葛雙超,王夢蕾
(中北大學 儀器與電子學院,太原 030051)
由于受各類環(huán)境和人為干擾,電磁測試信號往往包含大量噪聲,特別是隨著各領域?qū)y試精度要求的不斷提高,復雜環(huán)境下微弱有效信號提取逐漸成為一個重點研究課題。
現(xiàn)實中各種信號普遍存在時域突變性,且頻譜成分復雜,屬于非線性、非平穩(wěn)信號。1998年,Huang等人[1]提出了Hilbert-Huang變換(Hilbert-Huang Translation,HHT),其核心算法為經(jīng)驗模態(tài)分解(Empirical Mode Decomposition,EMD)。該方法可以將信號分解為一系列本征模函數(shù)(Intrinsic Mode Function,IMF),對有效IMF進行Hilbert變換可獲取有效信號參數(shù)信息,但是EMD方法在強噪聲下存在端點效應和模態(tài)混疊的問題。變分模態(tài)分解(Variational Mode Decomposition,VMD)是Dragomiretskiy等人[2]在2014年提出的一種非遞歸的自適應、準正交的模態(tài)變分和信號處理方法。VMD 算法通過迭代搜索自適應地匹配各個模態(tài)分量的最佳中心頻率和有限帶寬,在搜索和求解過程中實現(xiàn)IMF的有效分離,進而實現(xiàn)目標信號成分提取。VMD 算法已成功用于機械故障診斷、地震記錄分析等領域的非線性、非平穩(wěn)信號處理,但是其過度懲罰了域邊界和內(nèi)部的跳躍,強噪聲下無法有效處理信號的時移偏差[3]。奇異譜分解(Singular Spectrum Analysis,SSA)算法[3]是一種全局分析法,利用相空間重構的基本思想,通過奇異值分解對原始信號不同成分進行提取,該方法在軌道矩陣長度和分解層數(shù)設置合理的情況下可以有效分離時域差異較大的周期信號。2018年,Harmouche等人[4]將SSA與無監(jiān)督分類算法相結合,提出了滑動奇異譜分析法,可有效提取兩個頻率相近的正弦信號。
上述算法處理具有時延不定特性的非平穩(wěn)信號時,普遍存在局部特性向全局擴散等問題。對于上述問題,直接的解決方案是將信號分解成較短的數(shù)據(jù)塊,使這些分段信號具有短時局部平穩(wěn)特性。因此本文針對數(shù)據(jù)自動分段和參數(shù)提取問題進行了相關研究,構建了時延信號相干檢測模型并在此基礎上利用VMD算法設計了自適應匹配濾波器進行強噪聲下時延信號提取。
相關檢測技術是一種很強的周期信號提取方法,該技術利用信號和噪聲、不同成分信號間的不相關性,對目標信號進行分離[5]。本文利用互相關函數(shù)包絡和峰值梯度為特征值構建時延信號相關檢測模型進行目標信號自動分段提取。
設原始采樣序列x(t)由兩部分組成,x(t)=xn(t)+s0(t),其中,xn(t)為非線性、非平穩(wěn)信號;s0(t)為x序列中的目標信號,
(1)
(a)原始信號x
(2)
(3)
(4)
式中:L1和L2分別為目標信號在原始序列中的起始位置;N為原始數(shù)據(jù)序列長度N=fs×T,fs為采樣率;L0為標準正弦信號長度,L0=fs。
以上即為相關檢測定位算法的基本原理,計算過程如圖2。
圖2 互相關檢測定位算法計算過程
實際應用中由于式(2)中第一項并非絕對為0,所以采用最大峰值梯度為特征參數(shù),互相關函數(shù)包絡梯度Δp由式(5)給出:
Δp(i)=Penv(i)-Penv(i-1)。
(5)
式中:Penv(i)表示坐標點i處的互相關函數(shù)包絡值。在i=L1處出現(xiàn)互相關函數(shù)最大峰值梯度。
利用軟閾值對互相關函數(shù)有效包絡線進行提取?;ハ嚓P函數(shù)理想包絡范圍由下式給出:
(6)
(7)
式中:nshift為偏移因子,?」表示向下取整,[l1l2]為有效包絡窗口邊界,max()和min()分別為最大和最小值函數(shù)。取最大最小的目的是保證可完整提取出目標信號段。
利用上述相關檢測定位算法可以初步確定目標信號s0i在序列x中出現(xiàn)的起始位置L1和目標信號序列長度L。對多頻信號的提取重復執(zhí)行上述算法即可。
利用單頻仿真信號測試上述算法,結果如圖3所示。
(a)時域波形
獲取的目標數(shù)據(jù)段時頻參數(shù)如表1所示。
表1 相關檢測定位算法處理結果
利用上述算法截取含目標信號數(shù)據(jù)段后,再利用VMD算法對截取的信號進行分解即可獲取目標信號。
VMD算法的實質(zhì)是將一個復雜的實信號xs(t)分解為K個具有特定稀疏性的相互獨立子信號uk(變分模態(tài)分量),在K值設置合理的前提下VMD可有效地消除信號分解時所存在的模態(tài)混疊和端點效應現(xiàn)象[7]。VMD算法分為兩個過程,分別為構造約束變分模型和求解約束變分模型。
進行約束變分模型構造時,首先將模態(tài)分量函數(shù)uk(t)進行希爾伯特變換以獲取其相應的解析信號,再計算解析信號得到單邊頻譜
(8)
式中:δ(t)為沖激函數(shù)。
然后將模態(tài)分量函數(shù)的解析信號與指數(shù)ejωkt相乘來估計中心頻率ωk,通過頻移將模態(tài)函數(shù)uk(t)的頻譜調(diào)制到相應的基頻帶
(9)
通過對解調(diào)信號進行高斯平滑來估計uk(t)的帶寬,得到相對應的約束變分模型表達式為
(10)
式中:min{ }為取最小值函數(shù),K為預先設定的分解個數(shù),F(xiàn)x為原始輸入信號的頻域?qū)嵵敌盘枴?/p>
式(10)是一個最優(yōu)化問題,求解時引入二次懲罰因子α與增廣拉格朗日乘子λ,將目標函數(shù)的約束變分問題轉變?yōu)榉羌s束變分形式,從而得到相應的拉格朗日函數(shù)表達式:
(11)
式中:L(·)表示增廣拉格朗日函數(shù);〈·,·〉表示內(nèi)積;二次懲罰因子α是控制數(shù)據(jù)保真度的均衡參數(shù),用于平衡變分正則項和二次約束項,在含噪聲情形時可保證信號重構精度;λ可以保證模型約束條件的嚴格性。
利用Lagrange法的交替方向乘子求公式(11)所述變分問題的最優(yōu)解,從而將原始信號分解為K個IMF分量。
從VMD算法分解出的K+1個分量中確定有效信號是VMD算法的一個關鍵問題。本文利用自截取信號的K個主峰頻率[f1f2,…,fK]與VMD算法分解獲取的K+1個主頻[ω1ω2,…,ωK+1]自動篩選有效分量。算法偽代碼如下:
1 初始化:構造K×N的s數(shù)組并初始化為0,s=zeros(K,N)
2 令i=1
3 While (i fort=1:K+1 if(ωt==fi) break end end si(L1:L2)=u(t)篩選出第i個有效分量 end 通過上述自適應模態(tài)匹配篩選方法,既可以獲取目標數(shù)據(jù)段內(nèi)的單個有效信號分量,同時可獲取多頻疊加信號。 本文所述算法整體流程圖如圖4所示。 圖4 非平穩(wěn)時延目標信號提取流程 算法主要步驟如下: 輸入:原始信號x。 Step1 構造時延信號集合S,令S=?。 Step2 利用1.2節(jié)所述自截取算法提取目標數(shù)據(jù)段xs=x(L1:L2)。 Step3 利用本節(jié)所述基于變分模態(tài)分解算法的自適應匹配濾波器對數(shù)據(jù)段xs進行信噪分離處理,提取有效信號u1,u2,…,uK。 Step4 構造0值序列集合s={s1,s2,…,sK}=zeros(K,N),其中N為原始序列長度,并令si(L1:L2)=ui。 Step5 更新數(shù)據(jù): Step6 判斷更新后的x序列是否存在特殊頻點,判斷標準為振幅譜曲線峰值顯著大于譜線均值。如果存在特殊頻點則執(zhí)行Step 2,否則執(zhí)行Step 7。 Step7 輸出S。 利用Matlab仿真構造了由非平穩(wěn)噪聲信號和單頻時延目標信號疊加而成的原始信號x1: (12) 式中:ns1為高斯白噪聲;s1為時延正弦信號,采樣率為150 Hz,采樣時間30 s;wgn為非平穩(wěn)噪聲信號;f=2 Hz為正弦信號頻率; [t1t2]=[10 13]為正弦信號出現(xiàn)時段;φ=0為相位;A為振幅。信號x1可模擬超聲波測試中的回波信號等探測信號。 高信噪比下A=5 V,SNR=6.778 dB。分別利用直接EMD算法、直接VMD算法、目標信號段自截取后EMD算法和目標信號自截取后VMD算法對目標信號進行提取。高信噪比下不同算法目標信號提取結果如圖5所示。 (a)不同算法提取結果 為進一步突出不同算法的信號提取效果,降低原始信號信噪比,令A=1 V,SNR=-17.659 dB,信號時域波形如圖6(a)墨綠色曲線所示。利用四種算法進行了分析對比,結果如圖6所示。 (a)不同算法提取結果 仿真結果表明,不同信噪比情況下,目標信號段自截取后VMD算法提取的信號均具有最高精度,直接EMD算法提取精度最低。不同信噪比下不同算法處理結果的統(tǒng)計分析見表2。 表2 不同算法誤差統(tǒng)計分析對比 為進一步驗證本文所述方法的有效性,利用高斯噪聲和多個目標信號混疊構造了如下仿真數(shù)據(jù): x2=ns2+s2=ns2+s21+s22= (13) 其中,信號采樣率為100 Hz,采樣時間30 s,SNR=1.53 dB。目標信號雙頻信號s21出現(xiàn)時刻為5~15 s,由頻率為5 Hz和25 Hz的正弦信號疊加構成;目標信號s22出現(xiàn)時刻為20~22 s,為morlet小波。信號x2與電力系統(tǒng)故障檢查中的常見振動和局部充放電信號類似。 對s21和s22信號的自截取結果如圖7所示。 (a)目標信號s21自截取結果 (a)不同算法提取結果 對不同算法提取結果進行了誤差分析和效率對比,結果見表3。 表3 強噪聲下復雜信號不同算法誤差統(tǒng)計分析對比 表3表明,自截取+VMD算法對于混疊在背景噪聲中的復雜目標信號提取效果最好。由于原始數(shù)據(jù)中混疊兩個時段的不同類型的目標信號,而自截取+VMD算法分別對這兩段目標信號進行了提取,故用時較其他算法偏長。直接對整段數(shù)據(jù)進行處理雖然用時較短,但是提取結果存在明顯的模態(tài)混疊現(xiàn)象,且無法對兩段目標信號進行有效區(qū)分,因此提取數(shù)據(jù)的利用價值不如本文所述方法高。 分段提取方法是一種有效的強噪聲下時延目標信號分析方法。本文提出了時延信號自截取算法,并設計了基于VMD算法的自適應匹配濾波器對自截取信號段進行處理來獲得目標信號。結果表明,高信噪比時,直接對整段數(shù)據(jù)進行VMD變換可提取時延目標信號,誤差略大于本文提出的方法,在對精度要求不高、實時性要求較高的場合可采用直接VMD;當背景噪聲較強,完全淹沒目標信號時,直接VMD會將局部目標信號放大至整個時間過程,不能有效識別局部時域細節(jié)信息,而直接EMD算法幾乎失效,這種情況下需采用目標信號段自截取后自適應匹配濾波算法進行目標信號提取。 當原始信號僅包含單一時延目標信號,本文所述方法的處理時間稍高于直接VMD算法,滿足實時性要求;當原始信號成分復雜、包含多個不同時延的目標信號時,本文所述方法會對原始信號進行多次迭代處理,相應的處理時間會有所增加,最終可依次提取各個時延信號;而傳統(tǒng)方法雖然效率稍高于本方法,但無法有效區(qū)分不同時延的信號成分。因此,本文所述方法對于復雜信號的分解效率高于傳統(tǒng)方法,可為后續(xù)的處理提供更有價值的數(shù)據(jù)。3 實驗與分析
4 結 論