林家俞,秦潔潔,蔣玲曦
上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院普外科胰腺疾病診療中心,上海交通大學(xué)醫(yī)學(xué)院胰腺疾病研究所,上海 200025
腫瘤微環(huán)境是一個復(fù)雜的、具有高度異質(zhì)性的動態(tài)綜合系統(tǒng),主要由腫瘤細(xì)胞、腫瘤相關(guān)成纖維細(xì)胞(cancer-associated fibroblasts,CAFs)、腫瘤相關(guān)免疫細(xì)胞和微血管等成分組成。
多年的研究證明,代謝途徑對腫瘤微環(huán)境中腫瘤細(xì)胞的增殖、轉(zhuǎn)移與免疫逃逸具有重要作用[1]。在腫瘤發(fā)生與進(jìn)展過程中,糖酵解的激活、脂質(zhì)代謝的增加、線粒體生物合成增強(qiáng)等代謝途徑重塑了局部腫瘤微環(huán)境,改變了腫瘤微環(huán)境中免疫細(xì)胞的代謝適應(yīng)性[2]。腫瘤微環(huán)境中細(xì)胞固有代謝紊亂共同導(dǎo)致營養(yǎng)物質(zhì)的消耗、環(huán)境pH酸化、缺氧及調(diào)節(jié)性代謝產(chǎn)物的產(chǎn)生,進(jìn)而影響抗腫瘤免疫反應(yīng),強(qiáng)化腫瘤細(xì)胞對免疫治療的抵抗,促進(jìn)免疫檢查點(diǎn)分子的過度表達(dá)和腫瘤轉(zhuǎn)移[3-4]。
腫瘤微環(huán)境中免疫細(xì)胞的代謝狀態(tài)是影響其發(fā)揮正常免疫應(yīng)答的關(guān)鍵因素,因此本綜述擬總結(jié)腫瘤微環(huán)境中主要免疫細(xì)胞的代謝途徑,概括參與腫瘤免疫反應(yīng)的免疫細(xì)胞的代謝特征,歸納免疫細(xì)胞代謝途徑改變的分子機(jī)制,以期為通過靶向免疫細(xì)胞代謝途徑提高腫瘤免疫療效提供新思路。
浸潤到腫瘤內(nèi)部的淋巴細(xì)胞介導(dǎo)了免疫抑制的腫瘤微環(huán)境,幫助腫瘤細(xì)胞實(shí)現(xiàn)免疫逃逸,促進(jìn)腫瘤的惡性發(fā)展。腫瘤免疫微環(huán)境由一系列不同的細(xì)胞類型構(gòu)成(圖1),包括T 淋巴細(xì)胞、B 淋巴細(xì)胞、腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages,TAMs)、自然殺傷細(xì)胞(natural killer cells,NKs)、樹突狀細(xì)胞(dendritic cells,DCs)、腫瘤相關(guān)中性粒細(xì)胞(tumor-associated neutrophils,TANs)和髓源性抑制細(xì)胞(myeloid-derived suppressor cells,MDSCs)等。同時,免疫細(xì)胞代謝途徑的改變使其功能具有兩面性:一方面,浸潤至腫瘤內(nèi)部的免疫細(xì)胞在腫瘤入侵的初始階段發(fā)揮抗腫瘤作用;另一方面,在腫瘤進(jìn)展過程中,部分免疫細(xì)胞逐漸轉(zhuǎn)變成促腫瘤表型,發(fā)揮免疫抑制功能,協(xié)助腫瘤免疫逃逸及遠(yuǎn)處轉(zhuǎn)移[5]。
圖1 腫瘤免疫微環(huán)境主要的免疫細(xì)胞Fig 1 Main immune cells in tumor immune microenvironment
由癌細(xì)胞代謝異常釋放的各種生化分子重塑腫瘤微環(huán)境,影響免疫細(xì)胞的正常免疫反應(yīng)。代謝串?dāng)_是癌細(xì)胞在不利條件下維持生長的一種方式。癌細(xì)胞可通過釋放犬尿氨酸和乳酸等機(jī)制逃避細(xì)胞毒性T淋巴細(xì)胞介導(dǎo)的殺傷作用,從而增強(qiáng)調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)和MDSCs的免疫抑制功能[6]。此外,癌細(xì)胞通過對營養(yǎng)物質(zhì)的惡性競爭實(shí)現(xiàn)快速增長的目的,如:通過Warburg效應(yīng)滿足快速增殖的生物能量和生物合成需求[7]。因此,腫瘤細(xì)胞的代謝多樣性將腫瘤微環(huán)境塑造為一個酸性、缺氧、營養(yǎng)物質(zhì)匱乏的場所,進(jìn)而影響免疫細(xì)胞的代謝途徑,限制免疫細(xì)胞的抗腫瘤效應(yīng)[8]。
巨噬細(xì)胞是重要的固有免疫細(xì)胞,主要通過吞噬及消化細(xì)胞碎片和病原體,并激活其他免疫細(xì)胞對抗病原體入侵來發(fā)揮其功能。而浸潤在腫瘤組織中的TAMs 具有高度的可塑性和異質(zhì)性[9]。腫瘤早期,Toll 樣受體(toll-like receptors,TLR)激動劑等促炎細(xì)胞因子可促進(jìn)TAM 向M1 型極化,M1 型巨噬細(xì)胞產(chǎn)生的一氧化氮(nitric oxide,NO) 和活性氧(reactive oxygen species,ROS)可顯著抑制腫瘤細(xì)胞增殖,殺死腫瘤細(xì)胞[10]。腫瘤進(jìn)展期,白細(xì)胞介素-4(interleukin-4,IL-4)與集落刺激因子1(colony stimulating factor 1,CSF1)誘導(dǎo)TAMs向M2型極化,M2 型巨噬細(xì)胞分泌表皮細(xì)胞生長因子(epidermal growth factor,EGF)、基質(zhì)金屬蛋白 酶-9 (matrix metalloprotein 9,MMP-9)等蛋白抑制抗腫瘤效應(yīng),促進(jìn)腫瘤的進(jìn)展[11]。
2 種極化形式的巨噬細(xì)胞表現(xiàn)出不同的代謝模式。M1 型巨噬細(xì)胞激活后,主要依賴于糖酵解代謝途徑供能,并通過磷酸戊糖途徑(glycolysis pentose phosphate pathway,PPP)產(chǎn)生ROS,發(fā)揮抗腫瘤效應(yīng)[12-13]。腫瘤微環(huán)境缺氧環(huán)境可誘導(dǎo)M1 型巨噬細(xì)胞的 缺 氧 誘 導(dǎo) 因 子1α (hypoxia inducible-factor 1α,HIF1α)激活上調(diào),誘導(dǎo)糖酵解基因如葡萄糖轉(zhuǎn)運(yùn)體1 (glucose transporter 1,GLUT1)、 己 糖 激 酶2(hexokinase 2,HK2)過度表達(dá)。同時,雷帕霉素靶蛋白信號(mechanistic target of rapamycin,mTOR)通過NOR 樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NODlike receptor thermal protein domain associated protein 3,NLRP3)炎癥小體以己糖激酶依賴性方式促使M1 型細(xì)胞完成糖酵解獲取能量[14]。此外,M1 型巨噬細(xì)胞還可通過核因子κB(nuclear factor κB,NFκB)途徑下調(diào)碳水化合物激酶樣蛋白(carbohydrate kinase-like protein,CARKL)增加PPP 的代謝水平,產(chǎn)生大量還原型輔酶Ⅱ(nicotinamide adenine dinucleotide phosphate,NADPH)。NADPH 不僅可用于維持其自身氧化還原的平衡以及生物合成代謝,還可進(jìn)一步促進(jìn)ROS和NO的產(chǎn)生[15]。
相反,腫瘤微環(huán)境中發(fā)揮免疫抑制功能的M2 型巨噬細(xì)胞依賴于氧化磷酸化 (oxidative phosphorylation,OXPHOS)代謝途徑供能[16]。而脂肪酸氧化(fatty acid oxidation,F(xiàn)AO)也是其供能途徑,該過程以低水平糖酵解為代價,高表達(dá)CD36,上調(diào)FAO 水平,從而促進(jìn)線粒體OXPHOS 過程[17]。此外,M2 型細(xì)胞合成大量精氨酸酶(arginase,ARG)和吲哚胺2,3-雙加氧酶1(indoleamine 2,3-dioxygenase 1,IDO1),消耗精氨酸與色氨酸,導(dǎo)致免疫功能障礙[18]。腫瘤微環(huán)境中的細(xì)胞因子也可以影響TAMs的分化與功能。CSF1是TAMs發(fā)揮免疫抑制功能的一個重要細(xì)胞因子。腫瘤細(xì)胞在快速增殖過程中釋放大量的CSF1 至細(xì)胞外,CSF1 可與TAMs 上的受體結(jié)合,招募其至腫瘤細(xì)胞周圍,誘導(dǎo)其FAO水平上升,促使其極化為M2型巨噬細(xì)胞[19]。
中性粒細(xì)胞來源于髓系祖細(xì)胞,在骨髓中發(fā)育成熟后,在細(xì)胞因子IL-8的趨化下,其釋放至血液參與固有免疫,調(diào)節(jié)適應(yīng)性免疫。腫瘤微環(huán)境中,一方面在干擾素-β(interferon-β,IFN-β)、腫瘤壞死因子-α(tumor necrosis factor,TNF-α)作用下,TANs 向具有高免疫活性的抗腫瘤N1 型極化,促進(jìn)CD8+T 細(xì)胞活化;另一方面,轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)、IL-8 等促使TANs 向促腫瘤的N2 型極化。N2 型細(xì)胞釋放ARG1、組織蛋白酶、促血管生成細(xì)胞因子等,抑制腫瘤免疫,加快腫瘤進(jìn)展。
TANs 依賴于糖酵解代謝途徑供能[20]。TANs 中GLUT1表達(dá)水平上調(diào),但在敲除GLUT1基因后,TANs 攝取葡萄糖的能力下降,存活率顯著降低[21]。PPP 所生成的NADPH 是NADPH 氧化酶的輔助因子,可以輔助TANs發(fā)揮抗腫瘤免疫功能。研究[22]表明,腫瘤細(xì)胞通過干細(xì)胞因子(stem cell factor,SCF)/c-Kit信號轉(zhuǎn)導(dǎo)誘導(dǎo)TANs產(chǎn)生氧化表型,增強(qiáng)其線粒體的OXPHOS功能,使得TANs即使在葡萄糖不足的條件下,也可通過FAO 來維持NADPH 的產(chǎn)生,維持ROS水平,發(fā)揮免疫抑制功能。
NKs作為人體抵抗腫瘤的第一道防線,可在靶細(xì)胞表面釋放穿孔素導(dǎo)致細(xì)胞穿孔,使顆粒酶b 進(jìn)入腫瘤細(xì)胞誘導(dǎo)凋亡,從而非特異性殺傷腫瘤細(xì)胞。這個過程既不需要抗原致敏與抗體參與,也無組織相容性復(fù)合體(major histocompatibility complex,MHC)限制,并且還能通過分泌細(xì)胞因子,促進(jìn)適應(yīng)性免疫細(xì)胞的抗腫瘤作用。
NKs 活化后,胞內(nèi)的固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element- binding protein,SREBP)與雷帕霉素靶蛋白復(fù)合物1 (mechanistic target of rapamycin complex 1,mTORC1)表達(dá)上調(diào),增強(qiáng)有氧糖酵解與OXPHOS 代謝途徑水平[23]。轉(zhuǎn)錄因子c-Myc 可顯著提高NKs 的代謝水平;若c-Myc 蛋白缺陷,NKs將減少糖代謝關(guān)鍵酶和線粒體酶的表達(dá),導(dǎo)致免疫功能發(fā)生障礙[24]。乳酸能干擾NKs 的代謝。乳酸在腫瘤微環(huán)境的積累使NKs 胞內(nèi)pH 降低,導(dǎo)致pH 依賴性線粒體的應(yīng)激反應(yīng)與代謝功能障礙,ROS不斷累積,促使NKs 發(fā)生凋亡[25]。過度脂質(zhì)代謝也會影響NKs 的正常功能。脂質(zhì)轉(zhuǎn)運(yùn)蛋白表達(dá)上調(diào)導(dǎo)致細(xì)胞過度攝取脂肪酸,從而激活過氧化物酶體增殖激活受體(peroxisome proliferators-activated receptor,PPAR)-γ/PPAR-δ信號,抑制NKs的代謝活性并產(chǎn)生細(xì)胞毒性[26]。
DCs在固有免疫識別病原體、啟動適應(yīng)性免疫細(xì)胞活化中發(fā)揮關(guān)鍵作用。在腫瘤微環(huán)境中,DCs接收并整合由細(xì)胞因子、損傷相關(guān)分子模式(damageassociated molecular patterns,DAMPs) 等受體感知的環(huán)境信號,通過MHC 分子提呈抗原肽,進(jìn)一步誘導(dǎo)T細(xì)胞活化和分化,啟動適應(yīng)性免疫反應(yīng),同時還可分泌細(xì)胞因子和生長因子,增強(qiáng)T 細(xì)胞、NKs等免疫細(xì)胞活性,建立完整的抗腫瘤免疫反應(yīng)。
不同時期的DCs 代謝狀態(tài)不一。未成熟的DCs主要依賴于OXPHOS 代謝途徑;當(dāng)TLR 激活觸發(fā)DCs活化及發(fā)育成熟后,DCs的代謝途徑從OXPHOS轉(zhuǎn)變?yōu)樘墙徒?,以支持其代謝需求與抗原提呈功能[27]。 磷 酸 肌 醇 3- 激 酶- 蛋 白 激 酶 B(phosphatidylinositol 3 kinase-protein kinase B,PI3KAKT)、TANK 結(jié) 合 激 酶1 (tank binding kinase 1,TBK1)和κB 激酶ε 抑制劑(inhibitor of κB kinase ε,IKKε)通路信號驅(qū)動DCs 糖酵解代謝。隨著DCs 活化,一氧化氮合酶2(nitric oxide synthase 2,NOS2)誘導(dǎo)生成的NO降低OXPHOS代謝水平,阻止細(xì)胞色素C氧化酶活化,并激活PI3K-AKT途徑,抑制AMP依賴的蛋白激酶途徑(adenosine 5'-monophosphate activated protein kinase,AMPK)[28]。
細(xì)胞因子可調(diào)節(jié)DCs的生物學(xué)功能。腫瘤細(xì)胞通過大量釋放巨噬細(xì)胞清道夫受體1 (macrophage scavenger receptor 1,MSR1)等細(xì)胞因子,使得DCs胞內(nèi)脂質(zhì)異常積累,發(fā)生抗原提呈功能障礙,降低對T細(xì)胞的誘導(dǎo)活化功能[29]。而通過靶向MSR1、乙酰輔酶A 羧化酶(acetyl CoA carboxylase,ACC)或Xbox 結(jié)合蛋白1(X-box binding protein 1,XBP1)可調(diào)節(jié)DCs胞內(nèi)的脂質(zhì)積累,恢復(fù)DCs的免疫活性[30]。
MDSCs 是由未成熟的,無法分化為粒細(xì)胞、巨噬細(xì)胞和DCs的髓系祖細(xì)胞組成的免疫抑制性先天細(xì)胞群。生長因子如粒細(xì)胞集落刺激因子(granulocyte colony stimulating factor,G-CSF)和血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)可促進(jìn)MDSCs 增殖,并抑制其最終分化成巨噬細(xì)胞、DCs或粒細(xì)胞;而促炎細(xì)胞因子如IL-4和IL-6則可促進(jìn)MDSCs 的病理活化。MDSCs 通過釋放NO 與ROS,產(chǎn)生IL10、IFN-γ 等免疫調(diào)節(jié)細(xì)胞因子等方式抑制T細(xì)胞活性。
在缺氧、營養(yǎng)物質(zhì)匱乏的腫瘤微環(huán)境中,MDSCs 通過糖代謝與OXPHOS 代謝途徑適應(yīng)環(huán)境,維持免疫抑制作用[31]。研究[32]表明,腫瘤微環(huán)境中的糖酵解中間代謝物磷酸烯醇丙酮酸(phosphoenolpyruvate,PEP)可防止過量ROS 產(chǎn)生,保護(hù)MDSCs逃脫ROS誘導(dǎo)的細(xì)胞凋亡,促進(jìn)MDSCs存活與分化。脂質(zhì)代謝可調(diào)節(jié)MDSCs 的免疫功能。腫瘤微環(huán)境中的乳酸增強(qiáng)了MDSCs 的由CD36 介導(dǎo)的脂質(zhì)攝取能力,使FAO 替代糖酵解成為MDSCs 的主要能量來源。CD36缺失或FAO抑制會破壞MDSCs免疫抑制功能,提高化學(xué)治療和免疫治療的效果,延緩腫瘤生長[33]。
CD4+或CD8+T 細(xì)胞通過表達(dá)T 細(xì)胞受體(T cell receptor,TCR)α/β,識別腫瘤抗原和自身抗原,在癌癥或自身免疫性疾病的免疫反應(yīng)過程中發(fā)揮關(guān)鍵作用。經(jīng)同源抗原刺激后,初始CD8+T 細(xì)胞分化為細(xì)胞毒性效應(yīng)細(xì)胞和長期記憶細(xì)胞,初始CD4+T 細(xì)胞分化為輔助性T 細(xì)胞1(hepler T cell 1,Th1)、Th2、Th17、濾泡輔助性T 細(xì)胞(follicular helper T cell,Tfh)、Tregs 和長期記憶細(xì)胞。其中,Tregs 是一類以高表達(dá)叉頭框蛋白P3 (forkhead box protein P3,F(xiàn)OXP3)、CD25、CD4 為主要特征的免疫抑制性T 細(xì)胞。Tregs 常在腫瘤中積聚,通過脂質(zhì)代謝與OXPHOS 途徑為免疫反應(yīng)供能,維持腫瘤微環(huán)境的免疫抑制環(huán)境,促進(jìn)腫瘤浸潤與轉(zhuǎn)移[34-35]。
在腫瘤免疫微環(huán)境中,一方面免疫受體、信號蛋白和轉(zhuǎn)錄因子等會促進(jìn)T細(xì)胞的活化,另一方面代謝途徑改變會影響T細(xì)胞存活、增殖、分化、功能發(fā)揮等重要生物學(xué)過程[36]?;赥 細(xì)胞作為抗腫瘤免疫中的關(guān)鍵免疫細(xì)胞,下面從葡萄糖代謝、脂質(zhì)代謝、氨基酸代謝、線粒體調(diào)控4 個代謝途徑來闡述腫瘤微環(huán)境中T細(xì)胞的代謝特征。
3.1.1 葡萄糖代謝 TCR 識別腫瘤抗原后,在CD28介導(dǎo)的共刺激下,激活PI3K-AKT-mTOR 通路,上調(diào)HIF1α 和c-Myc 等轉(zhuǎn)錄因子的表達(dá),增加GLUT1 蛋白、代謝酶和氨基酸轉(zhuǎn)運(yùn)蛋白的表達(dá),增強(qiáng)糖酵解與谷氨酰胺代謝水平[37-38]。在腫瘤微環(huán)境中,葡萄糖的匱乏抑制TCR 依賴性Ca2+和NFAT 信號的激活,使得CD8+T 細(xì)胞無法正常分化,從而導(dǎo)致抗腫瘤功能障礙[39]。而且,糖酵解的關(guān)鍵酶之一烯醇化酶-1(enolase-1,ENO-1)可調(diào)節(jié)FOXP3外顯子2 剪接變體的表達(dá),誘導(dǎo)Tregs 分化與功能的發(fā)揮[40]。此外,乳酸是一個調(diào)節(jié)T細(xì)胞增殖、功能發(fā)揮等生物學(xué)行為的重要因素。乳酸通過阻止C-X-C 趨化因子受體3(C-X-C motif chemokine receptor 3,CXCR3)與其配體結(jié)合,抑制Th 細(xì)胞的功能,降低抗腫瘤免疫活性[41]。單羧酸轉(zhuǎn)運(yùn)體(monocarboxylate transporter,MCT)是乳酸的轉(zhuǎn)運(yùn)體,Tregs 可通過MCT1 攝取腫瘤微環(huán)境中的乳酸,將乳酸轉(zhuǎn)化為蘋果酸與檸檬酸后轉(zhuǎn)移至線粒體中參與三羧酸循環(huán)(tricarboxylic acid cycle,TCA),增強(qiáng)程序性死亡受體1(programmed cell death protein 1,PD-1)表達(dá)與Treg的免疫抑制功能,降低免疫治療效果[42-43]。
3.1.2 脂質(zhì)代謝 脂質(zhì)是一種不可或缺的營養(yǎng)物質(zhì)。調(diào)節(jié)細(xì)胞脂質(zhì)合成與膽固醇攝取的關(guān)鍵蛋白固醇調(diào)節(jié)元件結(jié)合蛋白1 (sterol regulatory element-binding protein,SREBP1)和SREBP2 在T 細(xì)胞的細(xì)胞膜合成過程中發(fā)揮重要作用。缺失SREBP1 與SREBP2 顯著抑制CD8+T 細(xì)胞的增殖、代謝與抗腫瘤活性[44]。此外, 乙酰輔酶A 乙酰轉(zhuǎn)移酶1 (acetyl-CoA acetyltransferase 1,ACAT1)是一種關(guān)鍵的膽固醇酯化酶,抑制ACAT1 的表達(dá)可降低CD8+T 細(xì)胞膽固醇酯化,增強(qiáng)TCR 的聚集和信號轉(zhuǎn)導(dǎo),提高T 細(xì)胞的增殖與抗腫瘤活性[45]。脂肪酸代謝可影響T 細(xì)胞的發(fā)育、分化和功能的發(fā)揮。CD36 是Tregs 中維持線粒體呼吸的一個關(guān)鍵因素。Tregs 高表達(dá)CD36,增強(qiáng)長鏈脂肪酸的攝取能力,維持PPAR-β 信號依賴性線粒體的適應(yīng)性[46]。mTORC1 信號通路可增強(qiáng)Tregs 中的脂質(zhì)和膽固醇代謝,提高Tregs 對細(xì)胞外游離脂肪酸的攝取, 上調(diào)誘導(dǎo)共刺激分子(inducible co-stimulator,ICOS)等細(xì)胞增殖和免疫抑制相關(guān)基因的表達(dá),發(fā)揮免疫抑制功能[47]。腫瘤微環(huán)境中, 腫瘤細(xì)胞高表達(dá)的前列腺素E2(prostaglandin E2,PGE2)可增加Tregs 特異性轉(zhuǎn)錄因子FOXP3 的表達(dá),促進(jìn)初始T 細(xì)胞分化成Tregs,增強(qiáng)腫瘤免疫抑制作用[48]。
3.1.3 氨基酸代謝 氨基酸是細(xì)胞維持高代謝水平所必需的營養(yǎng)物質(zhì)之一。T 細(xì)胞依賴氨基酸代謝途徑合成自身所需蛋白質(zhì)與核苷酸。色氨酸是一種必需氨基酸,其在腫瘤微環(huán)境的濃度決定了T細(xì)胞的反應(yīng)強(qiáng)度和抗腫瘤效應(yīng)的有效性。腫瘤細(xì)胞高表達(dá)的IDO可降解色氨酸為犬尿氨酸,導(dǎo)致腫瘤微環(huán)境中色氨酸缺乏。一般性調(diào)控阻遏蛋白激酶2 (general control nonderepressible 2,GCN2)是一種應(yīng)激反應(yīng)激酶,參與調(diào)控多種生物學(xué)過程。色氨酸的缺失可激活CD8+T 細(xì)胞中的GCN2,下調(diào)CD3ζ 鏈,導(dǎo)致CD8+T細(xì)胞周期停滯和細(xì)胞毒效應(yīng)受損[49]。L-精氨酸是T細(xì)胞生命周期中所必需的一種氨基酸,不僅能誘導(dǎo)T細(xì)胞由糖酵解向OXPHOS 轉(zhuǎn)變,還能進(jìn)一步促進(jìn)T細(xì)胞存活與記憶T細(xì)胞產(chǎn)生[50]。甲硫氨酸也是調(diào)節(jié)T細(xì)胞功能的一種重要氨基酸。腫瘤細(xì)胞通過上調(diào)甲硫氨酸轉(zhuǎn)運(yùn)蛋白的表達(dá)水平,增加甲硫氨酸的攝取能力,降低腫瘤微環(huán)境中的甲硫氨酸水平,減少甲基供體,從而影響CD8+T細(xì)胞組蛋白H3亞基第79位賴氨酸(H3K79)的甲基化程度,造成CD8+T 細(xì)胞的抗腫瘤功能障礙[51]。
3.1.4 線粒體調(diào)控 線粒體對T 細(xì)胞的調(diào)控至關(guān)重要。TCR 可增強(qiáng)線粒體的生物活性和代謝重構(gòu),這個過程是滿足T 細(xì)胞活化和代謝要求所必需的[52]。腫瘤微環(huán)境的缺氧環(huán)境可通過下調(diào)MYC表達(dá)水平來促進(jìn)線粒體結(jié)構(gòu)損傷并減少ATP 的產(chǎn)生,從而誘導(dǎo)T細(xì)胞耗竭(T cell exhaustion,TExh),使CD8+T 細(xì)胞發(fā)生抗腫瘤功能障礙[53]。另外,在CD8+T 細(xì)胞由效應(yīng)性T細(xì)胞向記憶性T細(xì)胞轉(zhuǎn)化過程中,SENP1-Sirt3軸的激活可顯著降低CD8+T 細(xì)胞線粒體中的乙酰化水平,增加線粒體融合和OXPHOS 代謝水平,增強(qiáng)記憶性T 細(xì)胞的形成和與存活,促進(jìn)抗腫瘤免疫活性[54]。過氧化物激活受體1α(PPAR γ coactivator-1α,PGC1α)是線粒體生物發(fā)生的關(guān)鍵調(diào)控因子。在免疫抑制微環(huán)境中,CD8+T 細(xì)胞內(nèi)線粒體處于功能抑制狀態(tài),而增強(qiáng)CD8+T 細(xì)胞中PGC1α 的表達(dá),可促進(jìn)CD8+T 細(xì)胞中線粒體的生物合成,挽救線粒體功能,逆轉(zhuǎn)線粒體功能抑制狀態(tài),增強(qiáng)抗腫瘤效應(yīng)[55]。
近些年來,腫瘤微環(huán)境中T細(xì)胞的腫瘤免疫作用已被廣泛報道,但有關(guān)B 細(xì)胞的研究則較少。B 細(xì)胞在B 細(xì)胞受體(B cell receptor,BCR)的激活下活化為漿細(xì)胞,浸潤于腫瘤內(nèi)部,產(chǎn)生的大量細(xì)胞因子與抗體可通過驅(qū)動抗體依賴性細(xì)胞毒性(antibodydependent cell-mediated cytotoxicity,ADCC)和吞噬作用以及補(bǔ)體激活來發(fā)揮抗腫瘤免疫作用[56]。此外,B 細(xì)胞可促進(jìn)腫瘤相關(guān)三級淋巴結(jié)構(gòu)(tertitary lymphoid structures,TLS)的形成。TLS 支持腫瘤特異性B細(xì)胞的進(jìn)一步成熟和亞型轉(zhuǎn)換,促進(jìn)腫瘤特異性T細(xì)胞反應(yīng)的進(jìn)展[57]。
與T細(xì)胞類似,經(jīng)BCR刺激后,幼稚B細(xì)胞的葡萄糖攝取增加,而且位于生發(fā)中心的B細(xì)胞糖酵解活性明顯增強(qiáng)[58]。OXPHOS對B細(xì)胞的活化至關(guān)重要。雖然已有研究[59]表明活化的B 細(xì)胞會增加葡萄糖的攝取,以滿足自身需要,但在缺乏葡萄糖條件下,B細(xì)胞的生長與功能未受影響。而使用寡霉素抑制OXPHOS 代謝途徑將明顯抑制B 細(xì)胞的生長和分化。截至目前,對調(diào)控B細(xì)胞代謝的具體分子機(jī)制仍不清楚,還需進(jìn)一步的研究。
在腫瘤免疫微環(huán)境影響下,免疫細(xì)胞自發(fā)產(chǎn)生耐受表型相關(guān)的代謝適應(yīng),如T細(xì)胞在腫瘤微環(huán)境中主要依賴有氧糖酵解和谷氨酰胺分解代謝來供能。抑制代謝適應(yīng)可提高免疫細(xì)胞的抗腫瘤效應(yīng),因此,基于腫瘤微環(huán)境的代謝特征,以糖酵解、氨基酸與脂質(zhì)代謝途徑為靶向的治療可恢復(fù)抗腫瘤免疫細(xì)胞的功能,增強(qiáng)抗腫瘤效應(yīng)。
腫瘤細(xì)胞在腫瘤微環(huán)境中通過糖酵解不斷積累乳酸,從而激活免疫細(xì)胞和內(nèi)皮細(xì)胞上的G蛋白偶聯(lián)受體81(G-protein-coupled receptor 81,GPR81),促進(jìn)血管生成和腫瘤細(xì)胞的免疫逃逸[60]。MCT1與MCT4抑制劑可增加細(xì)胞內(nèi)乳酸水平,減少糖酵解,促進(jìn)腫瘤細(xì)胞的死亡,并可增加T 細(xì)胞IL-2 和IFN-γ 分泌,表明MCT 抑制劑可降低腫瘤細(xì)胞增殖并促進(jìn)T 細(xì)胞活化[61]。目前,MCT的抑制劑AZD3965正在進(jìn)行Ⅰ期臨床試驗(yàn)(NCT01791595),但在試驗(yàn)中發(fā)現(xiàn),晚期腫瘤患者口服后,尿乳酸水平升高,并且出現(xiàn)劑量依賴性的可逆的視網(wǎng)膜功能障礙[62]。未來,AZD3965的臨床療效與安全性還需進(jìn)一步的驗(yàn)證。
氨基酸是細(xì)胞代謝過程中不可或缺的部分,其中谷氨酰胺可作為靶點(diǎn)調(diào)節(jié)腫瘤進(jìn)展和免疫反應(yīng)。在乳腺癌模型中,應(yīng)用谷氨酰胺抑制劑JHU-083可降低腫瘤微環(huán)境中CSF 水平,減少M(fèi)DSCs 的募集,并促進(jìn)其向M1 型巨噬細(xì)胞轉(zhuǎn)化,減緩腫瘤生長,抑制腫瘤和MDSCs 的IDO 表達(dá),導(dǎo)致犬尿氨酸水平下降[63]。在小鼠結(jié)直腸癌模型中,JHU-083 通過抑制谷氨酰胺代謝,提高CD8+T 細(xì)胞的活性,增強(qiáng)抗腫瘤免疫效應(yīng),誘導(dǎo)腫瘤消退,提高小鼠存活率[64]。目前,靶向谷氨酰胺代謝的DRP-104與靶向程序性死亡受體配體1(programmed death ligand 1,PD-L1)的阿特珠單抗聯(lián)合用藥現(xiàn)在已進(jìn)入臨床試驗(yàn)(NCT04471415),用于晚期非小細(xì)胞型肺癌與頭頸部鱗狀細(xì)胞癌患者的治療。
腫瘤細(xì)胞依賴于脂肪酸從頭合成來供給能量,因此,脂肪酸合酶(fatty acid synthase,F(xiàn)ASN)可視為潛在的治療靶點(diǎn)。 再刺激誘導(dǎo)的細(xì)胞死亡(restimulation-induced cell death,RICD)是TCR 重新激活后在效應(yīng)T 細(xì)胞中觸發(fā)的凋亡途徑。在抑制FASN 的條件下,腫瘤微環(huán)境中的T 細(xì)胞可避免因反復(fù)受到TCR 刺激而發(fā)生RICD,從而增強(qiáng)T 細(xì)胞的抗腫瘤作用[65]。TVB-2640是迄今第一個進(jìn)入臨床研究的FASN 抑制劑,正處于多項(xiàng)實(shí)體瘤的臨床試驗(yàn)中,如非小細(xì)胞型肺癌(NCT03808558)、結(jié)直腸癌(NCT02980029) 等 。 目 前 的 臨 床 研 究(NCT02223247)[66]表明,TVB-2640 與紫杉醇聯(lián)合療法在多種腫瘤類型如KRAS突變的非小細(xì)胞型肺癌、卵巢癌和乳腺癌中均有療效,部分患者可獲得完全緩解或部分緩解。
對免疫細(xì)胞代謝途徑的深入研究有助于更好地理解腫瘤免疫微環(huán)境內(nèi)的代謝。表1 總結(jié)了腫瘤免疫微環(huán)境中主要免疫細(xì)胞的代謝途徑,但是針對單一代謝酶或轉(zhuǎn)運(yùn)體無法從整體水平來靶向腫瘤免疫治療。靶向免疫細(xì)胞代謝途徑的治療、放射治療、化學(xué)治療以及免疫治療之間更深入的聯(lián)合運(yùn)用,將會取得更好的臨床效果。
表1 腫瘤免疫微環(huán)境中主要的免疫細(xì)胞及其主要的代謝途徑Tab 1 Main immune cells and their main metabolic pathways in the tumor immune microenvironment
腫瘤微環(huán)境作為腫瘤細(xì)胞賴以生存的基礎(chǔ),為腫瘤細(xì)胞的增殖、轉(zhuǎn)移、侵襲及其他生命活動提供物質(zhì)基礎(chǔ)。腫瘤微環(huán)境的免疫狀態(tài)是影響腫瘤進(jìn)展的重要因素。腫瘤細(xì)胞可以通過營養(yǎng)競爭、分泌細(xì)胞因子及釋放代謝產(chǎn)物等途徑塑造免疫抑制的微環(huán)境,調(diào)控免疫細(xì)胞的代謝,進(jìn)一步影響免疫細(xì)胞發(fā)育、分化與功能發(fā)揮,使其往促腫瘤型轉(zhuǎn)化,極大限制了抗腫瘤免疫活性,這個過程有助于促進(jìn)腫瘤細(xì)胞本身的免疫逃逸。因此,研究腫瘤微環(huán)境下免疫細(xì)胞通過特定代謝途徑獲取足夠的能量以維持其抗腫瘤活性的機(jī)制就顯得尤為重要。
目前,基于腫瘤微環(huán)境代謝的研究,可以聚焦免疫抑制的腫瘤微環(huán)境中免疫細(xì)胞的代謝需求,靶向效應(yīng)免疫細(xì)胞代謝,選擇性調(diào)節(jié)免疫細(xì)胞的極化與效應(yīng)功能,將免疫應(yīng)答從促腫瘤型轉(zhuǎn)化為抑腫瘤型;同時與抗腫瘤及針對多靶點(diǎn)的免疫治療藥物聯(lián)合應(yīng)用,可避免適應(yīng)性耐藥,并顯著改善腫瘤的預(yù)后和生存。未來,對于腫瘤及其內(nèi)部免疫微環(huán)境層面的適應(yīng)性代謝改變的進(jìn)一步研究和認(rèn)識可能會發(fā)現(xiàn)新的高特異性的靶點(diǎn),而且,揭示腫瘤微環(huán)境細(xì)胞間相互作用與驅(qū)動代謝變化的分子機(jī)制,實(shí)現(xiàn)相關(guān)研究的臨床轉(zhuǎn)化,對增強(qiáng)腫瘤免疫治療效果具有重要意義。
利益沖突聲明/Conflict of Interests
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)/Authors'Contributions
林家俞、秦潔潔參與了論文的寫作和修改;蔣玲曦是項(xiàng)目的構(gòu)思者及負(fù)責(zé)人,指導(dǎo)論文寫作。所有作者均閱讀并同意了最終稿件的提交。
The manuscript was drafted and revised by LIN Jiayu and QIN Jiejie;JIANG Lingxi was the conceptualizer and leader of the project and guided the writing of the paper. All the authors have read the last version of paper and consented for submission.
·Received:2022-04-27
·Accepted:2022-07-27
·Published online:2022-08-28
參·考·文·獻(xiàn)
[1] DEBERARDINIS R J, LUM J J, HATZIVASSILIOU G, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation[J]. Cell Metab,2008,7(1):11-20.
[2] GUERRA L, BONETTI L, BRENNER D. Metabolic modulation of immunity: a new concept in cancer immunotherapy[J]. Cell Rep,2020,32(1):107848.
[3] DOMBLIDES C,LARTIGUE L,FAUSTIN B. Control of the antitumor immune response by cancer metabolism[J]. Cells,2019,8(2):104.
[4] BISWAS S K. Metabolic reprogramming of immune cells in cancer progression[J]. Immunity,2015,43(3):435-449.
[5] FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487):eaaw5473.
[6] LEONE R D,POWELL J D. Metabolism of immune cells in cancer[J].Nat Rev Cancer,2020,20(9):516-531.
[7] WARD P S, THOMPSON C B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate[J]. Cancer Cell,2012,21(3):297-308.
[8] CHANG C H, QIU J, O'SULLIVAN D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J].Cell,2015,162(6):1229-1241.
[9] BISWAS S K, ALLAVENA P, MANTOVANI A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions[J]. Semin Immunopathol,2013,35(5):585-600.
[10] MANTOVANI A, ALLAVENA P. The interaction of anticancer therapies with tumor-associated macrophages[J]. J Exp Med, 2015,212(4):435-445.
[11] MANTOVANI A, MARCHESI F, MALESCI A, et al. Tumourassociated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol,2017,14(7):399-416.
[12] DAI X M,LU L S,DENG S K,et al. USP7 targeting modulates antitumor immune response by reprogramming tumor-associated macrophages in lung cancer[J]. Theranostics, 2020, 10(20): 9332-9347.
[13] QING J N, ZHANG Z Z, NOVáK P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin(Shanghai),2020,52(9):917-926.
[14] MOON J S, HISATA S, PARK M A, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation[J].Cell Rep,2015,12(1):102-115.
[15] HASCHEMI A, KOSMA P, GILLE L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism[J]. Cell Metab,2012,15(6):813-826.
[16] VATS D, MUKUNDAN L, ODEGAARD J I, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation[J]. Cell Metab,2006,4(1):13-24.
[17] SU P, WANG Q, BI E G, et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages[J]. Cancer Res, 2020, 80(7): 1438-1450.
[18] BANTUG G R, GALLUZZI L, KROEMER G, et al. The spectrum of T cell metabolism in health and disease[J]. Nat Rev Immunol,2018,18(1):19-34.
[19] RUFFELL B, COUSSENS L M. Macrophages and therapeutic resistance in cancer[J]. Cancer Cell,2015,27(4):462-472.
[20] RODRíGUEZ-ESPINOSA O, ROJAS-ESPINOSA O, MORENOALTAMIRANO M M B,et al. Metabolic requirements for neutrophil extracellular traps formation[J]. Immunology,2015,145(2):213-224.
[21] ANCEY P B, CONTAT C, BOIVIN G, et al. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy[J]. Cancer Res,2021,81(9):2345-2357.
[22] RICE C M, DAVIES L C, SUBLESKI J J, et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression[J]. Nat Commun,2018,9(1):5099.
[23] ISAACSON B, MANDELBOIM O. Sweet killers: NK cells need glycolysis to kill tumors[J]. Cell Metab,2018,28(2):183-184.
[24] LOFTUS R M, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice[J]. Nat Commun,2018,9(1):2341.
[25] HARMON C, ROBINSON M W, HAND F, et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liverresident NK cells in colorectal liver metastasis[J]. Cancer Immunol Res,2019,7(2):335-346.
[26] MICHELET X, DYCK L, HOGAN A, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses[J]. Nat Immunol,2018,19(12):1330-1340.
[27] KRAWCZYK C M, HOLOWKA T, SUN J, et al. Toll-like receptorinduced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood,2010,115(23):4742-4749.
[28] EVERTS B, AMIEL E, HUANG S C C, et al. TLR-driven early glycolytic reprogrammingviathe kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation[J]. Nat Immunol,2014,15(4):323-332.
[29] HERBER D L, CAO W, NEFEDOVA Y, et al. Lipid accumulation and dendritic cell dysfunction in cancer[J]. Nat Med, 2010, 16(8):880-886.
[30] CUBILLOS-RUIZ J R, SILBERMAN P C, RUTKOWSKI M R, et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis[J]. Cell, 2015, 161(7): 1527-1538.
[31] HOSSAIN F, AL-KHAMI A A, WYCZECHOWSKA D, et al.Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies[J]. Cancer Immunol Res,2015,3(11):1236-1247.
[32] DIAS A S, ALMEIDA C R, HELGUERO L A, et al. Metabolic crosstalk in the breast cancer microenvironment[J]. Eur J Cancer,2019,121:154-171.
[33] AL-KHAMI A A, ZHENG L Q, DEL VALLE L, et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells[J].Oncoimmunology,2017,6(10):e1344804.
[34] MICHALEK R D, GERRIETS V A, JACOBS S R, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+T cell subsets[J]. J Immunol,2011,186(6):3299-3303.
[35] SHARMA P, HU-LIESKOVAN S, WARGO J A, et al. Primary,adaptive, and acquired resistance to cancer immunotherapy[J]. Cell,2017,168(4):707-723.
[36] GELTINK R, KYLE R L, PEARCE E L. Unraveling the complex interplay between T cell metabolism and function[J]. Annu Rev Immunol,2018,36:461-488.
[37] WAICKMAN A T, POWELL J D. mTOR, metabolism, and the regulation of T-cell differentiation and function[J]. Immunol Rev,2012,249(1):43-58.
[38] FRAUWIRTH K A, RILEY J L, HARRIS M H, et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity, 2002,16(6):769-777.
[39] HO P C, BIHUNIAK J D, MACINTYRE A N, et al.Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell,2015,162(6):1217-1228.
[40] DE ROSA V, GALGANI M, PORCELLINI A, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression ofFOXP3exon 2 splicing variants[J]. Nat Immunol,2015,16(11):1174-1184.
[41] HAAS R, SMITH J, ROCHER-ROS V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions[J]. PLoS Biol, 2015, 13(7):e1002202.
[42] KUMAGAI S, KOYAMA S, ITAHASHI K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell,2022,40(2):201-218.e9.
[43] WATSON M J, VIGNALI P D A, MULLETT S J, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J].Nature,2021,591(7851):645-651.
[44] KIDANI Y, ELSAESSER H, HOCK M B, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J]. Nat Immunol,2013,14(5):489-499.
[45] YANG W, BAI Y B, XIONG Y, et al. Potentiating the antitumour response of CD8+T cells by modulating cholesterol metabolism[J].Nature,2016,531(7596):651-655.
[46] WANG H P, FRANCO F, TSUI Y C, et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors[J]. Nat Immunol,2020,21(3):298-308.
[47] ZENG H,YANG K,CLOER C,et al. mTORC1 couples immune signals and metabolic programming to establish Treg cell function[J]. Nature,2013,499(7459):485-490.
[48] TAKE Y, KOIZUMI S, NAGAHISA A. Prostaglandin E receptor 4 antagonist in cancer immunotherapy: mechanisms of action[J]. Front Immunol,2020,11:324.
[49] MUNN D H, SHARMA M D, BABAN B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase[J]. Immunity,2005,22(5):633-642.
[50] GEIGER R, RIECKMANN J C, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity[J]. Cell,2016,167(3):829-842.e13.
[51] BIAN YJ, LI W, KREMER D M, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation[J]. Nature,2020,585(7824):277-282.
[52] MOLLER S H, HSUEH P C, YU Y R, et al. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging [J]. Cell Metab,2022,34(3):378-395.
[53] LIU Y N, YANG J F, HUANG D J, et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways[J]. Front Immunol,2020,11:1906.
[54] HE J L, SHANGGUAN X, ZHOU W, et al. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development[J]. Nat Commun,2021,12(1):4371.
[55] SCHARPING N E, MENK A V, MORECI R S, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J].Immunity,2016,45(2):374-388.
[56] KURAI J, CHIKUMI H, HASHIMOTO K, et al. Antibodydependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines[J]. Clin Cancer Res,2007,13(5):1552-1561.
[57] PITZALIS C, JONES G W, BOMBARDIERI M, et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity[J].Nat Rev Immunol,2014,14(7):447-462.
[58] CASSIM S, POUYSSEGUR J. Tumor microenvironment: a metabolic player that shapes the immune response[J]. Int J Mol Sci,2019,21(1):157.
[59] WATERS L R, AHSAN F M, WOLF D M, et al. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling[J]. iScience,2018,5:99-109.
[60] BROWN T P, GANAPATHY V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape,nutrition, and Warburg phenomenon[J]. Pharmacol Ther, 2020, 206:107451.
[61] KOUIDHI S, BEN AYED F, BENAMMAR ELGAAIED A.Targeting tumor metabolism: a new challenge to improve immunotherapy[J]. Front Immunol,2018,9:353.
[62] HALFORD S E R,JONES P,WEDGE S,et al. A first-in-human firstin-class (FIC) trial of the monocarboxylate transporter 1 (MCT1)inhibitor AZD3965 in patients with advanced solid tumours[J]. J Clin Oncol,2017,35(15_suppl):2516.
[63] OH M H,SUN I H,ZHAO L,et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells[J]. J Clin Invest,2020,130(7):3865-3884.
[64] LEONE R D, ZHAO L, ENGLERT J M, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science,2019,366(6468):1013-1021.
[65] VOSS K, LUTHERS C R, POHIDA K, et al. Fatty acid synthase contributes to restimulation-induced cell death of human CD4 T cells[J].Front Mol Biosci,2019,6:106.
[66] FALCHOOK G, INFANTE J,ARKENAU H T, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors[J]. EClinicalMedicine, 2021, 34:100797.