阿婷曦,邵春益,傅 瑤
上海交通大學醫(yī)學院附屬第九人民醫(yī)院眼科,上海市眼眶病眼腫瘤重點實驗室,上海 200011
調(diào)節(jié)性T 細胞(regulatory T cell,Treg 細胞)是一類具有免疫調(diào)節(jié)作用的T細胞,在抑制過度炎癥反應、維持免疫平衡和誘導免疫耐受等方面發(fā)揮重要作用。GERSHON 和KONDO[1]最早在1970 年提出抑制性T 細胞這一概念,隨后SAKAGUCHI 等[2]首次發(fā)現(xiàn)CD4+CD25+的T細胞具有抑制自身免疫反應的作用,將其命名為Treg 細胞,自此Treg 細胞成為免疫學領(lǐng)域的一個研究重點。
在解剖學上,眼表由角膜、結(jié)膜、眼瞼及其上面的瞼板腺、淚腺組成,長期暴露于各種環(huán)境刺激物、病原體和過敏原。為此,眼表具有成熟的免疫系統(tǒng),包括先天性和適應性免疫,以提供保護作用[3]。眼表的黏膜免疫反應與其他部位的黏膜類似,可以簡述為以下步驟:①抗原與黏膜上皮的相互作用。②啟動先天性免疫系統(tǒng)。③眼表的抗原提呈細胞(antigen presenting cell,APC)捕獲并處理抗原,再將其提呈給T 細胞。④效應T 細胞和Treg 細胞的分化、增殖、遷移和激活。⑤體液免疫反應。⑥黏膜先天性免疫、適應性免疫和神經(jīng)系統(tǒng)之間廣泛的相互作用[4]。然而為了使組織器官能發(fā)揮正常的功能,黏膜需維持無炎癥的生理狀態(tài),這種無害抗原通過黏膜表面?zhèn)鬟f后引起的局部和全身免疫無應答的狀態(tài)稱為黏膜免疫耐受,由Treg 細胞參與調(diào)控[3]。除黏膜免疫系統(tǒng)外,前房相關(guān)免疫偏倚(anterior chamber associated immune deviation,ACAID)也參與眼部免疫耐受的維持,Treg 細胞在其中發(fā)揮重要作用[5]。免疫調(diào)節(jié)功能障礙被認為是許多眼表疾病的核心原因,因此本研究擬綜述Treg 細胞的生物學特性及其在多種眼表疾病中作用的相關(guān)研究進展,并對靶向Treg 細胞的治療在眼表疾病中的應用進行展望。
Treg 細胞占外周血中CD4+T 細胞的5%~10%,特征性表達細胞膜標志物CD25 和細胞核轉(zhuǎn)錄因子叉頭狀蛋白P3(forkhead box P3,F(xiàn)OXP3)[6]。FOXP3的表達對Treg 細胞的發(fā)育和功能的維持起著至關(guān)重要的作用[7]。在某些條件如極端的炎癥情況下,Treg細胞會變得不穩(wěn)定,失去FOXP3 表達和免疫抑制功能,轉(zhuǎn)化為效應T細胞,這種現(xiàn)象被稱為Treg細胞的可塑性(plasticity)[8]。另有研究[9]發(fā)現(xiàn)CD127 的表達與FOXP3的表達及Treg細胞的抑制功能呈負相關(guān),因此也將CD4+CD25+CD127lowT 細胞定義為純化的Treg細胞。根據(jù)其來源不同Treg細胞被分為3類:胸腺衍生的Treg 細胞(tTreg 細胞,也稱天然Treg 細胞)、特定環(huán)境抗原刺激誘導外周的初始CD4+T 細胞分化成的Treg 細胞(pTreg 細胞)以及體外利用轉(zhuǎn)化生長因子-β(transforming growth factor β,TGF-β)等誘導初始CD4+T 細胞分化產(chǎn)生的Treg 細胞(iTreg細胞)[10]。目前尚無明確可區(qū)分人tTreg 細胞和pTreg細胞的表面標志物,因此目前常用于實驗和臨床研究的從人外周血中分離出來的Treg 細胞很可能同時含有tTreg細胞和pTreg細胞[11]。
Treg 細胞通過多種方式發(fā)揮免疫抑制作用,包括:①分泌產(chǎn)生抑制性細胞因子TGF-β、白細胞介素-35(interleukin-35,IL-35)和IL-10,參與調(diào)節(jié)多種譜系的T 細胞分化和功能,發(fā)揮免疫抑制作用[12-13]。②高表達CD25[又稱白介素-2 受體α(IL-2Rα)],競爭性結(jié)合T 細胞增殖所必需的細胞因子IL-2,阻止T 細胞的繼續(xù)增殖,導致已有細胞的代謝中斷和細胞死亡[14]。③表達抑制性共刺激受體細胞毒性T 淋巴細胞相關(guān)抗原4(cytotoxic T-lymphocyteassociated antigen-4,CTLA-4),與效應T細胞競爭結(jié)合APC 表面共刺激分子CD80 和CD86,控制效應T細胞的數(shù)量和影響免疫應答[15];同時促進APC 產(chǎn)生吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO),其代謝物可以發(fā)揮免疫抑制作用[16]。④表達淋巴細胞活化基因3(LAG3,又稱CD223),通過與APC 表達的Ⅱ類主要組織相容性復合體(major histocompatibility complex class Ⅱ,MHC-Ⅱ)結(jié)合,誘導免疫耐受[17]。⑤高表達環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP),調(diào)節(jié)效應T細胞和APC 的功能活性[18]。⑥分泌顆粒酶B(granzyme B)和穿孔素-1(perforin-1)誘導自然殺傷細胞(natural killer cell,NK細胞)和細胞毒性T細胞的溶解[19]。
此外,最近的研究結(jié)果[20]表明,Treg 細胞也存在于健康組織,如骨骼肌、內(nèi)臟脂肪組織和皮膚的毛囊干細胞龕中,表達不同的歸巢和遷移標志物,稱為組織調(diào)節(jié)性T 細胞(tissue regulatory T cell),且具有抑制炎癥以外的功能。
干眼癥是眼科常見疾病,淚膜和眼表協(xié)會(Tear Film and Ocularsurface Society,TFOS)干眼癥工作小組(Dry Eye Workshop,DEWS)發(fā)布的專家共識(TFOS DEWS Ⅱ)將其定義為以淚膜穩(wěn)態(tài)喪失并伴有淚膜不穩(wěn)定和高滲狀態(tài)、眼表炎癥和損傷以及神經(jīng)感覺異常等眼部癥狀的多因素眼表疾?。?1]。其核心驅(qū)動因素是干燥壓力誘發(fā)的炎癥惡性循環(huán),與CD4+T細胞的活化和浸潤有關(guān)[22-23]。在膽堿能受體拮抗劑誘發(fā)的小鼠干眼模型和環(huán)境誘導的小鼠干眼模型中均可以觀察到引流區(qū)淋巴結(jié)中Treg細胞的抑制能力受損、輔助性T 細胞17(helper T cell 17,Th17)/Treg 穩(wěn)態(tài)失衡,體內(nèi)阻斷IL-17可以恢復Treg細胞的功能,并顯著降低干眼的嚴重程度、延緩疾病進展[24-25]。
通過靶向Treg 細胞治療干眼癥已在動物模型上取得較好效果。SIEMASKO等[26]發(fā)現(xiàn)過繼體外擴增產(chǎn)生的FOXP3+Treg 細胞至干眼模型小鼠可以有效減少淚液中炎癥因子的含量,抑制免疫介導的炎癥反應。RATAY 等[27]通過增加淚腺中趨化因子CCL22的局部釋放,誘導內(nèi)源性Treg 細胞的募集,與未經(jīng)治療組相比,引流區(qū)效應性CD4+T 細胞的數(shù)量和淚腺中CD4+IFN-γ+(γ 干擾素)Th1 細胞的浸潤減少,淚液分泌增加,杯狀細胞增多,上皮病變減少,說明局部增加功能正常的Treg 細胞數(shù)量也能改變免疫失衡,進而有效減輕實驗性干眼模型中的炎癥反應,從而緩解干眼的相關(guān)癥狀。此外,靜脈注射色素上皮衍生 因 子(pigment epithelium-derived factor,PEDF)可以通過增加干眼小鼠的Treg 細胞數(shù)量和增強免疫抑制功能,減輕干眼的嚴重程度[28]。間充質(zhì)干細胞及其外泌體療法可以抑制Th17 細胞、誘導Treg 細胞的增殖,減輕干燥綜合征的嚴重程度[29-30]。由此可見,通過細胞療法或者藥物干預等手段增加Treg 細胞的循環(huán)或局部數(shù)量、增強其抑制功能,可能實現(xiàn)對干眼癥的治療和改善。
眼表的過敏性疾病包括季節(jié)性過敏性結(jié)膜炎、常年性過敏性結(jié)膜炎、春季角膜結(jié)膜炎和特應性角膜結(jié)膜炎等一系列疾病,與抗原特異性IgE 介導的Ⅰ型超敏反應和抗原特異性T細胞介導的Ⅳ型超敏反應密切相關(guān)。研究[31-32]發(fā)現(xiàn)過敏性結(jié)膜炎患者中存在免疫失調(diào),與健康對照相比,常年性過敏性結(jié)膜炎人群外周血單核細胞中CD4+CD25+FOXP3+Treg 細胞的數(shù)量減少,CD4+CD25+FOXP3-T 細胞的數(shù)量增加,提示Treg 細胞受損可能參與過敏性結(jié)膜炎的發(fā)生發(fā)展。SUMI等[33]發(fā)現(xiàn)胸腺切除術(shù)和PC61(抗CD25 抗體)消耗小鼠體內(nèi)的CD25+T 細胞導致豚草(ragweed,RW)致敏的小鼠結(jié)膜嗜酸性粒細胞浸潤增多,增加實驗性過敏性結(jié)膜炎 (experimental allergic conjunctivitis,EC)的嚴重程度,而過繼正常小鼠的CD4+CD25+T 細胞至致敏小鼠可以有效抑制EC 的發(fā)展。另一項研究[34]發(fā)現(xiàn),具有免疫調(diào)節(jié)作用的合成糖脂α-半乳糖神經(jīng)酰胺(α-galactosylceramide,α-GalCer),可以通過增加CD4+CD25+FOXP3+Treg細胞的數(shù)量抑制EC 的發(fā)展,提示Treg 細胞有希望成為過敏性結(jié)膜炎的治療靶點。
發(fā)生感染時,Treg細胞的主要功能是控制過度的炎癥反應以防止組織損害、減少對宿主的傷害,但在某些情況下Treg 細胞的免疫抑制能力會減弱機體的免疫監(jiān)測能力,促進病毒的潛伏[35]。1型單純皰疹病毒(HSV-1)復發(fā)引起的角膜基質(zhì)炎為先天性免疫與適應性免疫介導的慢性炎癥反應,其中效應性CD4+T細胞為主要驅(qū)動因素,而Treg細胞在其中也發(fā)揮著重要作用[36]。通過PC61 耗竭小鼠體內(nèi)的Treg 細胞后,HSV-1誘導的角膜基質(zhì)炎的嚴重程度增加,而疾病早期過繼Treg 細胞可以抑制角膜的免疫炎癥[37-38]。BHELA 等[39]運用FOXP3 表達追蹤轉(zhuǎn)基因小鼠品系(FOXP3Cre-GFP:Rosa26lsl-Td-Tomato),觀察到病毒誘導的角膜炎癥狀態(tài)下角膜Treg 細胞可塑性的變化,發(fā)現(xiàn)HSV-1 感染眼部后,角膜中Treg 細胞是不穩(wěn)定的,可轉(zhuǎn)化為具有效應Th1 細胞表型的ex-Treg細胞,分泌IFN-γ,參與角膜基質(zhì)炎的發(fā)生。此外,過繼的體外誘導的正常功能iTreg 細胞在角膜炎癥的環(huán)境下也高度不穩(wěn)定,部分轉(zhuǎn)化為促進角膜基質(zhì)炎發(fā)生的Th1 表型的ex-Treg 細胞[39]。而在這種情況下,氮雜胞苷、視黃酸和維生素C 等藥物能夠維持FOXP3+Treg 細胞特異性去甲基化區(qū)(Treg-specific demethylated region,TSDR)的去甲基化,有助于促進Treg 細胞的穩(wěn)定性并改善其功能,更有效抑制角膜基質(zhì)炎的進展[39-40]。
Treg細胞療法在誘導同種異體移植物的免疫耐受或者預防移植物抗宿主病(graftversushost disease,GVHD)方面已經(jīng)得到廣泛的研究[41]。Treg 細胞通過抑制宿主對移植物的免疫反應,促進機體對移植物的耐受,在降低角膜移植排斥過程中方面發(fā)揮著重要作用,CD25+CD4+Treg 細胞的耗竭可加速角膜移植排斥的發(fā)生[42-43]。植床存在炎癥或新生血管的宿主更易對移植的角膜產(chǎn)生排斥反應,此類高危宿主的pTreg 細胞(而非tTreg 細胞)的數(shù)量和功能被抑制,表現(xiàn)為FOXP3 表達丟失,CTLA-4 表達降低,IL-10和TGF-β 的分泌減少,并且與pTreg 細胞向分泌IL-17 和IFN-γ 的ex-Treg 細胞的病理性轉(zhuǎn)換有關(guān)[44-46]。因此,通過不同途徑,靶向Treg 細胞來減少角膜移植的排斥反應具有很好的發(fā)展前景。小劑量的IL-2治療可以顯著增加CD4+CD25+FOXP3+Treg 細胞的數(shù)量,增強其免疫抑制功能,進而可提高角膜同種異體移植物的存活率[47]。在小鼠異體角膜移植模型中,結(jié)膜下注射Treg 細胞可以抑制角膜和淋巴組織中APC 的成熟,使角膜中IL-10、TGF-β 表達增加,CD45+炎癥細胞侵入減少,移植成功率增加[48]。
在機體受傷后,入侵的病原體、壞死的碎片、凝血反應和組織內(nèi)的免疫細胞引發(fā)炎癥反應,促進組織修復和瘢痕形成,然而過度的炎癥反應會導致病理性纖維化,損害組織功能。Treg細胞可以通過影響中性粒細胞、誘導巨噬細胞分化和抑制效應T細胞參與的免疫反應來間接調(diào)節(jié)再生[49]。近年來研究發(fā)現(xiàn),Treg細胞除經(jīng)典的免疫抑制功能外,還能通過其他途徑在組織修復和再生方面發(fā)揮作用,包括促進骨骼肌再生[50]、促進皮膚傷口愈合[51]、促進毛囊干細胞增殖和分化[52]、促進心肌細胞增殖[53]等。然而目前對Treg 細胞在眼表組織損傷修復中的作用研究較少。YAN 等[54]發(fā)現(xiàn)在小鼠角膜堿燒傷急性期的結(jié)膜下注射Treg 細胞不僅能抑制過度炎癥反應,改善眼表環(huán)境,還能促進小鼠堿燒傷后角膜上皮修復,恢復角膜透明,推測這些作用與局部增高的雙調(diào)蛋白(amphiregulin,AREG)有關(guān)。AREG 是上皮生長因子受體(epidermal growth factor receptor,EGFR)的配體之一,通常由上皮細胞、間充質(zhì)細胞和淋巴細胞等分泌。AREG 與細胞上的EGFR 結(jié)合,可促進這些細胞的增殖和遷移[55]。另一研究[56]發(fā)現(xiàn),Treg 細胞通過分泌IL-10 而非細胞間直接接觸的方式抑制IFN-γ 和腫瘤壞死因子α (tumor necrosis factor α,TNF-α) 誘導的角膜內(nèi)皮細胞的死亡。此外,ALTSHULER 等[57]發(fā)現(xiàn)角膜緣外緣存在CD4+CD25+FOXP3+Treg 細胞,在結(jié)膜下注射PC61.5(也是抗CD25 抗體)消耗Treg 細胞后,靜止角膜緣干細胞(quiescent limbal stem cell,qLSC)的標志物CD63 和糖蛋白激素α 亞基2(glycoprotein hormone subunit α 2,GPHA2)顯著下降,而細胞增殖水平上升,推測Treg 細胞的缺失或功能抑制導致了qLSC 靜止狀態(tài)的喪失,傷口愈合延遲。
FOXP3+Treg 細胞是眼表微環(huán)境的重要組成部分,它們積極地參與抑制針對自身、微生物和環(huán)境抗原的異?;蜻^度的免疫反應,在眼表的免疫調(diào)節(jié)中發(fā)揮著重要作用。基于Treg 細胞誘導免疫耐受的能力,擴增FOXP3+Treg 細胞或者增強其免疫抑制能力已成為治療自身免疫性疾病或者其他免疫相關(guān)疾病,以及防止器官移植排斥反應的重要方法[58]。最簡單的方式為過繼細胞療法,即從患者體內(nèi)分離純化循環(huán)Treg細胞,在體外擴增達到一定數(shù)量后回輸至患者體內(nèi)[58]。目前主流的Treg 細胞來源為患者的自體外周血或是臍帶血,通過流式細胞儀,或是帶標記的磁珠分選CD4+CD25+T細胞或抑制能力更強的CD4+CD25+CD127lowT 細 胞[59]。Treg 細 胞 過 繼 療 法 在 治 療GVHD[60]、1 型糖尿?。?1]、克羅恩病[62]等疾病的臨床試驗中已取得良好的結(jié)果。另有研究證明,小劑量的IL-2可安全有效增加丙型肝炎病毒相關(guān)性血管炎患者[63]和慢性GVHD患者[64]體內(nèi)Treg細胞的數(shù)量。
然而目前在眼表領(lǐng)域中Treg 細胞的研究還停留在基礎(chǔ)階段,缺乏基于眼表疾病的臨床試驗,基礎(chǔ)研究和臨床研究之間存在脫節(jié)。要將Treg 細胞運用于眼表的疾病還有許多科學問題需要解決。比如,SHAO 等[48]研究發(fā)現(xiàn)小鼠球結(jié)膜下注射Treg 細胞,6 h 后Treg 細胞即可遷移至角膜和同側(cè)淋巴結(jié),48 h達高峰值,但7 d 后僅檢測到很少量的細胞。Treg 細胞是否需要多次注射使其能在眼表長期發(fā)揮生物學效應仍待研究。此外,部分Treg 細胞的不穩(wěn)定性和可塑性也給其臨床應用帶來挑戰(zhàn)。
總而言之,隨著對Treg 細胞領(lǐng)域的深入研究,使用新技術(shù)來改變細胞的基因組,以增強Treg 細胞功能、穩(wěn)定性、持久性和抗原特異性,提高Treg 細胞過繼療法的治療潛力是未來的發(fā)展方向。更進一步地探究Treg 細胞在眼表疾病發(fā)生發(fā)展中的作用,針對性地開展靶向FOXP3+Treg 的治療方法在眼表疾病
領(lǐng)域具有廣闊的前景。
利益沖突聲明/Conflict of Interests
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻/Authors'Contributions
阿婷曦負責論文初稿的撰寫,邵春益參與了論文的審閱和修訂,傅瑤提出構(gòu)思以及參與論文的審閱和修訂。所有作者均閱讀并同意了最終稿件的提交。
A Tingxi drafted the original manuscript;SHAO Chunyi participated in the reviewing and editing;FU Yao conceived the idea and participated in the reviewing and editing.All the authors have read the last version of paper and consented for submission.
·Received:2022-02-07
·Accepted:2022-05-23
·Published online:2022-08-12
參·考·文·獻
[1] GERSHON R K, KONDO K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J]. Immunology, 1970,18(5):723-737.
[2] SAKAGUCHI S, SAKAGUCHI N,ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
[3] GALLETTI J G, GUZMáN M, GIORDANO M N. Mucosal immune tolerance at the ocular surface in health and disease[J].Immunology,2017,150(4):397-407.
[4] GALLETTI J G,DE PAIVA C S. The ocular surface immune system through the eyes of aging[J]. Ocul Surf,2021,20:139-162.
[5] HORI J, YAMAGUCHI T, KEINO H, et al. Immune privilege in corneal transplantation[J]. Prog Retin Eye Res,2019,72:100758.
[6] GROVER P, GOEL P N, GREENE M I. Regulatory T cells:regulation of identity and function[J]. Front Immunol, 2021, 12:750542.
[7] FONTENOT J D, GAVIN M A, RUDENSKY A Y. Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J].Nat Immunol,2003,4(4):330-336.
[8] KOMATSU N,OKAMOTO K,SAWA S,et al. Pathogenic conversion of Foxp3+T cells into TH17 cells in autoimmune arthritis[J]. Nat Med,2014,20(1):62-68.
[9] LIU W H, PUTNAM A L, ZHOU X Y, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells[J]. J Exp Med,2006,203(7):1701-1711.
[10] SHEVACH E M, THORNTON A M. tTregs, pTregs, and iTregs:similarities and differences[J]. Immunol Rev,2014,259(1):88-102.
[11] RAFFIN C, VO L T, BLUESTONE J A. Tregcell-based therapies:challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3):158-172.
[12] SANJABI S, OH S A, LI M O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection[J]. Cold Spring Harb Perspect Biol,2017,9(6):a022236.
[13] WANG R X,YU C R,DAMBUZA I M,et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med,2014,20(6):633-641.
[14] CHINEN T,KANNAN A K,LEVINE A G,et al. An essential role for the IL-2 receptor in T reg cell function[J]. Nat Immunol,2016,17(11):1322-1333.
[15] WING J B, ISE W, KUROSAKI T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responsesviathe coreceptor CTLA-4[J]. Immunity, 2014, 41(6):1013-1025.
[16] YAN Y P,ZHANG G X,GRAN B,et al. IDO upregulates regulatory T cellsviatryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J].J Immunol,2010,185(10):5953-5961.
[17] BAUCHé D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+regulatory T cells restrain interleukin-23-producing CX3CR1+gut-resident macrophages during group 3 innate lymphoid cell-driven colitis[J].Immunity,2018,49(2):342-352.e5.
[18] ALMAHARIQ M, MEI F C, WANG H, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression[J]. Biochem J,2015,465(2):295-303.
[19] CAO X F, CAI S F, FEHNIGER T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity,2007,27(4):635-646.
[20] MU?OZ-ROJAS A R, MATHIS D. Tissue regulatory T cells:regulatory chameleons[J]. Nat Rev Immunol,2021,21(9):597-611.
[21] CRAIG J P, NICHOLS K K, AKPEK E K, et al. TFOS DEWS Ⅱdefinition and classification report[J]. Ocular Surf, 2017, 15(3):276-283.
[22] BRON A J,DE PAIVA C S,CHAUHAN S K,et al. TFOS DEWS Ⅱpathophysiology report[J]. Ocular Surf,2017,15(3):438-510.
[23] SCHAUMBURG C S,SIEMASKO K F,DE PAIVA C S,et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis[J]. J Immunol,2011,187(7):3653-3662.
[24] CHEN Y H, CHAUHAN S K, LEE H S, et al. Effect of desiccating environmental stressversussystemic muscarinic AChR blockade on dry eye immunopathogenesis[J]. Invest Ophthalmol Vis Sci, 2013,54(4):2457-2464.
[25] CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al.Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol,2009,182(3):1247-1252.
[26] SIEMASKO K F, GAO J P, CALDER V L, et al.In vitroexpanded CD4+CD25+Foxp3+regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation[J].Invest Ophthalmol Vis Sci,2008,49(12):5434-5440.
[27] RATAY M L, GLOWACKI A J, BALMERT S C, et al. Tregrecruiting microspheres prevent inflammation in a murine model of dry eye disease[J]. J Control Release,2017,258:208-217.
[28] SINGH R B, BLANCO T, MITTAL S K, et al. Pigment epitheliumderived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease[J]. Am J Pathol, 2021, 191(4):720-729.
[29] YAO G H, QI J J, LIANG J, et al. Mesenchymal stem cell transplantation alleviates experimental Sj?gren's syndrome through IFN- β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26): 8253-8265.
[30] XU J J,WANG D D,LIU D Y,et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sj?gren syndrome[J].Blood,2012,120(15):3142-3151.
[31] NIETO J E, CASANOVA I, SERNA-OJEDA J C, et al. Increased expression of TLR4 in circulating CD4+T cells in patients with allergic conjunctivitis andin vitroattenuation of Th2 inflammatory response by α-MSH[J]. Int J Mol Sci,2020,21(21):7861.
[32] GALICIA-CARREóN J, SANTACRUZ C, AYALA-BALBOA J, et al. An imbalance between frequency of CD4+CD25+FOXP3+regulatory T cells and CCR4+and CCR9+circulating helper T cells is associated with active perennial allergic conjunctivitis[J]. Clin Dev Immunol,2013,2013:919742.
[33] SUMI T, FUKUSHIMA A, FUKUDA K, et al. Thymus-derived CD4+CD25+T cells suppress the development of murine allergic conjunctivitis[J]. Int Arch Allergy Immunol,2007,143(4):276-281.
[34] FUKUSHIMA A, SUMI T, ISHIDA W, et al. Depletion of thymusderived CD4+CD25+T cells abrogates the suppressive effects of alpha-galactosylceramide treatment on experimental allergic conjunctivitis[J]. Allergol Int,2008,57(3):241-246.
[35] YU W C, GENG S, SUO Y Z, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1[J]. Cell Rep,2018,25(9):2379-2389.e3.
[36] LOBO A M,AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf,2019,17(1):40-49.
[37] SEHRAWAT S, SUVAS S, SARANGI P P, et al.In vitro-generated antigen-specific CD4+CD25+Foxp3+regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions[J]. J Virol,2008,82(14):6838-6851.
[38] SUVAS S,AZKUR A K,KIM B S,et al. CD4+CD25+regulatory T cells control the severity of viral immunoinflammatory lesions[J]. J Immunol,2004,172(7):4123-4132.
[39] BHELA S, VARANASI S K, JAGGI U, et al. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions[J]. J Immunol,2017,199(4):1342-1352.
[40] VARANASI S K, REDDY P B J, BHELA S, et al. Azacytidine treatment inhibits the progression of herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol,2017,91(7):e02367-e02316.
[41] LAM A J, HOEPPLI R E, LEVINGS M K. Harnessing advances in T regulatory cell biology for cellular therapy in transplantation[J].Transplantation,2017,101(10):2277-2287.
[42] CHAUHAN S K, SABAN D R, LEE H K, et al. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation[J].J Immunol,2009,182(1):148-153.
[43] HORI J,TANIGUCHI H,WANG M C, et al. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts[J]. Invest Ophthalmol Vis Sci,2010,51(12):6556-6565.
[44] INOMATA T, HUA J, DI ZAZZO A, et al. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection[J]. Sci Rep,2016,6:39924.
[45] INOMATA T, HUA J, NAKAO T, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection[J]. Cornea, 2018, 37(1):95-101.
[46] HUA J, INOMATA T, CHEN Y H, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance[J]. Sci Rep,2018,8(1):7059.
[47] TAHVILDARI M, OMOTO M, CHEN Y H, et al.In vivoexpansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation[J]. Transplantation,2016,100(3):525-532.
[48] SHAO C Y, CHEN Y H, NAKAO T, et al. Local delivery of regulatory T cells promotes corneal allograft survival[J].Transplantation,2019,103(1):182-190.
[49] LI J T, TAN J, MARTINO M M, et al. Regulatory T-cells: potential regulator of tissue repair and regeneration[J]. Front Immunol, 2018,9:585.
[50] SCHIAFFINO S, PEREIRA M G, CICILIOT S, et al. Regulatory T cells and skeletal muscle regeneration[J]. FEBS J, 2017, 284(4):517-524.
[51] NOSBAUM A, PREVEL N, TRUONG H A, et al. Cutting edge:regulatory T cells facilitate cutaneous wound healing[J]. J Immunol,2016,196(5):2010-2014.
[52] ALI N W,ZIRAK B,RODRIGUEZ R S,et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell,2017,169(6):1119-1129.e11.
[53] LI J T, YANG K Y, TAM R C Y, et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner[J]. Theranostics, 2019, 9(15):4324-4341.
[54] YAN D, YU F, CHEN L B, et al. Subconjunctival injection of regulatory T cells potentiates corneal healingviaorchestrating inflammation and tissue repair after acute alkali burn[J]. Invest Ophthalmol Vis Sci,2020,61(14):22.
[55] ARPAIA N, GREEN J A, MOLTEDO B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089.
[56] COCO G, FOULSHAM W, NAKAO T, et al. Regulatory T cells promote corneal endothelial cell survival following transplantationviainterleukin-10[J]. Am J Transplant,2020,20(2):389-398.
[57] ALTSHULER A, AMITAI-LANGE A, TARAZI N, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing[J]. Cell Stem Cell,2021,28(7):1248-1261.e8.
[58] PILAT N, SPRENT J. Treg therapies revisited: tolerance beyond deletion[J]. Front Immunol,2021,11:622810.
[59] MACDONALD K N, PIRET J M, LEVINGS M K. Methods to manufacture regulatory T cells for cell therapy[J]. Clin Exp Immunol,2019,197(1):52-63.
[60] BRUNSTEIN C G, MILLER J S, MCKENNA D H, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics,toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051.
[61] BLUESTONE J A, BUCKNER J H, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med,2015,7(315):315ra189.
[62] DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.e2.
[63] SAADOUN D, ROSENZWAJG M, JOLY F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis[J].N Engl J Med,2011,365(22):2067-2077.
[64] KORETH J, MATSUOKA K I, KIM H T, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease[J]. N Engl J Med,2011,365(22):2055-2066.