聲聚焦作用將霧化微液滴注入磨具/骨楔形約束空間,有效地對(duì)磨削區(qū)進(jìn)行冷卻潤(rùn)滑。此外,賈東洲等[61]、Gao等[62]研究發(fā)現(xiàn),微量潤(rùn)滑介質(zhì)在超聲振動(dòng)表面液滴的浸潤(rùn)性能得到了大幅提升。蘇州科技大學(xué)李華教授團(tuán)隊(duì)[63]提出了由縱向振動(dòng)系統(tǒng)與彎曲振動(dòng)圓盤組成的縱彎轉(zhuǎn)換超聲振動(dòng)霧化系統(tǒng)的新型結(jié)構(gòu),并進(jìn)一步提出球面聚焦超聲輔助汽霧冷卻系統(tǒng)[64],基于超聲賦能霧化技術(shù),利用聚焦超聲將微液滴匯聚至切/磨削區(qū)。磨削加工實(shí)驗(yàn)表明,聚焦超聲有助于強(qiáng)化中心區(qū)汽霧換熱,進(jìn)一步提高聚焦超聲賦能霧化系統(tǒng)的換熱能力。山東理工大學(xué)Meng等[65]對(duì)比了干切削和超聲賦能霧化微量潤(rùn)滑車削Ti6Al4V的切削性能,研究結(jié)果表明,與干切削相比,超聲賦能霧化微量潤(rùn)滑有助于提高刀具壽命、改善表面粗糙度。屏東科技大學(xué)學(xué)者Huang等[66-69]開展了水基納米流體超聲賦能霧化加工,先后針對(duì)磨削[66-67]、微銑削[68-69]工藝參數(shù)開展了優(yōu)化研究。研究表明,納米石墨烯具有優(yōu)異的導(dǎo)熱系數(shù),切/磨削區(qū)熱量被納米流體攜帶出,減少了對(duì)刀具的熱損傷,進(jìn)而降低了刀具磨損。超聲賦能霧化有效分散了納米流體中的納米顆粒,實(shí)現(xiàn)了換熱性能的最大化。
美國(guó)伊利諾伊大學(xué)Kapoor教授團(tuán)隊(duì)對(duì)超聲賦能霧化微量潤(rùn)滑技術(shù)開展了大量研究。Jun等[70]研究發(fā)現(xiàn),在低進(jìn)給量下,采用超聲賦能霧化微量潤(rùn)滑技術(shù)對(duì)刀具壽命的提高更為顯著,這是因?yàn)榇斯r下犁耕/摩擦占主導(dǎo)地位。Nath等[71]研究發(fā)現(xiàn),均勻分布的液滴在加工過程中能夠形成均勻的液膜,較大的噴霧距離可降低切削界面處的摩擦因數(shù),并改善加工過程中的刀具壽命和表面質(zhì)量。Hoyne等[72]研究表明,在鈦合金加工過程中,超聲賦能霧化微量潤(rùn)滑產(chǎn)生的潤(rùn)滑劑能夠有效滲透至刀具?切屑界面,并改善其摩擦因數(shù)。此外,Hoyne等[73]還基于Navier?Stokes方程建立了超聲賦能霧化微量潤(rùn)滑系統(tǒng)的三維流體潤(rùn)滑膜解析模型。伊朗德黑蘭大學(xué)Hadad等[32]開發(fā)了一種超聲賦能霧化微量潤(rùn)滑噴嘴,利用文丘里效應(yīng)產(chǎn)生一次霧化,并由噴嘴尖端共振表面高頻振動(dòng)強(qiáng)化二次霧化。與傳統(tǒng)的氣動(dòng)霧化系統(tǒng)相比,超聲賦能霧化后的潤(rùn)滑介質(zhì)微液滴粒徑更小,分布更均勻。如圖4所示,車削加工結(jié)果表明,超聲賦能霧化顯著改善了工件的表面粗糙度,并優(yōu)于傳統(tǒng)澆注式切削。韓國(guó)學(xué)者Lefebure等[74]開展了可降解生物潤(rùn)滑劑超聲賦能霧化微量潤(rùn)滑的霧化性能研究,結(jié)果表明,超聲賦能霧化液滴尺寸分布受到網(wǎng)孔尺寸、驅(qū)動(dòng)電壓和潤(rùn)滑劑黏度等的影響。電壓的增加有利于液滴尺寸的減小,在低電壓工況下,黏度對(duì)平均液滴直徑基本無影響,但在高電壓下存在明顯的正相關(guān)關(guān)系,振動(dòng)網(wǎng)孔徑的增大會(huì)大幅增加液滴尺寸。
圖4 不同潤(rùn)滑工況下工件的表面粗糙度[32]
different lubrication conditions[32]
超聲賦能霧化強(qiáng)化了常規(guī)氣動(dòng)霧化過程的二次破碎行為,改善了液滴粒徑的均一性問題。Hoyne等[73]建立的三維流體潤(rùn)滑膜模型實(shí)現(xiàn)了超聲賦能微量潤(rùn)滑工藝參數(shù)的優(yōu)化。Lefebure等[74]推進(jìn)了較高黏度生物潤(rùn)滑油超聲賦能霧化的發(fā)展。
根據(jù)潤(rùn)滑劑的噴射方式,微量潤(rùn)滑供給系統(tǒng)主要包括內(nèi)噴式和外噴式等[75]。外噴式相對(duì)簡(jiǎn)單,成本較低,無需對(duì)機(jī)床進(jìn)行改造也可以與常規(guī)刀具/砂輪共同使用[76-78]。在一些噴嘴易受切屑或機(jī)床零件干涉而產(chǎn)生位移的工況下,外噴式供給不僅會(huì)造成潤(rùn)滑劑的浪費(fèi),還難以保證切削刃的潤(rùn)滑。內(nèi)噴式供給需要對(duì)機(jī)床主軸或刀柄部件進(jìn)行單獨(dú)改造,因此其結(jié)構(gòu)相對(duì)較復(fù)雜[79-80]。內(nèi)噴式輸運(yùn)尤其適用于鉆削加工,特別在深孔鉆削加工中,潤(rùn)滑介質(zhì)可被直接輸送到切削刃。在所有供給方式下,潤(rùn)滑劑供給通道和切/磨削區(qū)的相對(duì)位姿是影響微量潤(rùn)滑介質(zhì)的關(guān)鍵參數(shù)。通過對(duì)加工過程中的流體動(dòng)力學(xué)行為進(jìn)行分析,可為液滴參數(shù)化可控輸運(yùn)提供理論依據(jù)。液滴的有效浸潤(rùn)可最大限度地發(fā)揮抗磨、減摩性能[62,81-82]。為此,學(xué)者們針對(duì)微量潤(rùn)滑噴嘴界面、刀具/工件與砂輪/工件界面的流體動(dòng)力學(xué)行為進(jìn)行了分析,并進(jìn)一步提出了噴嘴位姿隨加工參數(shù)改變的微量潤(rùn)滑參數(shù)化可控輸運(yùn)系統(tǒng)。
如圖5所示,在切/磨削加工中,高速旋轉(zhuǎn)的工件/刀具/砂輪會(huì)引發(fā)氣流擾動(dòng),形成環(huán)狀氣障域,阻礙霧化微液滴進(jìn)入切/磨削區(qū)摩擦界面[83-84]。揭示刀具/砂輪?工件界面氣流場(chǎng)的分布規(guī)律,分析切削區(qū)速度、壓力場(chǎng)分布對(duì)噴嘴位姿的影響,為潤(rùn)滑介質(zhì)定向輸運(yùn)提供理論支撐,可有效提升微量潤(rùn)滑介質(zhì)的有效流量率。
青島理工大學(xué)殷慶安等[16]揭示了微量潤(rùn)滑端面銑削加工過程中銑刀轉(zhuǎn)速、螺旋角和直徑對(duì)流場(chǎng)分布的影響規(guī)律,結(jié)果表明,旋轉(zhuǎn)銑刀周圍的氣流場(chǎng)主要有進(jìn)入流、圓周流、返回流、徑向流和氣障層等;銑刀轉(zhuǎn)速會(huì)影響噴嘴靶距,螺旋角主要影響入射角度,銑刀直徑不影響噴嘴的相對(duì)位置。Duchosal等[85]在銑削加工過程中得到了相同的結(jié)論,噴嘴的入射角度不隨轉(zhuǎn)速發(fā)生變化。青島理工大學(xué)段振景等[83]在端面銑削流場(chǎng)動(dòng)力學(xué)分析的基礎(chǔ)上,開展了型腔銑削加工氣流場(chǎng)分布研究,建立了方形、圓形、四角形和不規(guī)則形型腔的流場(chǎng)分布模型,并開展了實(shí)驗(yàn)驗(yàn)證。研究結(jié)果表明,型腔形狀基本不影響流場(chǎng)分布。北京航空航天大學(xué)朱光遠(yuǎn)等[86]通過數(shù)值分析優(yōu)化了微量潤(rùn)滑銑削過程的噴嘴距離。青島理工大學(xué)張彥彬等[84]通過流體動(dòng)力學(xué)分析發(fā)現(xiàn),在砂輪?工件楔形區(qū)存在邊界線,邊界線上為進(jìn)入流,有利于潤(rùn)滑介質(zhì)的進(jìn)入;邊界線下為返回流,不利于潤(rùn)滑介質(zhì)的進(jìn)入。Stachursk等[87]模擬了滾刀端面刃磨中磨削區(qū)流場(chǎng)的分布,研究結(jié)果表明,減小噴嘴傾角會(huì)增加滾刀?砂輪接觸界面的氣流量。Emami等[40]也認(rèn)為,在微量潤(rùn)滑磨削加工中,砂輪表面氣障層存在進(jìn)入流,有利于微量潤(rùn)滑介質(zhì)進(jìn)入砂輪?工件接觸區(qū)。江蘇大學(xué)沈玉杰等[88]研究發(fā)現(xiàn),在微量潤(rùn)滑端面車削加工中,工件旋轉(zhuǎn)在后刀面?工件楔形區(qū)產(chǎn)生了負(fù)壓,有利于潤(rùn)滑介質(zhì)的進(jìn)入;霧化噴嘴的作用改變了流場(chǎng)分布,形成負(fù)壓?增壓區(qū)復(fù)合分布,優(yōu)化噴嘴位姿可降低增壓區(qū)的影響,有利于提升潤(rùn)滑介質(zhì)的浸潤(rùn)性能。上海交通大學(xué)陳明等[89]研究發(fā)現(xiàn),在外圓車削加工時(shí),工件轉(zhuǎn)動(dòng)的相對(duì)速度遠(yuǎn)小于微量潤(rùn)滑介質(zhì)由噴嘴射流出的速度。
圖5 銑削/磨削區(qū)流場(chǎng)分布[83-84]
受到刀具、砂輪或工件高速旋轉(zhuǎn)引發(fā)的氣流擾動(dòng)的影響,切/磨削區(qū)存在復(fù)雜的氣流場(chǎng)分布,包括氣障層、進(jìn)入流、返回流、圓周流等。依據(jù)流場(chǎng)隨加工參數(shù)的演變規(guī)律,可測(cè)算出噴嘴最佳射流位置和角度。此外,基于流體動(dòng)力學(xué)分布模型,可為新型刀具/磨具及噴嘴幾何參數(shù)優(yōu)化提供理論依據(jù)。
由于不同加工方式的邊界條件存在差異,學(xué)者們對(duì)不同加工方式下的噴嘴霧化流體動(dòng)力學(xué)行為進(jìn)行了數(shù)值模擬,并開展了參數(shù)優(yōu)化工作。青島理工大學(xué)賈東洲等[90]通過流體動(dòng)力學(xué)分析發(fā)現(xiàn),微量潤(rùn)滑噴嘴射流速度峰值隨著氣壓和氣液比的增大而增大,隨著噴嘴直徑的增大而減小。長(zhǎng)沙理工大學(xué)毛聰教授等[91]開發(fā)了一種雙出口噴嘴,與單出口噴嘴相比,它在液滴大小、均勻性和液滴速度方面獲得了更優(yōu)異的霧化性能。北京航空航天大學(xué)朱光遠(yuǎn)等[92]從降噪機(jī)理的角度分析了射流速、氣液流速比和方位角等因素對(duì)噪聲的影響。通過安裝降噪裝置,減小了整體噴射流場(chǎng)湍流強(qiáng)度的分布范圍,使噴射流場(chǎng)湍流強(qiáng)度的分布明顯呈收縮趨勢(shì),將較大湍流強(qiáng)度控制在狹窄的區(qū)域內(nèi)。同時(shí),顯著減小了射流混合區(qū)長(zhǎng)度,減緩了湍流向周圍的擴(kuò)散。北京航空航天大學(xué)Shi等[80]基于離心霧化原理,提出了一種具有噴霧冷卻效果的砂輪結(jié)構(gòu),仿真與試驗(yàn)結(jié)果均表明,新型砂輪能夠在低能耗下顯著降低難加工材料的磨削溫度。
馬來西亞學(xué)者Rahim等[93]對(duì)比了氣動(dòng)霧化微量潤(rùn)滑在不同噴嘴出口直徑的霧化性能,如圖6所示,噴嘴出口直徑越大,在較高氣壓下可以獲得更大的霧化錐角和更低的索特平均直徑。日本學(xué)者Obikawa等[79]對(duì)比了常規(guī)噴嘴、蓋板直噴和蓋板斜噴等3種類型內(nèi)冷刀柄在精車加工中的性能表現(xiàn),流體動(dòng)力學(xué)分析表明,蓋板斜噴式內(nèi)冷刀柄具有較大的油霧輸送速率,切削性能對(duì)比實(shí)驗(yàn)也驗(yàn)證了仿真分析結(jié)果。西班牙學(xué)者Alberdi等[94]利用計(jì)算流體動(dòng)力學(xué)研究了噴嘴結(jié)構(gòu)對(duì)速度和壓力場(chǎng)的影響,對(duì)Webster噴嘴[95]進(jìn)行了優(yōu)化設(shè)計(jì),磨削實(shí)驗(yàn)表明,改進(jìn)后的噴嘴可以提高AISI D2工具鋼的表面粗糙度和砂輪壽命。
兩相流霧化噴嘴的幾何邊界決定了出口處液膜的撕裂行為,進(jìn)而影響霧化性能。噴嘴結(jié)構(gòu)的優(yōu)化能夠?qū)崿F(xiàn)潤(rùn)滑劑的可控輸運(yùn),降低潤(rùn)滑劑消耗,改善工件表面質(zhì)量,延長(zhǎng)刀具/砂輪的壽命。然而,針對(duì)靜電與超聲賦能的霧化噴嘴結(jié)構(gòu)優(yōu)化方面的研究較少,多物理場(chǎng)耦合仿真模型的開發(fā)是相關(guān)工作的關(guān)鍵。
通過噴嘴及切/磨削區(qū)流場(chǎng)分析可知,在改變加工參數(shù)后,最佳射流位姿可能會(huì)發(fā)生改變。為了實(shí)現(xiàn)噴嘴隨刀具或工件運(yùn)動(dòng)的精準(zhǔn)調(diào)整,保持最佳的噴射角度,需要針對(duì)噴嘴裝置進(jìn)行智能化改造,實(shí)現(xiàn)可智能隨動(dòng)的微量潤(rùn)滑供給系統(tǒng),進(jìn)而提升切/磨削的加工性能。
國(guó)外對(duì)噴嘴固定裝置的開發(fā)起步較早,且以企業(yè)研發(fā)為主。美國(guó)企業(yè)Reishauer[96]發(fā)明了一種監(jiān)控磨床冷卻液噴嘴位姿的工藝,通過監(jiān)測(cè)磨床主軸驅(qū)動(dòng)器的功耗變化,對(duì)磨削加工性能進(jìn)行評(píng)價(jià)。當(dāng)主軸功率超出預(yù)期時(shí),噴嘴隨鉸鏈轉(zhuǎn)動(dòng)或隨滑塊平移,經(jīng)過循環(huán)測(cè)試實(shí)現(xiàn)最佳噴嘴位姿的確定。日本企業(yè)住友重機(jī)械テクノフォート株式會(huì)社[97]發(fā)明了一種通過擺臂控制鍛壓過程潤(rùn)滑劑供給噴嘴的伸縮裝置,利用擺臂旋轉(zhuǎn)控制潤(rùn)滑劑的供給位置。德國(guó)企業(yè)Hahnemann Peter[98]發(fā)明了一種微量潤(rùn)滑噴嘴定位裝置,通過氣動(dòng)肌肉運(yùn)動(dòng)帶動(dòng)拉索和連桿運(yùn)動(dòng),從而實(shí)現(xiàn)噴嘴位姿的改變。美國(guó)企業(yè)Illinois Tool Works[99]發(fā)明了一種潤(rùn)滑劑噴嘴定位系統(tǒng),利用C形臂桿元件將噴嘴連接到噴嘴定位器上,并進(jìn)行負(fù)載補(bǔ)償,通過氣動(dòng)方式驅(qū)動(dòng)噴嘴定位器移動(dòng),從而實(shí)現(xiàn)噴嘴位置隨加工參數(shù)的變化。
圖6 不同噴嘴出口直徑的霧化行為[93]
國(guó)內(nèi)研究團(tuán)隊(duì)對(duì)智能化隨動(dòng)噴嘴的開發(fā)較為深入。青島理工大學(xué)李長(zhǎng)河教授團(tuán)隊(duì)開發(fā)的微量潤(rùn)滑參數(shù)化供給裝置如圖7所示。武文濤等[100]發(fā)明了基于數(shù)控銑床的微量潤(rùn)滑多自由度智能噴頭系統(tǒng),通過絲杠導(dǎo)軌機(jī)構(gòu)實(shí)現(xiàn)了橫向、縱向的移動(dòng),通過齒輪?齒圈機(jī)構(gòu)實(shí)現(xiàn)了噴嘴射流角度的調(diào)節(jié)。隋孟華等[101]發(fā)明了CNC銑床多自由度微量潤(rùn)滑智能噴頭系統(tǒng),橫向旋轉(zhuǎn)以步進(jìn)電機(jī)為驅(qū)動(dòng),縱向角度調(diào)整和噴頭跟進(jìn)調(diào)整以壓縮空氣為驅(qū)動(dòng),將智能噴嘴安裝臺(tái)與旋轉(zhuǎn)臂連接,并隨旋轉(zhuǎn)臂一起運(yùn)動(dòng),該系統(tǒng)具有紅外溫度檢測(cè)模塊,可以調(diào)節(jié)噴嘴的最佳射流位置和角度。此外,隋孟華等[102-103]還設(shè)計(jì)了數(shù)控臥式車床微量潤(rùn)滑智能噴頭系統(tǒng),其橫向移動(dòng)部分由L型固定支架和絲杠系統(tǒng)構(gòu)成,通過步進(jìn)電機(jī)給絲杠提供橫向移動(dòng)所需動(dòng)力,縱向伸縮部分由桶型固定外框架和絲杠系統(tǒng)構(gòu)成。其中,絲杠系統(tǒng)由1根動(dòng)力絲杠和3根輔助滑桿組成,旋轉(zhuǎn)部分由電機(jī)或氣缸驅(qū)動(dòng)。重慶大學(xué)曹華軍等[104]發(fā)明了一種可編程微量潤(rùn)滑噴射角相位調(diào)節(jié)裝置,并介紹了其使用方法,通過控制同步帶調(diào)節(jié)噴嘴的噴射相位角。四川大學(xué)趙武等[105]發(fā)明了一種外冷式微量潤(rùn)滑機(jī)械手,包括懸掛結(jié)構(gòu)、機(jī)械臂、控制器和油霧生成裝置,懸掛結(jié)構(gòu)用于機(jī)械臂與機(jī)架的固定連接,機(jī)械臂的自由端設(shè)置有噴嘴;油霧生成裝置與噴嘴連接,控制器能夠控制機(jī)械臂運(yùn)動(dòng),使得噴嘴將油霧噴到加工區(qū)域。上海大學(xué)吳一平等[106]發(fā)明了一種適用于微量潤(rùn)滑銑削加工的精準(zhǔn)噴射潤(rùn)滑裝置,設(shè)置一個(gè)冷卻環(huán),并將其套裝在刀具主軸下端,其下端面連接噴嘴;冷卻環(huán)通過一個(gè)大型滾珠絲桿機(jī)構(gòu)連接主軸箱,實(shí)現(xiàn)了噴嘴高度的調(diào)節(jié)。
隨動(dòng)噴嘴裝置改變了傳統(tǒng)噴嘴手動(dòng)固定調(diào)節(jié)方式,實(shí)現(xiàn)了隨監(jiān)測(cè)參數(shù)自動(dòng)調(diào)整的優(yōu)化。通過對(duì)生產(chǎn)大數(shù)據(jù)進(jìn)行數(shù)據(jù)分析和數(shù)據(jù)挖掘,開發(fā)了制造知識(shí)提取與凝練算法,可實(shí)現(xiàn)不同加工參數(shù)下噴嘴最佳射流位姿的預(yù)測(cè)。同時(shí),通過機(jī)床主軸功率[96]、切削區(qū)溫度監(jiān)測(cè)[101]可對(duì)噴嘴位姿進(jìn)行實(shí)時(shí)反饋優(yōu)化。此外,隨動(dòng)噴嘴系統(tǒng)與機(jī)床系統(tǒng)的通信技術(shù)的發(fā)展,也將促進(jìn)微量潤(rùn)滑技術(shù)在智能制造領(lǐng)域內(nèi)的應(yīng)用。
圖7 參數(shù)化供給裝置[101-103]
可降解生物潤(rùn)滑劑微量潤(rùn)滑技術(shù)的應(yīng)用大幅降低了傳統(tǒng)金屬切削液的消耗成本,實(shí)現(xiàn)了高效、清潔的材料去除加工。微量潤(rùn)滑霧化方式和射流供給位姿是影響潤(rùn)滑劑有效流量率的關(guān)鍵,有效流量率的提升有利于切/磨削加工性能。采用連續(xù)供給精密潤(rùn)滑泵的雙通道微量潤(rùn)滑系統(tǒng)可實(shí)現(xiàn)兩相流霧化的參數(shù)化調(diào)控。對(duì)傳統(tǒng)微量潤(rùn)滑兩相流氣動(dòng)霧化進(jìn)行靜電/超聲場(chǎng)賦能,可改善液滴在切/磨削區(qū)的浸潤(rùn)性能,同時(shí)提升霧化液滴粒徑的可控性,從而解決了生物潤(rùn)滑劑的飄散難題。計(jì)算流體動(dòng)力學(xué)仿真促進(jìn)了新型噴嘴及內(nèi)冷刀具/砂輪的出現(xiàn)。不同材料去除方式(如車削、銑削、磨削加工)由于其邊界條件的改變,流場(chǎng)分布差異較大。改變噴嘴的靶距和射流角度可以改善切/磨削的加工性能,隨動(dòng)噴嘴裝置的應(yīng)用將成為微量潤(rùn)滑參數(shù)化可控供給技術(shù)的發(fā)展趨勢(shì)。
近年來,微量潤(rùn)滑賦能霧化與供給系統(tǒng)關(guān)鍵技術(shù)在制造領(lǐng)域已經(jīng)取得了顯著成果,并且關(guān)于微量潤(rùn)滑技術(shù)應(yīng)用的文獻(xiàn)數(shù)量呈上升趨勢(shì)。根據(jù)前文系統(tǒng)性的綜述,未來的研究可能集中于微量潤(rùn)滑復(fù)合增效技術(shù)、微量潤(rùn)滑智能供給關(guān)鍵技術(shù)等。微量潤(rùn)滑復(fù)合增效技術(shù)包括以下幾方面。
1)納米流體微量潤(rùn)滑。納米流體能夠有效提升換熱效率,降低切削過程中傳入刀具?工件界面的熱載荷,使得難加工材料的可加工性得到改善。同時(shí),納米增強(qiáng)相的添加還能夠降低摩擦界面的摩擦磨損行為,因此納米流體有望在精密制造領(lǐng)域進(jìn)一步推廣應(yīng)用。此外,還需要依據(jù)切/磨削加工工況調(diào)配出不同油膜承載能力、不同浸潤(rùn)性能和不同相變溫度的極壓抗磨環(huán)??山到馍餄?rùn)滑劑,建立不同工況下最優(yōu)潤(rùn)滑劑映射數(shù)據(jù)庫。
2)低溫微量潤(rùn)滑。通過低溫冷卻介質(zhì)與微量潤(rùn)滑介質(zhì)的耦合作用,既能夠保證摩擦界面的有效潤(rùn)滑,又能夠降低切削溫度。微量潤(rùn)滑介質(zhì)內(nèi)冷供給系統(tǒng)(包括內(nèi)冷刀柄、主軸改造和微量潤(rùn)滑機(jī)床等)需要進(jìn)一步優(yōu)化和推廣應(yīng)用。此外,還需要領(lǐng)域內(nèi)主要研究團(tuán)隊(duì)探討建立量化評(píng)估標(biāo)準(zhǔn),以實(shí)現(xiàn)統(tǒng)一的參數(shù)優(yōu)化策略。
3)超聲振動(dòng)輔助微量潤(rùn)滑。超聲振動(dòng)產(chǎn)生的分離特性打開了刀具?切屑間的禁區(qū),使微量潤(rùn)滑介質(zhì)在瞬時(shí)真空的作用下因泵吸作用而被吸入刀具?切屑分離空間內(nèi),充分發(fā)揮了其潤(rùn)滑作用。有必要對(duì)超聲振動(dòng)輔助微量潤(rùn)滑的浸潤(rùn)性能進(jìn)行完整的量化評(píng)價(jià),包括振動(dòng)界面的液滴破碎、毛細(xì)波等對(duì)潤(rùn)滑介質(zhì)鋪展面積的影響機(jī)制。
4)織構(gòu)刀具輔助微量潤(rùn)滑。合理排布的微織構(gòu)可以有效降低刀具?切屑接觸長(zhǎng)度,減小摩擦接觸面積。此外,微切屑可以儲(chǔ)存在織構(gòu)內(nèi)部,避免工件被碎屑刮傷和塑性變形??棙?gòu)可以作為潤(rùn)滑介質(zhì)的儲(chǔ)存空間,減少潤(rùn)滑介質(zhì)側(cè)流,并在切削過程中釋放潤(rùn)滑劑,以減少摩擦。在未來的研究中,需要進(jìn)一步揭示非均勻潤(rùn)濕性表面和仿生微織構(gòu)表面的潤(rùn)滑增效行為。
微量潤(rùn)滑智能供給關(guān)鍵技術(shù)包括以下幾方面。
1)工藝參數(shù)數(shù)據(jù)庫。搭建微量潤(rùn)滑切/磨削參數(shù)智能感知平臺(tái),實(shí)現(xiàn)切削參數(shù)、加工參數(shù)、評(píng)價(jià)參數(shù)的自動(dòng)化提取。建立難加工材料切/磨削工藝標(biāo)準(zhǔn)化公開數(shù)據(jù)庫,包括刀具參數(shù)(材料參數(shù)、幾何參數(shù))、工件材料、潤(rùn)滑介質(zhì)參數(shù)(基礎(chǔ)潤(rùn)滑劑化學(xué)配方、納米添加相參數(shù)、潤(rùn)滑介質(zhì)供給量、氣壓、靶距、入射角)、切削參數(shù)(切削速度、進(jìn)給量、切削深度)、加工性能評(píng)價(jià)參數(shù)(切削力、切削溫度、工件表面完整性),有望為微量潤(rùn)滑技術(shù)產(chǎn)業(yè)應(yīng)用提供技術(shù)指導(dǎo)。
2)大數(shù)據(jù)驅(qū)動(dòng)的參數(shù)優(yōu)化策略。構(gòu)建微量潤(rùn)滑切/磨削加工輸入?輸出參數(shù)映射關(guān)系圖譜,闡明微量潤(rùn)滑切/磨削加工參數(shù)優(yōu)化策略。利用公開數(shù)據(jù)庫實(shí)現(xiàn)人工智能算法優(yōu)化模型的訓(xùn)練,并應(yīng)用于機(jī)械制造加工生產(chǎn)線的工藝參數(shù)優(yōu)化,有望為智能制造領(lǐng)域發(fā)展提供新思路。
3)離散制造噴嘴位姿調(diào)控策略。離散制造工藝參數(shù)較為復(fù)雜,常規(guī)優(yōu)化策略并不能提供有效的指導(dǎo)。建立機(jī)床?隨動(dòng)噴嘴系統(tǒng)通信標(biāo)準(zhǔn),實(shí)現(xiàn)加工參數(shù)的在線提取,有望提升噴嘴位姿調(diào)控的效率。此外,建立多自由度隨動(dòng)噴嘴系統(tǒng)動(dòng)力學(xué)分析模型,優(yōu)化隨動(dòng)噴嘴裝置結(jié)構(gòu),可最大限度地發(fā)揮潤(rùn)滑介質(zhì)的抗磨減摩效果。
4)微量潤(rùn)滑切/磨削加工智能生產(chǎn)線。傳統(tǒng)零件加工生產(chǎn)線尚未考慮微量潤(rùn)滑介質(zhì)供給系統(tǒng)的空間布局。通過對(duì)零部件加工工藝進(jìn)行分析,設(shè)計(jì)微量潤(rùn)滑切/磨削加工專用夾具,配合物料智能傳輸系統(tǒng),實(shí)現(xiàn)清潔切/磨削加工智能產(chǎn)線布局的密集性和功能的可拓展性,有望為高端裝備和綠色制造提供技術(shù)支持。
[1] YANG Min, LI Chang-he, ZHANG Yan-bin, et al. Maxi-mum Undeformed Equivalent Chip Thickness for Ductile- Brittle Transition of Zirconia Ceramics under Different Lubrication Conditions[J]. International Journal of Ma-chine Tools & Manufacture (Design, Research and Appli-cation), 2017(122): 55-65.
[2] ZHANG Yan-bin, LI Chang-he, JI He-ju, et al. Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-Removal and Plastic-Stacking Mechanisms[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 81-97.
[3] ZHANG Jian-chao, WU Wen-tao, LI Chang-he, et al. Convective Heat Transfer Coefficient Model under Nano-fluid Minimum Quantity Lubrication Coupled with Cr-yogenic Air Grinding Ti-6Al-4V[J]. International Journal of Precision Engineering and Manufacturing-Green Tech-nology, 2021, 8(4): 1113-1135.
[4] YANG Min, LI Chang-he, LUO Liang, et al. Predictive Model of Convective Heat Transfer Coefficient in Bone Micro-Grinding Using Nanofluid Aerosol Cooling[J]. In-ter-national Communications in Heat and Mass Transfer, 2021, 125: 105317.
[5] HUANG Bao-teng, LI Chang-he, ZHANG Yan-bin, et al. Advances in Fabrication of Ceramic Corundum Abrasives Based on Sol-Gel Process[J]. Chinese Journal of Aeronau-tics, 2021, 34(6): 1-17.
[6] 盧守相, 郭塞, 張建秋, 等. 高性能難加工材料可磨削性研究進(jìn)展[J]. 表面技術(shù), 2022, 51(3): 12-42.
LU Shou-xiang, GUO Sai, ZHANG Jian-qiu, et al. Grin-da-bility of High Performance Difficult-to-Machine Mate-rials[J]. Surface Technology, 2022, 51(3): 12-42.
[7] 康仁科, 宋鑫, 董志剛, 等. 鎢合金超聲橢圓振動(dòng)切削表面完整性研究[J]. 表面技術(shù), 2021, 50(11): 321-328.
KANG Ren-ke, SONG Xin, DONG Zhi-gang, et al. Study on Surface Integrity of Tungsten Alloy Processed by Ult-ra-sonic Elliptical Vibration Cutting[J]. Surface Techno-logy, 2021, 50(11): 321-328.
[8] 梁志強(qiáng), 李蒙招, 陳碧沖, 等. 基于微磨削方法的微織構(gòu)刀具制備與切削性能研究[J]. 表面技術(shù), 2020, 49(2): 143-150.
LIANG Zhi-qiang, LI Meng-zhao, CHEN Bi-chong, et al. Fabrication and Cutting Performance of Micro-Textured Tools Based on Micro-Grinding[J]. Surface Technology, 2020, 49(2): 143-150.
[9] PERVAIZ S, KANNAN S, KISHAWY H A. An Extensive Review of the Water Consumption and Cutting Fluid Ba-sed Sustainability Concerns in the Metal Cutting Sec-tor[J]. Journal of Cleaner Production, 2018, 197: 134-153.
[10] MARCHAND G, LAVOIE J, RACINE L, et al. Evalua-tion of Bacterial Contamination and Control Methods in Soluble Metalworking Fluids[J]. Journal of Occupational and Environmental Hygiene, 2010, 7(6): 358-366.
[11] SANCHEZ J A, POMBO I, ALBERDI R, et al. Machi-ning Evaluation of a Hybrid MQL-CO2Grinding Techno-logy[J]. Journal of Cleaner Production, 2010, 18(18): 1840-1849.
[12] LILLIENBERG L, BURDORF A, MATHIASSON L, et al.Exposure to Metalworking Fluid Aerosols and Determi-nants of Exposure[J]. The Annals of Occupational Hygie-ne, 2008, 52(7): 597-605.
[13] STEPHENSON D, AGAPIOU J. Metal Cutting Theory and Practice, Third Edition[M]. Boca Raton: CRC Press, 2016: 803-833.
[14] GAO Teng, LI Chang-he, JIA Dong-zhou, et al. Surface Morphology Assessment of CFRP Transverse Grinding Using CNT Nanofluid Minimum Quantity Lubrication[J]. Journal of Cleaner Production, 2020, 277: 123328.
[15] SUI Meng-hua, LI Chang-he, WU Wen-tao, et al. Tempe-ra-ture of Grinding Carbide with Castor Oil-Based MoS2Nanofluid Minimum Quantity Lubrication[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(5): 051001.
[16] YIN Qin-gan, LI Chang-he, DONG Lan, et al. Effects of Physicochemical Properties of Different Base Oils on Friction Coefficient and Surface Roughness in MQL Milling AISI 1045[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(6): 1629-1647.
[17] 徐帥強(qiáng), 張彥彬, 周宗明, 等. 汽車輪轂潔凈制造自動(dòng)化生產(chǎn)線設(shè)計(jì)[J]. 制造技術(shù)與機(jī)床, 2022(4): 32-37.
XU Shuai-qiang, ZHANG Yan-bin, ZHOU Zong-ming, et al. Design of Automated and Cleaner Production Line for Wheel Hub in Automobile Manufacturing[J]. Manufac-turing Technology & Machine Tool, 2022(4): 32-37.
[18] 施壯, 郭樹明, 劉紅軍, 等. 生物潤(rùn)滑劑微量潤(rùn)滑磨削GH4169鎳基合金性能實(shí)驗(yàn)評(píng)價(jià)[J]. 表面技術(shù), 2021, 50(12): 71-84.
SHI Zhuang, GUO Shu-ming, LIU Hong-jun, et al. Expe-rimental Evaluation of Minimum Quantity Lubrication of Biological Lubricant on Grinding Properties of GH4169 Nickel-Base Alloy[J]. Surface Technology, 2021, 50(12): 71-84.
[19] 王曉銘, 張建超, 王緒平, 等. 不同冷卻工況下的磨削鈦合金溫度場(chǎng)模型及驗(yàn)證[J]. 中國(guó)機(jī)械工程, 2021, 32(5): 572-578.
WANG Xiao-ming, ZHANG Jian-chao, WANG Xu-ping, et al. Temperature Field Model and Verification of Tita-nium Alloy Grinding under Different Cooling Condi-tions[J]. China Mechanical Engineering, 2021, 32(5): 572- 578.
[20] 王曉銘, 張建超, 王緒平, 等. 冷風(fēng)微量潤(rùn)滑納米粒子體積分?jǐn)?shù)對(duì)鈦合金磨削性能的影響[J]. 金剛石與磨料磨具工程, 2020, 40(5): 23-29.
WANG Xiao-ming, ZHANG Jian-chao, WANG Xu-ping, et al. Effect of Nanoparticle Volume on Grinding Perfor-mance of Titanium Alloy in Cryogenic Air Minimum Quantity Lubrication[J]. Diamond & Abrasives Enginee-ring, 2020, 40(5): 23-29.
[21] 王德祥, 趙齊亮, 張宇, 等. 離子液體在微量潤(rùn)滑磨削界面的摩擦學(xué)機(jī)理研究[J]. 中國(guó)機(jī)械工程, 2022, 33(5): 560-568.
WANG De-xiang, ZHAO Qi-liang, ZHANG Yu, et al. Investigation on Tribological Mechanism of Ionic Liquid on Grinding Interfaces under MQL[J]. China Mechanical Engineering, 2022, 33(5): 560-568.
[22] 黃保騰, 張彥彬, 王曉銘, 等. SG砂輪磨削鎳基合金GH4169砂輪磨損機(jī)理與磨削性能的實(shí)驗(yàn)評(píng)價(jià)[J]. 表面技術(shù), 2021, 50(12): 62-70.
HUANG Bao-teng, ZHANG Yan-bin, WANG Xiao-ming, et al. Experimental Evaluation of Wear Mechanism and Grinding Performance of SG Wheel in Machining Nickel- Based Alloy GH4169[J]. Surface Technology, 2021, 50(12): 62-70.
[23] 丁文鋒, 奚欣欣, 占京華, 等. 航空發(fā)動(dòng)機(jī)鈦材料磨削技術(shù)研究現(xiàn)狀及展望[J]. 航空學(xué)報(bào), 2019, 40(6): 022763.
DING Wen-feng, XI Xin-xin, ZHAN Jing-hua, et al. Research Status and Future Development of Grinding Technology of Titanium Materials for Aero-Engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 022763.
[24] ZHANG Yan-bin, LI Hao nan, LI Chang-he, et al. Erratum to: Nano-Enhanced Biolubricant in Sustainable Manufacturing: From Processability to Mechanisms[J]. Fri-c-tion, 2022: 1-2.
[25] DUAN Zhen-jing, YIN Qin-gan, LI Chang-he, et al. Mil-ling Force and Surface Morphology of 45 Steel under Dif-fe-rent Al2O3Nanofluid Concentrations[J]. The Interna-tional Journal of Advanced Manufacturing Technology, 2020, 107(3): 1277-1296.
[26] DUAN Zhen-jing, LI Chang-he, DING Wen-feng, et al. Milling Force Model for Aviation Aluminum Alloy: Aca-demic Insight and Perspective Analysis[J]. Chinese Jour-nal of Mechanical Engineering, 2021, 34(1): 18.
[27] GAO Teng, LI Chang-he, YANG Min, et al. Mechanics Ana-lysis and Predictive Force Models for the Single- Diamond Grain Grinding of Carbon Fiber Reinforced Po-ly-mers Using CNT Nano-Lubricant[J]. Journal of Mate-rials Processing Technology, 2021, 290: 116976.
[28] 李長(zhǎng)河. 清潔切削加工及賦能技術(shù)研究進(jìn)展與展望[J]. 金屬加工(冷加工), 2022(3): 6-8.
LI Chang-he. Research Progress and Prospect of Clean Cutting and Energizing Technology[J]. Metal Working (Metal Cutting), 2022(3): 6-8.
[29] WANG Xiao-ming, LI Chang-he, ZHANG Yan-bin, et al. Vegetable Oil-Based Nanofluid Minimum Quantity Lubri-cation Turning: Academic Review and Perspectives[J]. Journal of Manufacturing Processes, 2020, 59: 76-97.
[30] 賈東洲, 張乃慶, 劉波, 等. 靜電霧化微量潤(rùn)滑粒徑分布特性與磨削表面質(zhì)量評(píng)價(jià)[J]. 金剛石與磨料磨具工程, 2021, 41(3): 89-95.
JIA Dong-zhou, ZHANG Nai-qing, LIU Bo, et al. Particle Size Distribution Characteristics of Electrostatic Mini-mum Quantity Lubrication and Grinding Surface Quality Evaluation[J]. Diamond & Abrasives Engineering, 2021, 41(3): 89-95.
[31] JIANG X, SIAMAS G A, JAGUS K, et al. Physical Mo-del-ling and Advanced Simulations of Gas-Liquid Two- Phase Jet Flows in Atomization and Sprays[J]. Progress in Energy and Combustion Science, 2010, 36(2): 131-167.
[32] HADAD M, BEIGI M. A Novel Approach to Improve Environmentally Friendly Machining Processes Using Ul-tra-sonic Nozzle-Minimum Quantity Lubrication Sys-tem[J]. The International Journal of Advanced Manufac-turing Technology, 2021, 114(3): 741-756.
[33] CABANETTES F, FAVERJON P, SOVA A, et al. MQL Machining: From Mist Generation to Tribological Beha-vior of Different Oils[J]. The International Journal of Ad-van-ced Manufacturing Technology, 2017, 90(1): 1119- 1130.
[34] 隋孟華, 張乃慶, 李長(zhǎng)河, 等. 納米流體微量潤(rùn)滑磨削硬質(zhì)合金溫度場(chǎng)模型與實(shí)驗(yàn)驗(yàn)證[J]. 制造技術(shù)與機(jī)床, 2020(3): 85-91.
SUI Meng-hua, ZHANG Nai-qing, LI Chang-he, et al. Theoretical Analysis and Experiment on Temperature Field of Nano-Fluid Micro-Lubrication Grinding Cemen-ted Carbide[J]. Manufacturing Technology & Machine Tool, 2020(3): 85-91.
[35] ZHANG Yan-bin, LI Chang-he, JIA Dong-zhou, et al. Ex-perimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding[J]. International Journal of Machine Tools and Manufacture, 2015, 99: 19-33.
[36] ZHANG Yan-bin, LI Chang-he, JIA Dong-zhou, et al. Ex-perimental Evaluation of MoS2Nanoparticles in Jet MQL Grinding with Different Types of Vegetable Oil as Base Oil[J]. Journal of Cleaner Production, 2015, 87: 930-940.
[37] 梁賜樂, 袁堯輝, 王成勇, 等. 微量潤(rùn)滑系統(tǒng)油霧調(diào)控及霧粒特性研究[J]. 中國(guó)機(jī)械工程, 2022, 33(5): 607- 614.
LIANG Ci-le, YUAN Yao-hui, WANG Cheng-yong, et al. Study on Oil Mist Control and Oil Mist Particle Charac-teristics of MQL Systems[J]. China Mechanical Enginee-ring, 2022, 33(5): 607-614.
[38] PARK K H, OLORTEGUI-YUME J, YOON M C, et al. A Study on Droplets and Their Distribution for Minimum Quantity Lubrication (MQL)[J]. International Journal of Machine Tools and Manufacture, 2010, 50(9): 824-833.
[39] BALAN A S S, KULLARWAR T, VIJAYARAGHAVAN L, et al. Computational Fluid Dynamics Analysis of MQL Spray Parameters and Its Influence on Superalloy Grin-ding[J]. Machining Science and Technology, 2017, 21(4): 603-616.
[40] EMAMI M, SADEGHI M H, SARHAN A A D. Inves-tigating the Effects of Liquid Atomization and Delivery Parameters of Minimum Quantity Lubrication on the Grinding Process of Al2O3Engineering Ceramics[J]. Jour-nal of Manufacturing Processes, 2013, 15(3): 374-388.
[41] SAI S S, MANOJKUMAR K, GHOSH A. Assessment of Spray Quality from an External Mix Nozzle and Its Im-pact on SQL Grinding Performance[J]. International Jour-nal of Machine Tools and Manufacture, 2015, 89: 132-141.
[42] MARUDA R W, KROLCZYK G M, FELDSHTEIN E, et al. A Study on Droplets Sizes, Their Distribution and Heat Exchange for Minimum Quantity Cooling Lubrication (MQCL)[J]. International Journal of Machine Tools and Manufacture, 2016, 100: 81-92.
[43] LV Tao, XU Xue-feng, YU Ai-bing, et al. Oil Mist Con-cen-tration and Machining Characteristics of SiO2Water- Based Nano-Lubricants in Electrostatic Minimum Quan-tity Lubrication-EMQL Milling[J]. Journal of Materials Processing Technology, 2021, 290: 116964.
[44] XU Xue-feng, LV Tao, LUAN Zhi-qiang, et al. Capillary Penetration Mechanism and Oil Mist Concentration of Al2O3Nanoparticle Fluids in Electrostatic Minimum Quan-tity Lubrication (EMQL) Milling[J]. The Interna-tional Journal of Advanced Manufacturing Technology, 2019, 104(5): 1937-1951.
[45] GUO Shu-ming, LI Chang-he, ZHANG Yan-bin, et al. Ana-lysis of Volume Ratio of Castor/Soybean Oil Mixture on Minimum Quantity Lubrication Grinding Performance and Microstructure Evaluation by Fractal Dimension[J]. Industrial Crops and Products, 2018, 111: 494-505.
[46] 張曉陽, 李長(zhǎng)河, 張彥彬, 等. 電場(chǎng)參數(shù)對(duì)霧化特性及微量潤(rùn)滑磨削性能影響的實(shí)驗(yàn)研究[J]. 制造技術(shù)與機(jī)床, 2018(10): 105-111.
ZHANG Xiao-yang, LI Chang-he, ZHANG Yan-bin, et al. Experimental Study of Effect of Electric Field Parameters on Atomization Characteristics and Grinding Performance of Minimal Quantity Lubrication[J]. Manufacturing Tech-no-logy & Machine Tool, 2018(10): 105-111.
[47] 張曉陽. 植物油基靜電霧化微量潤(rùn)滑磨削的霧化機(jī)理與潤(rùn)滑性能實(shí)驗(yàn)研究[D]. 青島: 青島理工大學(xué), 2018: 49-79.
ZHANG Xiao-yang. Experimental Study and Atomization Mechanism on Vegetable Oil Based Electrostatic Ato-miza-tion and MQL[D]. Qingdao: Qingdao Tehcnology University, 2018: 49-79.
[48] 賈東洲, 李長(zhǎng)河, 張彥彬, 等. 鈦合金生物潤(rùn)滑劑電牽引磨削性能及表面形貌評(píng)價(jià)[J]. 機(jī)械工程學(xué)報(bào), 2022, 58(5): 198-211.
JIA Dong-zhou, LI Chang-he, ZHANG Yan-bin, et al. Grinding Performance and Surface Morphology Evalua-tion of Titanium Alloy Using Electric Traction Bio Micro Lubricant[J]. Journal of Mechanical Engineering, 2022, 58(5): 198-211.
[49] JIA Dong-zhou, ZHANG Yan-bin, LI Chang-he, et al. Lubrication-Enhanced Mechanisms of Titanium Alloy Grinding Using Lecithin Biolubricant[J]. Tribology Inter-national, 2022, 169: 107461.
[50] XU Xue-feng, HUANG Shui-quan, WANG Ming-huan, et al. A Study on Process Parameters in End Milling of AISI- 304 Stainless Steel under Electrostatic Minimum Quantity Lubrication Conditions[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1): 979- 989.
[51] HUANG Shui-quan, LV Tao, WANG Ming-huan, et al. En-hanced Machining Performance and Lubrication Me-chanism of Electrostatic Minimum Quantity Lubri-cation- EMQL Milling Process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 655- 666.
[52] LV Tao, HUANG Shui-quan, LIU En-ting, et al. Tribo-logical and Machining Characteristics of an Electrostatic Minimum Quantity Lubrication (EMQL) Technology Using Graphene Nano-Lubricants as Cutting Fluids[J]. Journal of Manufacturing Processes, 2018, 34: 225-237.
[53] SU Yu, LU Qiong, YU Tong, et al. Machining and Envi-ron--mental Effects of Electrostatic Atomization Lubri-cation in Milling Operation[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2773-2782.
[54] SU Yu, JIANG Hai, LIU Zhi-qiang. A Study on Environ-ment-Friendly Machining of Titanium Alloy via Com-posite Electrostatic Spraying[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5): 1305-1317.
[55] SU Yu, JIANG Hai, LIU Zhi-qiang. An Experimental In-ve-stigation on Heat Transfer Performance of Elec-trostatic Spraying Used in Machining[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(5): 1285-1294.
[56] BARTOLOMEIS A D, NEWMAN S T, SHOKRANI A. Initial Investigation on Surface Integrity when Machining Inconel 718 with Conventional and Electrostatic Lubrica-tion[J]. Procedia CIRP, 2020, 87: 65-70.
[57] LEE P H, KIM J W, LEE S W. Experimental Characteri-za-tion on Eco-Friendly Micro-Grinding Process of Titan-ium Alloy Using Air Flow Assisted Electrospray Lubrica-tion with Nanofluid[J]. Journal of Cleaner Production, 2018, 201: 452-462.
[58] SHAH P, KHANNA N, ZADAFIYA K, et al. In-House Development of Eco-Friendly Lubrication Techniques (EMQL, Nanoparticles+EMQL and EL) for Improving Ma-chining Performance of 15-5 PHSS[J]. Tribology In-ternational, 2020, 151: 106476.
[59] SHAH P, GADKARI A, SHARMA A, et al. Comparison of Machining Performance under MQL and Ultra-High Voltage EMQL Conditions Based on Tribological Proper-ties[J]. Tribology International, 2021, 153: 106595.
[60] 楊敏, 李長(zhǎng)河, 李潤(rùn)澤, 等. 一種神經(jīng)外科超聲聚焦輔助三級(jí)霧化冷卻與術(shù)后創(chuàng)口成膜裝置: 中國(guó), 10778-9030A[P]. 2018-03-13.
YANG Min, LI Chang-he, LI Run-ze, et al. Neurosurgical Ultrasonic Focusing Assisted Three-Stage Atomization Cooling and Postoperative Wound Film Forming Device: China, 107789030A[P]. 2018-03-13.
[61] JIA Dong-zhou, LI Chang-he, ZHANG Yan-bin, et al. Ex-perimental Evaluation of Surface Topographies of NMQL Grinding ZrO2Ceramics Combining Multiangle Ultra-sonic Vibration[J]. The International Journal of Ad-vanced Manufacturing Technology, 2019, 100(1): 457-473.
[62] GAO Teng, ZHANG Xian-peng, LI Chang-he, et al. Sur-face Morphology Evaluation of Multi-Angle 2D Ultra-sonic Vibration Integrated with Nanofluid Minimum Qua-n-tity Lubrication Grinding[J]. Journal of Manufac-turing Processes, 2020, 51: 44-61.
[63] 李華, 任坤, 殷振, 等. 縱彎轉(zhuǎn)換超聲振動(dòng)霧化系統(tǒng)的振動(dòng)特性與設(shè)計(jì)研究[J]. 振動(dòng)工程學(xué)報(bào), 2015, 28(3): 462-469.
LI Hua, REN Kun, YIN Zhen, et al. The Vibration Cha-rac-teristics and Design of Ultrasonic Atomization System Based on Longitudinal-Flexural Vibration Conversion[J]. Journal of Vibration Engineering, 2015, 28(3): 462-469.
[64] 曹洋, 李華, 任坤, 等. 球面聚焦超聲輔助汽霧冷卻系統(tǒng)換熱特性研究[J]. 中國(guó)機(jī)械工程, 2018, 29(11): 1279- 1284.
CAO Yang, LI Hua, REN Kun, et al. Research on Heat Transfer Performances of Spherical Focused Ultrasound Assisted Ultrasonic Atomizing Cooling System[J]. China Mechanical Engineering, 2018, 29(11): 1279-1284.
[65] MENG Jian-bing, HUANG Bing-qi, DONG Xiao-juan, et al. Experimental Investigation on Ultrasonic Atomization Assisted Turning of Titanium Alloy[J]. Micromachines, 2020, 11(2): 168.
[66] HUANG Wei-tai, LIU Wei-shu, TSAI J T, et al. Multiple Quality Characteristics of Nanofluid/Ultrasonic Ato-mi-za-tion Minimum Quality Lubrication for Grinding Hardened Mold Steel[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(3): 1065-1077.
[67] HUANG Wei-tai, TSAI J T, HSU C F, et al. Multiple Per-formance Characteristics in the Application of Taguchi Fuzzy Method in Nanofluid/Ultrasonic Atomization Mini-mum Quantity Lubrication for Grinding Inconel 718 Al-loys[J]. International Journal of Fuzzy Systems, 2022, 24(1): 294-309.
[68] HUANG Wei-tai, CHOU F I, TSAI J T, et al. Optimal Design of Parameters for the Nanofluid/Ultrasonic Atomi-zation Minimal Quantity Lubrication in a Micromilling Process[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5202-5212.
[69] HUANG Wei-tai, CHOU F I, TSAI J T, et al. Application of Graphene Nanofluid/Ultrasonic Atomization MQL Sys-tem in Micromilling and Development of Optimal Predic-tive Model for SKH-9 High-Speed Steel Using Fuzzy- Logic-Based Multi-Objective Design[J]. International Journal of Fuzzy Systems, 2020, 22(7): 2101-2118.
[70] JUN M B G, JOSHI S S, DEVOR R E, et al. An Ex-perimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining[J]. Journal of Manufacturing Science and Engineering, 2008, 130(3): 031118.
[71] NATH C, KAPOOR S G, SRIVASTAVA A K, et al. Study of Droplet Spray Behavior of an Atomization-Based Cutting Fluid Spray System for Machining Titanium Al-loys[J]. Journal of Manufacturing Science and Enginee-ring, 2014, 136(2): 021004.
[72] HOYNE A C, NATH C, KAPOOR S G. On Cutting Tem-pe-ra-ture Measurement during Titanium Machining with an Atomization-Based Cutting Fluid Spray System[J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 024502.
[73] HOYNE A C, NATH C, KAPOOR S G. Characterization of Fluid Film Produced by an Atomization-Based Cutting Fluid Spray System during Machining[J]. Journal of Manufacturing Science and Engineering, 2013, 135(5): 051006.
[74] LEFEBURE A, SHIM D. Ultrasonic Atomization of Hi-gh-ly Viscous Biodegradable Oils for MQL Applica-tions[J]. Journal of Mechanical Science and Technology, 2021, 35(12): 5503-5516.
[75] 劉明政, 李長(zhǎng)河, 曹華軍, 等. 低溫微量潤(rùn)滑加工技術(shù)研究進(jìn)展與應(yīng)用[J]. 中國(guó)機(jī)械工程, 2022, 33(5): 529- 550.
LIU Ming-zheng, LI Chang-he, CAO Hua-jun, et al. Re-search Progresses and Applications of CMQL Machining Technology[J]. China Mechanical Engineering, 2022, 33(5): 529-550.
[76] WANG Yao-gang, LI Chang-he, ZHANG Yan-bin, et al. Experimental Evaluation of the Lubrication Properties of the Wheel/Workpiece Interface in Minimum Quantity Lubrication (MQL) Grinding Using Different Types of Vegetable Oils[J]. Journal of Cleaner Production, 2016, 127: 487-499.
[77] GUO Shu-ming, LI Chang-he, ZHANG Yan-bin, et al. Experimental Evaluation of the Lubrication Performance of Mixtures of Castor Oil with other Vegetable Oils in MQL Grinding of Nickel-Based Alloy[J]. Journal of Cleaner Production, 2017, 140: 1060-1076.
[78] LI Ben-kai, LI Chang-he, ZHANG Yan-bin, et al. Heat Transfer Performance of MQL Grinding with Different Nanofluids for Ni-Based Alloys Using Vegetable Oil[J]. Journal of Cleaner Production, 2017, 154: 1-11.
[79] OBIKAWA T, ASANO Y, KAMATA Y. Computer Fluid Dynamics Analysis for Efficient Spraying of Oil Mist in Finish-Turning of Inconel 718[J]. International Journal of Machine Tools and Manufacture, 2009, 49(12/13): 971- 978.
[80] SHI Chao-feng, LI Xun, CHEN Zhi-tong. Design and Experimental Study of a Micro-Groove Grinding Wheel with Spray Cooling Effect[J]. Chinese Journal of Aero-nautics, 2014, 27(2): 407-412.
[81] GAO Teng, LI Chang-he, ZHANG Yan-bin, et al. Disper-sing Mechanism and Tribological Performance of Vegeta-ble Oil-Based CNT Nanofluids with Different Surfac-tants[J]. Tribology International, 2019, 131: 51-63.
[82] WANG Xiao-ming, LI Chang-he, ZHANG Yan-bin, et al. Tribology of Enhanced Turning Using Biolubricants: A Comparative Assessment[J]. Tribology International, 2022, 174: 107766.
[83] DUAN Zhen-jing, LI Chang-he, ZHANG Yan-bin, et al. Milling Surface Roughness for 7050 Aluminum Alloy Cavity Influenced by Nozzle Position of Nanofluid Mini-mum Quantity Lubrication[J]. Chinese Journal of Aero-nautics, 2021, 34(6): 33-53.
[84] ZHANG Yan-bin, LI Chang-he, ZHANG Qiang, et al. Improvement of Useful Flow Rate of Grinding Fluid with Simulation Schemes[J]. The International Journal of Ad-van-ced Manufacturing Technology, 2016, 84(9): 2113- 2126.
[85] DUCHOSAL A, SERRA R, LEROY R. Numerical Study of the Inner Canalization Geometry Optimization in a Milling Tool Used in Micro Quantity Lubrication[J]. Me-cha-nics & Industry, 2014, 15(5): 435-442.
[86] ZHU Guang-yuan, YUAN Song-mei, CHEN Bo-chuan. Numerical and Experimental Optimizations of Nozzle Distance in Minimum Quantity Lubrication (MQL) Mil-ling Process[J]. The International Journal of Advanced Manu-facturing Technology, 2019, 101(1): 565-578.
[87] STACHURSK I W, SAWICK I J, KRUPANEK K, et al. Application of Numerical Simulation to Determine Abi-lity of Air Used in MQL Method to Clean Grinding Wheel Active Surface during Sharpening of Hob Cutters[J]. International Journal of Precision Engineering and Manu-facturing-Green Technology, 2021, 8(4): 1095-1112.
[88] 沈玉杰, 裴宏杰, 王貴成. MQL外圓車削數(shù)值模擬及流場(chǎng)分析[J]. 機(jī)械設(shè)計(jì)與制造, 2012(8): 208-210.
SHEN Yu-jie, PEI Hong-jie, WANG Gui-cheng. The Nu-me-rical Simulation and Flow Field Analysis of MQL Cylindrical Turning[J]. Machinery Design & Manufac-ture, 2012(8): 208-210.
[89] CHEN Ming, JIANG Li, SHI Bo-wen, et al. CFD Ana-lysis on the Flow Field of Minimum Quantity Lubrication during External Thread Turning[J]. Materials Science Fo-rum, 2012, 723: 113-118.
[90] 賈東洲, 李長(zhǎng)河, 張彥彬, 等. 納米粒子射流微量潤(rùn)滑磨削霧化噴嘴下游流場(chǎng)數(shù)值模擬與實(shí)驗(yàn)研究[J]. 組合機(jī)床與自動(dòng)化加工技術(shù), 2015(9): 5-9.
JIA Dong-zhou, LI Chang-he, ZHANG Yan-bin, et al. Numerical Simulation and Experimental Research about Downstream Flow Field of Atomizing Nozzle in Nano-particle Jet MQL Grinding[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(9): 5-9.
[91] MAO Cong, ZHOU Xin, YIN Lai-rong, et al. Investiga-tion of the Flow Field for a Double-Outlet Nozzle during Minimum Quantity Lubrication Grinding[J]. The Interna-tional Journal of Advanced Manufacturing Technology, 2016, 85(1): 291-298.
[92] ZHU Guang-yuan, YUAN Song-mei, KONG Xiao-yao, et al. Flow and Aeroacoustic Characteristics Evaluation of Microjet Noise Reduction Concept in the Nozzle Design for Minimum Quantity Lubrication[J]. Journal of Sound and Vibration, 2020, 488: 115638.
[93] RAHIM E A, DORAIRAJU H. Evaluation of Mist Flow Characteristic and Performance in Minimum Quantity Lubrication (MQL) Machining[J]. Measurement, 2018, 123: 213-225.
[94] ALBERDI R, SANCHEZ J A, POMBO I, et al. Strategies for Optimal Use of Fluids in Grinding[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6): 491-499.
[95] IRANI R A, BAUER R J, WARKENTIN A. A Review of Cutting Fluid Application in the Grinding Process[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15): 1696-1705.
[96] GRETLER M, PEIFFER K. Process for Monitoring the Setting of the Coolant Nozzle of a Grinding Machine: USA, 7452261[P]. 2008-11-18.
[97] YOSHINOBU Y. Nozzle Advancing/Retreating Mecha-nism: Japan, 2003186887A[P]. 2003-06-30.
[98] HAHNEMANN P. Positioning Unit for Minimum Quan-tity Lubrication Nozzles: Germany, 000029915499U1[P]. 2000-01-05.
[99] GOLDMAN F M, CHAMBERS R V, CLIPPARD W L, et al. Lubricant Nozzle Positioning System and Method: USA, 5444634[P]. 1995-08-22.
[100] 武文濤, 李長(zhǎng)河, 李潤(rùn)澤, 等. 基于數(shù)控銑床的微量潤(rùn)滑多自由度智能噴頭系統(tǒng): 中國(guó), 208773153U[P]. 2019-04-23.
WU Wen-tao, LI Chang-he, LI Run-ze, et al. Minimum Quantity Lubrication Multi-Freedom-Degree Intelligent Spray Head System Based on CNC Milling Machine: China, 208773153U[P]. 2019-04-23.
[101] 隋孟華, 武文濤, 李長(zhǎng)河, 等. CNC銑床多自由度微量潤(rùn)滑智能噴頭系統(tǒng): 中國(guó), 208496526U[P]. 2019-02-15.
SUI Meng-hua, WU Wen-tao, LI Chang-he, et al. CNC Milling Machine Multi Freedom Minimal Quantity Lubrication Intelligence Spray Nozzle System: China, 208496526U[P]. 2019-02-15.
[102] 隋孟華, 武文濤, 李長(zhǎng)河, 等. 基于三軸并聯(lián)平臺(tái)的數(shù)控臥式車床微量潤(rùn)滑智能噴頭系統(tǒng): 中國(guó), 209110-704U[P]. 2019-07-16.
SUI Meng-hua, WU Wen-tao, LI Chang-he, et al. Nu-merical Control Horizontal Lathe Minimal Quantity Lub-ri-cation Intelligent Spray Head System Based on Three- Axis Parallel Platform: China, 209110704U[P]. 2019-07- 16.
[103] 隋孟華, 李長(zhǎng)河, 武文濤, 等. 基于六軸聯(lián)動(dòng)平臺(tái)的數(shù)控臥式車床微量潤(rùn)滑智能噴頭系統(tǒng): 中國(guó), 109093-442A[P]. 2018-12-28.
SUI Meng-hua, LI Chang-he, WU Wen-tao, et al. Six- Axis Linkage Platform Based Intelligent Spray Head Sys-tem for Minimum-Quantity Lubrication of Numerical Con-trol Horizontal Lathe: China, 109093442A[P]. 2018-12- 28.
[104] 曹華軍, 陳二恒, 鞠文杰, 等. 一種可編程微量潤(rùn)滑噴射角相位調(diào)節(jié)裝置及其使用方法: 中國(guó), 1081154-62A[P]. 2018-06-05.
CAO Hua-jun, CHEN Er-heng, JU Wen-jie, et al. Prog-rammable Minimum Quantity Lubrication Jet Angle Phase Adjusting Device and Using Method Thereof: China, 108115462A[P]. 2018-06-05.
[105] 趙武, 于澤源, 張子達(dá), 等. 外冷式微量潤(rùn)滑機(jī)械手、機(jī)床及潤(rùn)滑方法: 中國(guó), 109648396A[P]. 2019-04-19.
ZHAO Wu, YU Ze-yuan, ZHANG Zi-da, et al. Outer Cooling Type Miniature Lubrication Manipulator, Mac-hine Tool and Lubrication Method: China, 1096483-96A[P]. 2019-04-19.
[106] 吳一平, 陳勇, 白玉璽, 等. 一種適用于MQL銑削加工的精準(zhǔn)噴射潤(rùn)滑裝置: 中國(guó), 112720051A[P]. 2021- 04-30.
WU Yi-ping, CHEN Yong, BAI Yu-xi, et al. Precise Spraying Lubrication Device Suitable for MQL Milling: China, 112720051A[P]. 2021-04-30.
Research Progress on Key Technology of Enabled Atomization and Supply System of Minimum Quantity Lubrication
1,1,1,1,2,3,4,5
(1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Shandong Qingdao, 266520, China; 2. Hanergy (Qingdao) Lubrication Technology Co., Ltd., Shandong Qingdao 266100, China; 3. Chengdu Tool Research Institute Co., Ltd., Chengdu 610500, China; 4. Sichuan Future Aerospace Industry Co., Ltd., Sichuan Shifang 618400, China; 5. School of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)
Traditional metal cutting fluids have negative impact on environmental protection, human health and manu-facturing costs and cannot meet the requirements of green manufacturing. Minimum quantity lubrication (MQL) is a green lubricant supply technology between flooding and dry processing. A small amount of degradable bio-lubricant is atomized by compressed air to form micro droplets, which plays the role of lubrication and wear resistance. However, there is no relevant research to summarize the law of precise transportation technology of atomized droplets, which fails to provide scientific guidance for minimum quantity lubrication supply parameters. For this purpose, the research progress on enabled atomization and transportation system of MQL was reviewed. The evolution law of droplet size and atomization angle of MQL two-phase flow pneumatic atomization with supply parameters was revealed. A new lubrication method of electrostatic enabled atomization MQL supply was proposed. The regulation mechanism of electrostatic enabled atomization performance and the permeation characteristics of charged fluid were analyzed. The homogenization mechanism of ultrasonic enabled atomized droplets and the optimization strategy of process parameters were expounded. Furthermore, the flow field distribution law of tool/grinding wheel-workpiece interface based on hydrodynamic model was analyzed, and the effect law of nozzle structure on droplet transportation was clarified, which provided theoretical support for the selection of nozzle placement parameters. Moreover, the research progress of the parameterized control device of the nozzle placement was discussed, and the problem of parameterized supply of the lubricating medium was solved. Finally, the key technologies of MQL compound synergism and intelligent supply were prospected in order to provide theoretical support and technical guidance for the engineering application of MQL technology.
minimum quantity lubrication; atomization; cutting; grinding; flow field; nozzle
2022-05-18;
2022-06-10
WANG Xiao-ming (1997-), Male, Doctoral candidate, Research focus: sustainable and precision manufacturing.
李長(zhǎng)河(1966—),男,博士,教授,主要研究方向?yàn)橹悄芘c潔凈精密制造。
LI Chang-he (1966-), Male, Doctor, Professor, Research focus: intelligent and sustainable precision manufacturing.
王曉銘, 李長(zhǎng)河, 張彥彬, 等. 微量潤(rùn)滑賦能霧化與供給系統(tǒng)關(guān)鍵技術(shù)研究進(jìn)展[J]. 表面技術(shù), 2022, 51(9): 1-14.
TH16
A
1001-3660(2022)09-0001-14
10.16490/j.cnki.issn.1001-3660.2022.09.000
2022–05–18;
2022–06–10
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFB2010500);國(guó)家自然科學(xué)基金(51975305、51905289);山東省自然科學(xué)基金重點(diǎn)項(xiàng)目(ZR2020KE027);山東省自然科學(xué)基金(ZR2021QE116)
Fund:National Key Research and Development Program of China (2020YFB2010500); National Natural Science Foundation of China (51975305, 51905289); Key Projects of Natural Science Foundation of Shandong Province (ZR2020KE027); Natural Science Foundation of Shandong Province (ZR2021QE116)
王曉銘(1997—),男,博士研究生,主要研究方向?yàn)闈崈艟苤圃臁?/p>
WANG Xiao-ming, LI Chang-he, ZHANG Yan-bin, et al. Research Progress on Key Technology of Enabled Atomization and Supply System of Minimum Quantity Lubrication[J]. Surface Technology, 2022, 51(9): 1-14.
責(zé)任編輯:彭颋