郭軍,王克華,韓威,竇套存,王星果,胡玉萍,馬猛,曲亮
42日齡如皋黃雞體重間接遺傳效應(yīng)分析
郭軍,王克華,韓威,竇套存,王星果,胡玉萍,馬猛,曲亮
江蘇省家禽科學研究所,江蘇揚州 225125
【目的】動物個體遺傳物質(zhì)除了調(diào)控自身表型之外,還通過資源分配或行為互動影響同伴性能表現(xiàn),稱之為間接遺傳效應(yīng)。畜禽選育時,遺傳模型如果包含了間接遺傳效應(yīng),不僅有利于改善個體間社會關(guān)系,還可以獲得更多的遺傳進展。研究以飼養(yǎng)于群體籠內(nèi)如皋黃雞為試材,以間接遺傳模型評估體重數(shù)據(jù),旨在為如皋黃雞選育提供支持。【方法】體重數(shù)據(jù)采集自如皋黃雞選育群體,試驗雞于42日齡稱重,收集原始數(shù)據(jù)11 983條。數(shù)據(jù)清洗包括去除超出三倍標準差的離群值、去除翅號遺失個體、去除性別不明個體以及去除單籠養(yǎng)殖量少于4只的記錄。系譜數(shù)據(jù)包含12 208只雞:11 735只雞有體重記錄,473只雞沒有體重記錄;10 560只雞沒有后代,1 648只雞有后代,其中種公雞208只,種母雞1 440只。以SPSS軟件中的單因素方差分析檢驗環(huán)境因素對體重的影響,確定列入固定效應(yīng)的因子。應(yīng)用經(jīng)典動物模型、間接遺傳模型分析如皋黃雞早期體重方差組分及遺傳參數(shù),并檢驗間接遺傳方差是否存在稀釋效應(yīng)。遺傳模型中包括一般固定效應(yīng)、固定回歸項、加性遺傳效應(yīng)、間接遺傳效應(yīng)、共同環(huán)境效應(yīng)以及殘差。研究中,以單籠養(yǎng)殖量作為固定回歸項,將加性遺傳效應(yīng)、間接遺傳效應(yīng)、共同環(huán)境效應(yīng)列為隨機項。稀釋參數(shù)起始值設(shè)定為0,依次以0.1幅度遞增至1.0,經(jīng)AIC、BIC篩選,稀釋參數(shù)宜設(shè)定為0。由于殘差異質(zhì)化處理沒有改變遺傳參數(shù)和方差組分,因此殘差做同質(zhì)化處理。以WOMBAT軟件分析方差組分及遺傳參數(shù),計算結(jié)果達到收斂標準?!窘Y(jié)果】影響如皋黃雞體重的固定效應(yīng)包括批次、層級、性別;42日齡如皋黃雞體重受間接遺傳效應(yīng)影響,加性遺傳力為0.54±0.02,總遺傳力為0.66±0.06;同籠如皋黃雞個體間以互助關(guān)系為主,加性遺傳與間接遺傳選擇方向一致,遺傳相關(guān)系數(shù)為0.41;育成期如皋黃雞間接遺傳方差不存在稀釋效應(yīng);如皋黃雞公雞與母雞間接遺傳效應(yīng)表現(xiàn)不同,遺傳力、遺傳相關(guān)系數(shù)也存在明顯差異?!窘Y(jié)論】間接遺傳模型可用于蛋雞早期體重遺傳評估及選育。相比于傳統(tǒng)動物模型,間接遺傳模型可以額外獲得遺傳進展。
如皋黃雞;遺傳力;間接遺傳效應(yīng);體重;互助行為
【研究意義】間接遺傳效應(yīng),也稱社會遺傳效應(yīng),是指動物個體遺傳物質(zhì)不僅調(diào)控自身性狀表現(xiàn),還通過行為互動或資源分配影響同伴的表型值[1-2]。畜禽間接遺傳效應(yīng)可以通過分析影像資料或傳感器數(shù)據(jù)直接度量,如蛋雞啄羽行為、豬咬尾行為以及貂爭斗行為,但收集數(shù)據(jù)需要耗費大量時間和財力。除了直接測量行為性狀外,還可以通過混合線性模型分析系譜數(shù)據(jù)和目標性狀表型值,獲得間接遺傳參數(shù),并進行遺傳選育[3-4]。如皋黃雞作為優(yōu)良的兼用型雞種,于2009年經(jīng)國家畜禽遺傳資源委員會鑒定,列入國家畜禽遺傳資源[5]。體重是衡量畜禽群體整齊度的重要指標,也是決定飼料消耗、影響生產(chǎn)成本的關(guān)鍵因素[6]。42日齡體重是肉雞的主選性狀,兼用型雞種、蛋雞同樣重視育成雞選育[7-9]。筆者團隊前期以綠殼蛋雞為研究對象,分析了1—9周齡蛋雞體重遺傳力及重復力[10]。本研究以如皋黃雞為研究對象,應(yīng)用動物模型-BLUP方法定量分析間接遺傳效應(yīng)對體重表型方差的貢獻?!厩叭搜芯窟M展】近年來,間接遺傳效應(yīng)分析成為畜禽遺傳評估研究熱點之一。國內(nèi)外多個團隊針對不同物種、不同性狀應(yīng)用個體動物模型開展間接遺傳效應(yīng)分析。HERRERA?CáCERES等針對西班牙杜洛克豬日增重、背膘厚以及飼料報酬進行遺傳評估,發(fā)現(xiàn)間接遺傳效應(yīng)對目標性狀有著重要影響,育種選育時應(yīng)充分考慮間接遺傳效應(yīng)以及性狀間遺傳相關(guān)、方向[4]。ASK等對丹系長白豬日增重性狀進行遺傳評估,分析結(jié)果表明遺傳模型考慮間接遺傳效應(yīng)以后可提高遺傳方差占比[11]。同樣針對日增重性狀,PILES等以家兔為研究對象,對比分析了限飼與自由采食兩種條件下加性遺傳效應(yīng)、間接遺傳效應(yīng)的變化趨勢,結(jié)果表明間接遺傳方差與飼養(yǎng)方式有關(guān)[12]。該團隊還以縱向數(shù)據(jù)方式(longitudinal data)研究家兔的間接遺傳效應(yīng),表明家兔斷奶期間接遺傳方差大于育肥期間接遺傳方差[13]。遺傳模型納入間接遺傳效應(yīng)將提高選擇反應(yīng)和預(yù)測能力[4,14]。除了家畜外,育種工作者也針對家禽開展了間接遺傳效應(yīng)評估研究。ELLEN等以荷蘭漢德克動物育種集團白來航蛋雞為素材,針對同類相殘這一福利問題,應(yīng)用動物模型評估間接遺傳與加性遺傳的關(guān)系,結(jié)果表明間接遺傳效應(yīng)對總遺傳方差有一定貢獻,間接遺傳模型應(yīng)用潛力較大[15]。MUIR等選育鵪鶉時考慮了間接遺傳效應(yīng),有效解決同類相殘、爭斗行為等動物福利問題[3]。綜上所述,多個研究團隊應(yīng)用不同的研究手段證明間接遺傳效應(yīng)可用于畜禽遺傳育種。【本研究切入點】然而,目前我國蛋雞育種工作很少考慮間接遺傳效應(yīng)或進行相關(guān)研究。畜禽育種工作就是讓動物個體產(chǎn)出更多更好的產(chǎn)品,傳統(tǒng)的育種方式是個體選育,很少考慮動物個體之間的相互作用[16]。如前文所述,遺傳分析試驗表明間接遺傳效應(yīng)廣泛存在于畜禽生產(chǎn)中,而且這種遺傳效應(yīng)常常與加性遺傳效應(yīng)呈負相關(guān),育種工作如果忽視間接遺傳效應(yīng)將會降低選擇準確率,進而影響畜禽遺傳選育。為了減少養(yǎng)殖成本,育雛育成期蛋雞多以群體籠飼養(yǎng),是分析間接遺傳效應(yīng)理想模型[17]。【擬解決的關(guān)鍵問題】本研究以如皋黃雞選育群體為試驗材料,檢驗間接遺傳效應(yīng)對42日齡體重的影響并估計遺傳力。為如皋黃雞選育提供數(shù)據(jù)支持。
原始數(shù)據(jù)采集自江蘇省家禽科學研究所如皋黃雞選育群,包括2017年至2019年3代6批稱重記錄以及系譜數(shù)據(jù)。試驗雞飼養(yǎng)于密閉式育雛雞舍,育雛期第1周保持24 h光照,從第2周起以每周減少1 h的速度將光照時長調(diào)整至每天9 h。育雛期間以熱風爐、電熱棒升溫,夏季高溫期以風機、濕簾降溫。育雛育成籠分為4層,每個育雛育成籠最多飼養(yǎng)8只雛雞,有的個體因傷病淘汰或死亡,育雛育成籠不再補充雛雞。雛雞飼料來自中糧公司,自由采食,以乳頭飲水器供水,以行車式喂料機供給飼料,以雞糞傳送帶清糞,以電子天平稱重。稱重前夜中斷飼料供給。
如皋黃雞體重原始數(shù)據(jù)共有11 983條記錄,其中2017年收集3 298條,2018年收集3 472條,2019年收集5 213條。去除翅號遺失的4條個體記錄,去除異常值(超出或低于體重平均值3倍標準差的56條記錄)。有的育雛育成籠數(shù)據(jù)少于4條記錄,或是因為稱量時遺漏缺失,或是因為試驗雞已經(jīng)淘汰或死亡,或是因為數(shù)據(jù)清洗時去除,這些異常記錄將導致分析結(jié)果出現(xiàn)偏差,因而刪除單籠養(yǎng)殖量低于3條記錄(包括3條)的188條數(shù)據(jù)。經(jīng)數(shù)據(jù)清洗,如皋黃雞體重數(shù)據(jù)包括11 735條記錄。以R語言環(huán)境下ggplot2軟件包、gridExtra軟件包繪制如皋黃雞42日齡體重箱線圖[18]。
以IBM SPSS Statistics 21軟件分析批次、性別、育雛育成籠所在層效應(yīng)對如皋黃雞體重平均值的影響,確定列入動物模型固定效應(yīng)的因素。應(yīng)用WOMBAT軟件,以隨機回歸模型分析方差組分,并計算遺傳參數(shù)[19]。以間接遺傳效應(yīng)、間接遺傳效應(yīng)與加性遺傳效應(yīng)協(xié)方差結(jié)構(gòu)、稀釋參數(shù)為區(qū)分標準,建立3個動物模型:
模型Ⅰ:=+Za+ZP+;
模型Ⅱ:=+Za+Za+ZP+……=0,σ≠0;
模型Ⅲ:=+Za+Za+ZP+……≠0,σ≠0。
式中數(shù)學期望:()=,(a)=0,(a)=0,(P)=0,()=0。
式中方差:y是42日齡如皋黃雞體重表型值向量。X、ZD、ZS、Zc分別是固定效應(yīng)、加性遺傳效應(yīng)、間接遺傳效應(yīng)以及共同環(huán)境效應(yīng)的關(guān)聯(lián)矩陣,ZD、ZS親緣關(guān)系矩陣由系譜數(shù)據(jù)獲得。aD、aS、Pc、e分別是加性遺傳效應(yīng)、間接遺傳效應(yīng)、共同環(huán)境效應(yīng)以及殘差效應(yīng)的向量。σDS是間接遺傳效應(yīng)與加性遺傳效應(yīng)協(xié)方差。是稀釋參數(shù),間接遺傳方差(或選擇反應(yīng))與同居伙伴數(shù)量有關(guān),伙伴數(shù)量越多間接遺傳效應(yīng)越小。稀釋參數(shù)是衡量遺傳方差與群體大小的依存程度,表示間接遺傳效應(yīng)與單籠飼養(yǎng)只數(shù)不存在關(guān)聯(lián),表示間接遺傳效應(yīng)與單籠飼養(yǎng)只數(shù)呈負相關(guān)。
進一步地,通過上述模型可獲得一系列參數(shù)。總育種值是指個體動物的總遺傳效應(yīng)值,可表述為:
相應(yīng)地,總育種值方差可表述為:
表型方差表述為:
與遺傳力(h2)對應(yīng)的總遺傳力(τ2)為:
模型選擇依據(jù)兩個信息準則,即赤池弘次信息準則(Akaike’s information criterion,AIC)和貝葉斯信息準則(Bayesian Information Criterion,BIC)。優(yōu)先選擇AIC、BIC值偏小的子模型。
雞的體重屬于數(shù)量性狀,具有正態(tài)分布特征,除遺傳因素之外,環(huán)境也是影響體重表型值的重要因素。批次之間飼養(yǎng)管理、營養(yǎng)水平、溫濕度條件存在差異,經(jīng)SPSS單因素方差分析,各批次體重平均值存在顯著差異(圖1-C)。第24、25批次分別是2017年6月20日、27日出雛,第26、27批次分別是2018年7月26日、8月2日出雛,第28、29批次分別是2019年8月30日、9月12日出雛。育雛育成籠所在層影響42日齡如皋黃雞體重表型值。如圖1-B所示,體重中位數(shù)排列順序依次為L3>L2>L4>L1,L1層位于最上層,受縱向通風影響較大,L4層位于最底層,光照強度較弱、濕度大且與糞便距離近。相對而言,最上層、最底層養(yǎng)殖環(huán)境較差因此養(yǎng)殖于L1、L4層的試驗雞體重平均值較小。如圖1-A所示,性別影響體重平均值。性別不同,內(nèi)分泌激素種類與表達量存在不同,因而影響肌肉、骨骼以及脂肪生長發(fā)育。綜合考慮,如皋黃雞體重遺傳評估時將批次、層級以及性別因素列入固定效應(yīng)。
稀釋參數(shù)具有性狀特異性和物種特異性,針對如皋黃雞間接遺傳效應(yīng)稀釋參數(shù),以線性混合模型進行遺傳評估。由表1可知,如皋黃雞選育群體單籠飼養(yǎng)只數(shù)存在差異,然而線性回歸分析其與42日齡體重的關(guān)系,所得2接近于0,表明兩者呈現(xiàn)隨機狀態(tài),也就是體重與單籠飼養(yǎng)只數(shù)不存在線性關(guān)系。由表2可知,不同稀釋參數(shù)對應(yīng)的遺傳子模型信息準則,包括赤池弘次信息準則(Akaike Information Criterion,AIC)和貝葉斯信息準則(Bayesian Information Criterion,BIC),相差較小。由表3可知,不同稀釋參數(shù)對應(yīng)遺傳子模型解析的狹義遺傳力、加性遺傳方差以及總遺傳力相差不大。鑒于以上3點,遺傳評估模型宜忽略單籠飼養(yǎng)只數(shù)對遺傳效應(yīng)的影響,即稀釋參數(shù)設(shè)定為0。
圖1 42日齡如皋黃雞體重
Fig.1 Body weight at 42 day-olds of Rugao Yellow Chickens
表1 以單籠養(yǎng)殖量統(tǒng)計42日齡如皋黃雞體重
以性別作為固定效應(yīng),經(jīng)典模型與間接遺傳效應(yīng)模型解析的狹義遺傳力相差不大,然而后者剖分出間接遺傳方差,且以同伴數(shù)累加的方式歸并到總育種值方差,因而間接遺傳模型獲得更多的總遺傳力(表3)。加性-間接遺傳效應(yīng)遺傳存在中等相關(guān),表明同籠個體間以互助關(guān)系為主。將公雞體重與母雞體重作為兩個性狀進行間接遺傳效應(yīng)分析,兩者遺傳力、遺傳方差存在不同,且母雞加性-間接遺傳相關(guān)程度更緊密(表3)。
表2 間接遺傳效應(yīng)亞模型信息準則參數(shù)
表3 42日齡如皋黃雞體重方差組分和遺傳參數(shù)
商品蛋雞生產(chǎn)中,育雛雞和產(chǎn)蛋雞大多養(yǎng)殖在群體籠內(nèi)。當?shù)半u以群體方式進行籠養(yǎng)時,涉及到等級劃分、資源分配問題,還涉及到同伴間的競爭與合作,然而蛋雞育種實踐中往往忽略間接遺傳效應(yīng)。在蛋雞遺傳評估中引入間接遺傳模型,可以獲得兩組育種值,一組為加性遺傳效應(yīng)對應(yīng)的傳統(tǒng)育種值,另一組為間接遺傳效應(yīng)對應(yīng)的新育種值,兩者經(jīng)過選擇指數(shù)整合為綜合育種值,從而淘汰不利于同伴生長的個體,達到提高群體籠整體生產(chǎn)水平的目的。從總遺傳力高于狹義遺傳力22%可知,應(yīng)用間接遺傳模型將使遺傳進展進一步提高[20-21]。
本研究以42日齡如皋黃雞體重為目標性狀,在自由采食條件下獲得遺傳參數(shù)。加性遺傳方差與間接遺傳方差呈正相關(guān),表明同籠個體間以可遺傳的互助行為為主[22]。因為飼料、飲水等資源供應(yīng)充足,同伴間競爭關(guān)系未表現(xiàn)出來,反而相互間識別互助、抱團取暖[23]。與之相反,在限制飼料供給條件下,家豬之間互相爭斗,爭奪社會地位和資源,加性遺傳效應(yīng)與間接遺傳效應(yīng)為負遺傳相關(guān)[11,24]。同樣在資源限制條件下,中國對蝦表現(xiàn)為競爭關(guān)系,加性遺傳效應(yīng)與間接遺傳效應(yīng)相關(guān)系數(shù)為-0.495±0.184[25]。遺傳分析人工養(yǎng)殖的貽貝生長性狀,表明個體間存在可遺傳的競爭關(guān)系[26]。年齡也是影響加性-間接遺傳相關(guān)系數(shù)的重要因素,隨著年齡的增加,蛋雞個體間爭斗、啄羽行為頻次逐漸增加。對產(chǎn)蛋期白來航雞存活率進行遺傳評估,結(jié)果表明加性遺傳效應(yīng)與間接遺傳效應(yīng)呈負遺傳相關(guān)[15]。除資源、年齡影響加性-間接遺傳效應(yīng)相關(guān)系數(shù)外,物種也應(yīng)列入影響因素之列。同樣針對動物福利性狀的間接遺傳效應(yīng)分析,與蛋雞間互相傷害相反,人工養(yǎng)殖條件下的貂個體間表現(xiàn)為互相幫助,加性-間接遺傳相關(guān)系數(shù)高達0.80[27]。總之,加性-間接遺傳相關(guān)系數(shù)是反映社會交互行為強弱、方向的重要指標。單從蛋雞體重選育角度考慮,42日齡如皋黃雞體重加性遺傳與間接遺傳選擇方向一致。針對間接遺傳效應(yīng)做出選擇有利于取得更多的遺傳進展,同時也有利于改善動物福利。
傳統(tǒng)畜禽育種工作常常忽略間接遺傳效應(yīng),僅關(guān)注遺傳和環(huán)境對動物自身生產(chǎn)性能的影響。如皋黃雞體重遺傳評估結(jié)果表明,間接遺傳效應(yīng)對總遺傳方差做出重要貢獻。公雞與母雞間接遺傳方差、總遺傳力以及遺傳相關(guān)系數(shù)均存在不同,主要歸因于社會交互行為方面的不同。母雞往往表現(xiàn)出膽小懦弱,公雞表現(xiàn)為自信剛強,兩者在覓食、棲居、恐懼應(yīng)激等行為表現(xiàn)存在顯著差異[28-29]。當雞群進入性成熟期,公雞將為建立社會秩序而爭斗,加性-間接遺傳關(guān)系的方向及幅度將發(fā)生改變。因而未來有必要針對性成熟如皋黃雞開展間接遺傳效應(yīng)評估。ALEMU等以混合線性模型分析了籠養(yǎng)貂的間接遺傳效應(yīng),發(fā)現(xiàn)公貂與母貂間接遺傳參數(shù)存在不同[27]。此外,家豬上的研究也證明間接遺傳效應(yīng)存在性別差異[24]。以上研究結(jié)果對改良地方雞種的啟示是遺傳評估應(yīng)依據(jù)性別分別解析間接遺傳效應(yīng)。
本研究還評估了如皋黃雞間接遺傳方差是否存在稀釋效應(yīng)。有研究表明間接遺傳方差保持相對穩(wěn)定,當同伴數(shù)量由少增多時,個體分攤的間接遺傳方差將減少,也就是間接遺傳方差被稀釋[17]。CANARIO等研究了瑞典大白豬日增重,發(fā)現(xiàn)模型配置稀釋參數(shù)可提高的擬合度[30]。同樣以豬日增重為遺傳評估對象,NIELSEN等沒有發(fā)現(xiàn)間接遺傳方差被同伴數(shù)量稀釋[31]。POULSEN等評估了丹系長白豬生長速率,未發(fā)現(xiàn)間接遺傳方差的稀釋效應(yīng)[32]。在本研究中,當遺傳模型嵌入稀釋參數(shù)沒有提高擬合度,遺傳力、遺傳方差等參數(shù)幾乎沒有改變。由此得出,42日齡如皋黃雞體重間接遺傳方差不受稀釋效應(yīng)影響。探究其原因,歸納為兩點:1)物種差異影響稀釋效應(yīng)的表現(xiàn)。如果同伴之間互相競爭資源或空間,例如家豬和一些水產(chǎn)物種,間接遺傳方差存在稀釋效應(yīng)。對育成雞而言,同伴間多表現(xiàn)為互相幫助。例如,即便以單籠飼養(yǎng)育成雞,只要有一只雞開始采食,周圍籠的雞只往往跟著進食[23]。這種進食方式不會隨著同籠伙伴數(shù)量變化而變化,即信號不會被稀釋。2)研究中,單籠飼養(yǎng)量只有4—8只,變異幅度較小,或許未達到檢出稀釋效應(yīng)的標準。育成期家豬單圈養(yǎng)殖量在2—15頭,水產(chǎn)生物養(yǎng)殖密度高、單群養(yǎng)殖量變異幅度大,因而可以檢測到稀釋效應(yīng)。為確定蛋雞體重間接遺傳方差是否存在稀釋效應(yīng),今后可重新設(shè)計試驗,增加單籠養(yǎng)殖量變異幅度,也可將自由采食改變?yōu)橄拗骑暳瞎┙o。
BLUP理論在改良畜禽生產(chǎn)性能方面取得重要進展,其應(yīng)用層面不斷向新性狀、新模型、新算法拓展。間接遺傳模型是新近涌現(xiàn)的遺傳評估方法,該模型著眼于群體生產(chǎn)性能,利用動物個體可遺傳變異改變同伴表型值。本研究應(yīng)用間接遺傳模型評估如皋黃雞體重,結(jié)果表明:1)42日齡如皋黃雞體重受間接遺傳效應(yīng)影響,相比于經(jīng)典動物模型,間接遺傳模型可以額外獲得遺傳進展;2)同籠如皋黃雞個體間以互助關(guān)系為主,加性遺傳與間接遺傳選擇方向一致,遺傳相關(guān)系數(shù)為0.41;3)育成期如皋黃雞間接遺傳方差不存在稀釋效應(yīng);4)如皋黃雞公雞與母雞間接遺傳效應(yīng)表現(xiàn)不同,遺傳力、遺傳相關(guān)系數(shù)也存在明顯差異。后續(xù)研究可將評估對象從育成雞延伸到成年雞,分析年齡變化對遺傳參數(shù)的影響;也可將評估對象拓展到不同的地方雞種,以利于挖掘我國地方雞種優(yōu)異資源;還可針對新性狀解析間接遺傳方差及遺傳參數(shù)。
[1] BIJMA P, MUIR W M, VAN ARENDONK J A M. Multilevel selection 1: Quantitative genetics of inheritance and response to selection. Genetics, 2007, 175(1): 277-288. doi:10.1534/genetics.106. 062711.
[2] MUIR W, SCHINCKEL A. Incorporation of competitive effects in breeding programs to improve productivity and animal well being//7th World Congress on Genetics Applied to Livestock Production. Montpellier, France, 2002: 14-07.
[3] MUIR W M, BIJMA P, SCHINCKEL A. Multilevel selection with kin and non-kin groups, experimental results with Japanese quail (coturnix japonica). Evolution, 2013, 67(6): 1598-1606. doi:10.1111/ evo.12062.
[4] HERRERA-CáCERES W, SáNCHEZ J P. Selection for feed efficiency using the social effects animal model in growing Duroc pigs: Evaluation by simulation. Genetics, Selection, Evolution: GSE, 2020, 52(1): 53. doi:10.1186/s12711-020-00572-4.
[5] 國家畜禽遺傳資源委員會組. 中國畜禽遺傳資源志-家禽志. 北京: 中國農(nóng)業(yè)出版社, 2011.
National Livestock and Poultry Genetic Resources Committee. Animal Genetic Resources in China. Beijing: Chinese Agriculture Press, 2011. (in Chinese)
[6] SCHMIDT-NIELSEN K S. Scaling: Why is Animal Size So Important? New York: Cambridge University Press, 1984.
[7] THIRUVENKADAN A K, PRABAKARAN R, PANNEERSELVAM S. Broiler breeding strategies over the decades: An overview. World’s Poultry Science Journal, 2011, 67(2): 309-336. doi:10.1017/ S0043933911000328.
[8] MUIR W M, AGGREY S E. Poultry Genetics, Breeding and Biotechnology. Wallingford: CABI, 2003. doi:10.1079/9780851996608. 0000.
[9] 黨李蘋, 周雯馨, 劉瑞芳, 白云, 王哲鵬. 略陽烏雞體重和產(chǎn)蛋數(shù)性狀遺傳參數(shù)估計. 中國農(nóng)業(yè)科學, 2020, 53(17): 3620-3628. doi:10.3864/j.issn.0578-1752.2020.17.018.
DANG L P, ZHOU W X, LIU R F, BAI Y, WANG Z P. Estimation of genetic parameters of body weight and egg number traits of Lueyang black-boned chicken. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628. doi:10.3864/j.issn.0578-1752.2020.17.018. (in Chinese)
[10] 郭軍, 曲亮, 竇套存, 王星果, 沈曼曼, 胡玉萍, 王克華. 應(yīng)用隨機回歸模型估計蛋雞體重遺傳參數(shù). 中國農(nóng)業(yè)科學, 2020, 53(11): 2297-2304. doi:10.3864/j.issn.0578-1752.2020.11.015.
GUO J, QU L, DOU T C, WANG X G, SHEN M M, HU Y P, WANG K H. Using random regression models to estimate genetic parameters on body weights in layers. Scientia Agricultura Sinica, 2020, 53(11): 2297-2304. doi:10.3864/j.issn.0578-1752.2020.11.015. (in Chinese)
[11] ASK B, CHRISTENSEN O F, HEIDARITABAR M, MADSEN P, NIELSEN H M. The predictive ability of indirect genetic models is reduced when culled animals are omitted from the data. Genetics, Selection, Evolution: GSE, 2020, 52(1): 8. doi:10.1186/s12711-020- 0527-x.
[12] PILES M, DAVID I, RAMON J, CANARIO L, RAFEL O, PASCUAL M, RAGAB M, SáNCHEZ J P. Interaction of direct and social genetic effects with feeding regime in growing rabbits. Genetics, Selection, Evolution: GSE, 2017, 49(1): 58. doi:10.1186/s12711-017- 0333-2.
[13] DAVID I, SáNCHEZ J P, PILES M. Longitudinal analysis of direct and indirect effects on average daily gain in rabbits using a structured antedependence model. Genetics, Selection, Evolution: GSE, 2018, 50(1): 25. doi:10.1186/s12711-018-0395-9.
[14] CHU T T, HENRYON M, JENSEN J, ASK B, CHRISTENSEN O F. Statistical model and testing designs to increase response to selection with constrained inbreeding in genomic breeding programs for pigs affected by social genetic effects. Genetics, Selection, Evolution: GSE, 2021, 53(1): 1. doi:10.1186/s12711-020-00598-8.
[15] ELLEN E D, VISSCHER J, VAN ARENDONK J A M, BIJMA P. Survival of laying hens: Genetic parameters for direct and associative effects in three purebred layer lines. Poultry Science, 2008, 87(2): 233-239. doi:10.3382/ps.2007-00374.
[16] WALSH B, LYNCH M. Evolution and Selection of Quantitative Traits. Oxford: Oxford University Press, 2018. doi:10.1093/oso/ 9780198830870.001.0001.
[17] HEIDARITABAR M, BIJMA P, JANSS L, BORTOLUZZI C, NIELSEN H M, MADSEN P, ASK B, CHRISTENSEN O F. Models with indirect genetic effects depending on group sizes: A simulation study assessing the precision of the estimates of the dilution parameter. Genetics, Selection, Evolution: GSE, 2019, 51(1): 24. doi:10.1186/ s12711-019-0466-6.
[18] VILLANUEVA R A M, CHEN Z J. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Measurement: Interdisciplinary Research and Perspectives, 2019, 17(3): 160-167. doi:10.1080/15366367.2019. 1565254.
[19] MEYER K. WOMBAT: A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science B, 2007, 8(11): 815-821. doi:10.1631/jzus.2007.B0815.
[20] BIJMA P. The quantitative genetics of indirect genetic effects: A selective review of modelling issues. Heredity, 2014, 112 (1): 61-69. doi:10.1038/hdy.2013.15.
[21] ELLEN E D, RODENBURG T B, ALBERS G A A, BOLHUIS J E, CAMERLINK I, DUIJVESTEIJN N, KNOL E F, MUIR W M, PEETERS K, REIMERT I, SELL-KUBIAK E, VAN ARENDONK J A M, VISSCHER J, BIJMA P. The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Frontiers in Genetics, 2014, 5: 377. doi:10.3389/fgene.2014.00377.
[22] CHEN C Y, MISZTAL I, TSURUTA S, HERRING W O, HOLL J, CULBERTSON M. Influence of heritable social status on daily gain and feeding pattern in pigs. Journal of Animal Breeding and Genetics, 2010, 127(2): 107-112. doi:10.1111/j.1439-0388.2009.00828.x.
[23] BESTMAN M, RUIS M, HEIJMANS J, MIDDELKOOP K V. 馬闖, 馬海艷譯. 蛋雞的信號: 禽業(yè)養(yǎng)殖管理實用指南. 北京: 中國農(nóng)業(yè)科學技術(shù)出版社, 2014.
BESTMAN M, RUIS M, HEIJMANS J, MIDDELKOOP K V. Layer Signals: A Practical Guide for Poultry-Oriented Management. Beijing: China Agricultural Science and Technology Press, 2014. (in Chinese)
[24] NIELSEN H M, ASK B, MADSEN P. Social genetic effects for growth in pigs differ between boars and gilts. Genetics, Selection, Evolution: GSE, 2018, 50(1): 4. doi:10.1186/s12711-018-0375-0.
[25] 仲偉鵬, 羅坤, 孟憲紅, 陳寶龍, 隋娟, 孔杰, 曹寶祥, 邢群, 欒生. 限制投喂環(huán)境下中國對蝦體重的間接遺傳效應(yīng)分析. 中國水產(chǎn)科學, 2018, 25(6): 1245-1251. doi:10.3724/SP.J.1118.2018.18015.
ZHONG W P, LUO K, MENG X H, CHEN B L, SUI J, KONG J, CAO B X, XING Q, LUAN S. An analysis of the indirect genetic effect on the body weight ofunder restrictive feeding conditions. Journal of Fishery Sciences of China, 2018, 25(6): 1245-1251. doi:10.3724/SP.J.1118.2018.18015. (in Chinese)
[26] BRICHETTE I, REYERO M I, GARC??A C. A genetic analysis of intraspecific competition for growth in mussel cultures. Aquaculture, 2001, 192(2/3/4): 155-169. doi:10.1016/S0044-8486(00)00439-7.
[27] ALEMU S W, BERG P, JANSS L, BIJMA P. Estimation of indirect genetic effects in group-housed mink () should account for systematic interactions either due to kin or sex. Journal of Animal Breeding and Genetics, 2016, 133(1): 43-50. doi:10.1111/jbg.12163.
[28] N?TT D, AGNVALL B, JENSEN P. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation. PLoS ONE, 2014, 9(4): e96376. doi:10. 1371/journal.pone.0096376.
[29] MOROI S, NISHIMURA K, IMAI N, KUNISHIGE K, SATO S, GOTO T. Rapid behavioral assay using handling test provides breed and sex differences in tameness of chickens. Brain and Behavior, 2019, 9(10): e01394. doi:10.1002/brb3.1394.
[30] CANARIO A, BIJMA P. Pig growth is affected by social genetic effects and social litter effects that depend on group size// Proceedings of the 9th World Congress on Genetic Applied to Livestock Production (WCGALP). 1-6 August 2010, Leipzig, Germany, 2010: 87-87.
[31] NIELSEN H, ASK B, CHRISTENSEN O, JANSS L, HEIDARITABAR M, MADSEN P. Social genetic effects for growth in Landrace pigs with varying group sizes//Proceedings of the 11th World Congress on Genetics Applied to Livestock Production. 2018: 11-16.
[32] POULSEN B G, ASK B, NIELSEN H M, OSTERSEN T, CHRISTENSEN O F. Prediction of genetic merit for growth rate in pigs using animal models with indirect genetic effects and genomic information. Genetics Selection Evolution, 2020, 52: 58. doi:10.1186/ s12711-020-00578-y.
Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens
GUO Jun, WANG KeHua, HAN Wei, DOU TaoCun,WANG XingGuo, HU YuPing, MA Meng, QU Liang
Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu
【Background】In addition to regulating its own phenotype, the genotype of an individual animal also affects the performance of other animals within a social group through resource allocation or behavioral interaction, and this phenomenon is called an indirect genetic effect. In the animal breeding, if the genetic model harbored the indirect genetic effects, it will not only improve the social relationship between individuals, but also obtain more genetic gains. 【Objective】In this study, Rugao Yellow Chickens raised in group cages were used as the test animals, and the indirect genetic model was used to evaluate body weight data, aiming to provide aflexiblemodelto select the Rugao Yellow Chickens.【Method】The body weight data was collected from the breeding group of Rugao Yellow Chickens. The fowls were weighed at the age of 42 days-old, and 11 983 raw data were collected. The data cleaning procedure included: i. removing outlier beyond three standard deviations either side of the mean; ii. eliminate the fowl without marker; iii. get rid of unknown sexed fowls; iv. the fowls with less than 4 records within a social group were also excluded. The pedigree data consisted of 12 208 fowls, including 11 735 chickens with body weight records and 473 chickens without records, 10 560 chickens without progeny and 1 648 with progeny, and the progeny of them included 208 male breeders and 1 440 female breeders. With SPSS software packages, ANOVA was used to test the influence of environmental factors on body weight and determine the factors included in the fixed effects. The classic animal model and indirect genetic model were used to analyze the variance components and genetic parameters of Rugao Yellow Chickens, and to test whether there was a dilution effect on the indirect genetic variance. The genetic model included the general fixed effects, fixed regression terms, additive genetic effects, indirect genetic effects, common environmental effects and residuals. In this study, the fixed regression term included cage sizes, and random terms included additive genetic effects, indirect genetic effects and common environmental effects. The initial value of the dilution parameter was set to 0, and it was step increased to 1.0 in increments of 0.1. After evaluating with AIC and BIC standard, the dilution parameter should be set to 0. Accounting for heterogeneous errors did not alter the estimates of genetic parameters and variance components. Therefore, the homogeneous error was assumed. Using WOMBAT software, estimates of variance components and genetic parameters converged for both classic and indirect genetic models (with or without dilution effect). 【Result】The fixed effects included the combination of laying batch-row-sex level. The significant indirect genetic variance for body weight of 42-day-old Rugao Yellow Chickens was found, for the additive heritability was 0.54±0.02, and the total heritable variation was 0.66±0.06. The corporation relationship between individuals presented in the same cage of Rugao Yellow Chickens. The direction of additive genetic and indirect genetic selection was the same, and the genetic correlation coefficient was 0.41. There was no dilution effect in the indirect genetic variance of Rugao Yellow Chickens. The indirect genetic variances were distinguished between sexes, and so on heritability and genetic correlation coefficient. 【Conclusion】Indirect genetic model could be used for the genetic evaluation and selection of body weight during the rearing period. Compared with those classic animal models, the indirect genetic models could achieve an additional genetic gain.
Rugao Yellow Chickens; heritability; indirect genetic effect; body weight; cooperation behavior
10.3864/j.issn.0578-1752.2022.19.014
2021-12-22;
2022-03-09
江蘇省農(nóng)業(yè)重大新品種創(chuàng)制項目(PZCZ201729)、江蘇省重點研發(fā)計劃(現(xiàn)代農(nóng)業(yè))專項(BE2021380)、國家重點研發(fā)計劃重點專項(2021YFD1200302)、江蘇省種業(yè)振興揭榜掛帥項目(JBGS[2021]104)
郭軍,Tel:0514-85599012;E-mail:guojun.yz@gmail.com。通信作者曲亮,E-mail:sqbreeding@126.com
(責任編輯 林鑒非)