賈曉昱,邵麗梅,李金金,張鵬,李江闊
桃貯藏技術(shù)的研究進(jìn)展
賈曉昱1,2,3,4,邵麗梅5,李金金6,張鵬1,2,3,4,李江闊1,2,3,4
(1.天津市農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品保鮮與加工技術(shù)研究所,天津 300384;2.國(guó)家農(nóng)產(chǎn)品保鮮工程技術(shù)研究中心(天津),天津 300384;3.農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品貯藏保鮮重點(diǎn)實(shí)驗(yàn)室,天津 300384;4.天津市農(nóng)產(chǎn)品采后生理與貯藏保鮮重點(diǎn)實(shí)驗(yàn)室,天津 300384;5.沈陽(yáng)農(nóng)業(yè)大學(xué) 食品學(xué)院,沈陽(yáng) 110866;6.鞍山師范學(xué)院高等職業(yè)技術(shù)學(xué)院,遼寧 鞍山 114016)
通過(guò)對(duì)桃的各種貯藏保鮮技術(shù)進(jìn)行綜述,選擇適合的貯藏方法,為我國(guó)桃保鮮技術(shù)的發(fā)展提供參考和思路。探討桃果實(shí)采后生理變化、采后品質(zhì)的影響因素,以及在桃貯藏保鮮中所應(yīng)用的物理、化學(xué)、生物等保鮮技術(shù)。將保鮮技術(shù)應(yīng)用于桃果實(shí)中,在一定程度上提高了果實(shí)的貨架期,降低了貯藏過(guò)程中的腐敗率,拓寬了桃產(chǎn)業(yè)在我國(guó)的經(jīng)濟(jì)發(fā)展。桃果實(shí)在貯藏過(guò)程中易發(fā)生碰撞破損和腐敗變質(zhì)等,其中溫度和貯藏方式是影響桃品質(zhì)的主要因素。探討了多種保鮮技術(shù),其中物理保鮮技術(shù)應(yīng)用最廣,但能源消耗較大,化學(xué)保鮮技術(shù)效果明顯,但無(wú)法保障絕對(duì)的安全性,生物保鮮技術(shù)應(yīng)用較少,尚需研究,因此要建立一個(gè)綜合有效的保鮮體系還需要進(jìn)一步研究探討。
桃;貯藏;影響因素;研究進(jìn)展
桃(L.)屬于薔薇科雙子葉植物綱類水果,是全球最古老、最重要、栽培面積最大的水果作物之一,我國(guó)作為桃樹的故鄉(xiāng),也是世界上產(chǎn)桃最多的國(guó)家[1],桃果實(shí)種植培養(yǎng)歷史已經(jīng)超過(guò)4000年[2-6]。桃果實(shí)汁多味甜,皮薄可口,且具有豐富的營(yíng)養(yǎng)物質(zhì)[7-8]。根據(jù)測(cè)定,在每100 g桃中含糖量為7~15 g,有機(jī)酸含量為0.2~0.9 g,蛋白質(zhì)含量為0.4~0.8 g,脂肪含量為0.1~0.5 g,并且還含有豐富的鉀、鐵、鋅等礦物質(zhì)營(yíng)養(yǎng)。此外,桃還具有促進(jìn)腸胃蠕動(dòng),補(bǔ)益氣血,養(yǎng)陰生津的功效,這些營(yíng)養(yǎng)物質(zhì)和功效對(duì)人體健康起著很大的作用[9]。
桃是呼吸躍變型果實(shí),果實(shí)從生長(zhǎng)停止到進(jìn)入衰老階段的呼吸強(qiáng)度會(huì)立即增高[10],在快要躍變時(shí),乙烯在組織內(nèi)部的濃度開始增加,這時(shí)呼吸發(fā)生躍變[11]。成熟的桃在常溫下貯藏時(shí)易出現(xiàn)腐爛變質(zhì)、受到病原菌的侵害、品質(zhì)快速下降等現(xiàn)象[12];桃通常貯藏在低溫和適當(dāng)相對(duì)濕度(85%~95%)的環(huán)境中,而在低溫條件下雖然可以起到延長(zhǎng)貯藏期的效果,但會(huì)對(duì)桃果實(shí)造成一定傷害。由此可見,早期的貯藏方法具有一定的局限性[13],運(yùn)輸時(shí)也會(huì)造成機(jī)械損傷[14-15]。由于缺乏有效的保鮮技術(shù),發(fā)達(dá)國(guó)家的桃損失率為1%~5%,而發(fā)展中國(guó)家的桃損失率高達(dá)20%~30%[16],因此選擇適合的貯藏保鮮技術(shù)對(duì)延緩桃腐敗變質(zhì)、延長(zhǎng)貯藏期、提高經(jīng)濟(jì)價(jià)值具有重要作用。文中擬主要介紹桃采后生理變化,以及影響桃采后品質(zhì)的因素,進(jìn)而探討多種貯藏保鮮技術(shù)在桃果實(shí)貯藏中的應(yīng)用,為今后桃貯藏保鮮方面的研究提供參考。
桃屬于呼吸躍變型水果,通常伴隨著過(guò)高的呼吸作用和乙烯釋放量,桃的耐貯藏性與呼吸躍變的最高值有著千絲萬(wàn)縷的關(guān)系[17],呼吸峰值出現(xiàn)得越早,意味著果實(shí)貯藏時(shí)間越短,伴隨著果實(shí)會(huì)出現(xiàn)軟化、品質(zhì)下降等現(xiàn)象。顏志梅等[18]研究調(diào)查發(fā)現(xiàn),處于不同部位的桃果實(shí)中,呼吸強(qiáng)度有所不同,果皮的呼吸強(qiáng)度遠(yuǎn)遠(yuǎn)高于果肉的呼吸強(qiáng)度。乙烯的重要功能是促進(jìn)果實(shí)的呼吸作用和果實(shí)的衰老等,乙烯的產(chǎn)生與貯藏溫度也有很大關(guān)系[19-20]。對(duì)于這類果實(shí)而言,控制果實(shí)的呼吸強(qiáng)度和乙烯釋放量可以增強(qiáng)果實(shí)的耐貯性[10]。研究發(fā)現(xiàn),1-甲基環(huán)丙烯(1-Methylcyclopropene,1-MCP)可以抑制呼吸強(qiáng)度和乙烯釋放量,這樣不會(huì)破壞桃果實(shí)的品質(zhì),能更好地延長(zhǎng)果實(shí)貨架期[21—22]。利用外源物質(zhì)可以抑制乙烯的釋放,使果實(shí)達(dá)到良好的保鮮效果。
硬度是體現(xiàn)質(zhì)地變化的重要指標(biāo),采用張紹珊[23]的方法,用刀片在果實(shí)的陰陽(yáng)交接部分的最大直徑處除去果皮后,用硬度計(jì)在去皮處測(cè)定果實(shí)的硬度,進(jìn)而得出結(jié)論,蟠桃的硬度隨著貯藏時(shí)間的延長(zhǎng)總體呈現(xiàn)下降趨勢(shì)。鑒定桃果實(shí)貯藏時(shí)間長(zhǎng)短的標(biāo)準(zhǔn)之一就是檢測(cè)其硬度變化,桃越軟,果實(shí)衰老越嚴(yán)重,更容易腐爛。桃果實(shí)質(zhì)地的變化與其可溶性固形物和色澤有關(guān),采用陳峰[24]的方法測(cè)定桃可溶性固形物,結(jié)果表明,桃果實(shí)的可溶性固形物含量在保鮮過(guò)程中呈增長(zhǎng)趨勢(shì),但后期又開始呈下降趨勢(shì),這是由于前期果實(shí)的后熟和后期果實(shí)成熟后衰老所引發(fā)的[25]。除此之外,桃的色澤變化也是重要指標(biāo)之一,桃在采摘前是淺紅色或綠色,采后隨著果實(shí)的衰老軟化,桃果肉顏色加深,逐漸變紅。
隨著貯藏時(shí)間的延長(zhǎng),桃果實(shí)中的有機(jī)物作為呼吸基質(zhì)逐漸被消耗,自由基由于動(dòng)態(tài)平衡被破壞而大量積累,導(dǎo)致細(xì)胞質(zhì)膜系統(tǒng)受到損害,引發(fā)細(xì)胞質(zhì)膜上不飽和脂肪酸的活性氧自由基含量增加,發(fā)生酶促反應(yīng)[26]。在后熟衰老過(guò)程或采后貯藏加工過(guò)程中,果蔬的褐變與組織中的多酚氧化酶密切相關(guān)。當(dāng)果實(shí)褐變時(shí),多酚氧化酶活性提高, 桃果實(shí)中酚類物質(zhì)被氧化產(chǎn)生有色物質(zhì), 導(dǎo)致組織褐變;桃果實(shí)中的超氧化物歧化酶、過(guò)氧化氫酶等活性下降,損害了機(jī)體的細(xì)胞,果實(shí)出現(xiàn)衰老氧化[27];果膠酶中的果膠酯酶和果膠裂解酶受到溫度的影響,從而導(dǎo)致酶活性異常,使得果實(shí)軟化。
溫度是影響采后桃貯藏保鮮的重要因素[18,28]。在不同的溫度條件下,桃果實(shí)釋放的呼吸熱量不同。常用的保鮮方法通常在較低溫度下進(jìn)行,能夠降低桃的呼吸強(qiáng)度,并延長(zhǎng)其貯藏期。通過(guò)大量研究顯示,溫度在0 ℃左右的貯藏條件下效果最好,貯藏時(shí)間可以維持3周左右,此時(shí)乙烯的釋放量達(dá)到最低[29]。在溫度較低的條件下,果實(shí)易發(fā)生冷害現(xiàn)象,孟雪雁等[30]在不同溫度下測(cè)定了桃果實(shí)的相對(duì)電導(dǎo)率和呼吸作用,發(fā)現(xiàn)在5 ℃的條件下果實(shí)出現(xiàn)了冷害現(xiàn)象,對(duì)風(fēng)味造成了一定影響。桃果實(shí)在低溫下也會(huì)出現(xiàn)風(fēng)味變淡或喪失現(xiàn)象,在低溫下細(xì)胞也會(huì)由于乙醇和乙醛的逐步積累而產(chǎn)生中毒或異味。在長(zhǎng)時(shí)間低溫貯藏的情況下,桃比較顯著的冷害特征是不可逆硬化,芳香風(fēng)味物質(zhì)開始發(fā)生劣變。
為了延長(zhǎng)果蔬的貯藏時(shí)間,選擇合適的保鮮方法必不可少,貯藏的目的是能夠讓消費(fèi)者品嘗到新鮮的果實(shí),利用不同的貯藏方式和貯藏條件改變桃的品質(zhì),以達(dá)到貯藏的效果。影響貯藏效果的基本因素包括溫度、濕度等方面,貯藏桃的適宜溫度為0~3 ℃,相對(duì)濕度為90%~95%,氣體環(huán)境中O2和CO2體積分?jǐn)?shù)大約為2%~5%。目前貯藏桃的基本方法是冷藏,一般而言冷藏的相對(duì)濕度為90%~95%,貯藏期可達(dá)1周,如果持續(xù)貯藏,則果實(shí)風(fēng)味會(huì)變淡。
研究表明,化學(xué)制劑也會(huì)對(duì)桃的品質(zhì)造成一定的影響,這類化學(xué)制劑包括鈣和1-MCP。鈣處理能夠推遲桃的成熟,延遲桃的腐敗變質(zhì)。鈣制劑不僅可以提高桃的貯藏品質(zhì),還可以提高細(xì)胞合成蛋白質(zhì)的能力,保護(hù)細(xì)胞膜不受損傷,進(jìn)而有效地抑制果實(shí)腐敗衰老。鈣處理可以分為2種形式,即采前鈣處理和采后鈣處理。研究表明,當(dāng)采前噴施質(zhì)量分?jǐn)?shù)為0.05%~0.2%的鈣溶液后,桃果實(shí)的可溶性固形物含量呈上升趨勢(shì)。1-MCP處理可以延緩果實(shí)的褪綠、轉(zhuǎn)黃或轉(zhuǎn)紅等進(jìn)程,并且能通過(guò)降解桃果實(shí)內(nèi)部細(xì)胞壁來(lái)降解酶的活性,有效延緩果實(shí)的軟化進(jìn)程,抑制果實(shí)硬度下降。研究發(fā)現(xiàn),加入1-MCP后可以抑制桃果實(shí)在貯藏期中多種揮發(fā)性物質(zhì)(如醇和酯)的形成,顯著抑制揮發(fā)性芳香物質(zhì)的產(chǎn)生,有效延緩可滴定酸的下降和可溶性固形物的上升進(jìn)程,從而保持桃果實(shí)的營(yíng)養(yǎng)價(jià)值和風(fēng)味。
3.1.1 低溫保鮮
低溫貯藏是一種有效的果蔬貯藏方法,在溫度0~10 ℃下可以達(dá)到延長(zhǎng)果實(shí)貯藏期的效果。低溫貯藏的原理主要是在低溫狀態(tài)下果實(shí)的呼吸強(qiáng)度下降,從而抑制酶促反應(yīng)和化學(xué)反應(yīng)。組織褐變是桃果受低溫破壞的一種典型變化,這種變化主要與酚類的氧化有關(guān)。許多桃品種果實(shí)在貯藏1~4周內(nèi)出現(xiàn)了冷害損傷,導(dǎo)致其組織變黃、水分減少、質(zhì)地堅(jiān)硬、味道排放減少[31]。不同品種所需要的溫度和時(shí)間不同,張瀟方等[32]在0 ℃的條件下采用不同種類的膜包裝水蜜桃,測(cè)定其相對(duì)電導(dǎo)率和質(zhì)量損失率等指標(biāo),結(jié)果表明在低溫的條件下結(jié)合包裝膜可以抑制相對(duì)電導(dǎo)率和質(zhì)量損失率的升高,保持桃的風(fēng)味。剛成誠(chéng)等[33]以水蜜桃為實(shí)驗(yàn)材料,研究采用冷激和熱激的方法對(duì)果實(shí)保鮮效果的影響,結(jié)果顯示這2種方式都有利于果實(shí)的保鮮,冷激可以抑制呼吸強(qiáng)度,而熱激可以保持可溶性糖含量。郜海燕等[34]研究不同貯藏溫度對(duì)桃品質(zhì)的影響,結(jié)果表明桃的貯藏適宜溫度在0 ℃左右,可貯藏28 d,在此溫度下明顯增加了其呼吸強(qiáng)度,果肉亦未出現(xiàn)冷害現(xiàn)象。低溫貯藏可以保持果實(shí)的風(fēng)味,延長(zhǎng)果實(shí)的貯藏期,在國(guó)內(nèi)外均有這樣的研究成果并應(yīng)用廣泛。
3.1.2 冰溫貯藏
冰溫貯藏是一類將易腐敗變質(zhì)的果蔬置于冰溫環(huán)境(0 ℃以下,冰點(diǎn)以上的溫度)的保鮮方法,這種方法相較于普通冷藏而言,可以抑制可溶性固性物的分解和細(xì)胞膜系統(tǒng)的損傷,減少丙二醛(Malonaldehyde,MDA)的積累,從而延長(zhǎng)果蔬的保質(zhì)期,降低腐爛率。申江等[35]將冰溫貯藏與氣調(diào)貯藏相結(jié)合,研究了貯藏階段桃果實(shí)在冰溫條件和不同氣體組成下的品質(zhì)變化,結(jié)果表明與普通冰溫(?1.2 ℃)貯藏相比較,桃果實(shí)在O2體積分?jǐn)?shù)為3%和5%,并且結(jié)合冰溫環(huán)境下的保鮮品質(zhì)好于普通冰溫貯藏保鮮,貯藏期間糖類和維生素C的含量都較高。孟俁等[36]對(duì)比了貯藏溫度為3~4 ℃,相對(duì)濕度為90%的普通冷庫(kù)與貯藏溫度為?0.7 ℃、相對(duì)濕度為90%的冰溫庫(kù)下桃的品質(zhì)差異,研究表明,桃果實(shí)在冰溫貯藏保鮮條件下的質(zhì)量損失率減小,且POD活性在貯藏50 d里低于普通冷庫(kù)的貯藏,可見延緩了桃的衰老與腐爛。張鵬等[37]探究了冰溫貯藏對(duì)蟠桃冷藏期和冷藏后常溫貨架期間品質(zhì)的影響,結(jié)果表明,冰溫貯藏內(nèi)環(huán)境的溫度變化波動(dòng)小于普通冷藏,能夠延緩果實(shí)的腐爛與褐變進(jìn)程,維持較好的營(yíng)養(yǎng)品質(zhì),保鮮效果優(yōu)于普通冷藏。
3.1.3 熱處理
熱處理又稱熱激處理,是果蔬采后處理的方法之一,可以抑制病原菌的活力和某些酶的活性,并且延長(zhǎng)果實(shí)的貨架期[38]。同時(shí)熱處理還具有安全無(wú)毒的功效,熱處理后的果實(shí)在包裝后環(huán)境中的氧氣和二氧化碳較低[39]。周濤等[40]探究了熱處理對(duì)桃各項(xiàng)生理指標(biāo)的作用,如色澤、呼吸強(qiáng)度、脂氧合酶和色素含量的影響,結(jié)果顯示,在貯藏溫度為40 ℃條件下處理桃果實(shí),可以抑制乙烯的釋放,降低酶的活性。陸振中等[41]為了使桃果實(shí)在較低溫度下不受冷害的影響,用熱處理的方法抑制桃果肉的褐變,維持了桃的品質(zhì),但對(duì)桃果實(shí)的風(fēng)味無(wú)影響。袁海娜[42]在研究熱處理對(duì)果蔬的影響中提到與單獨(dú)處理相較而言,帶有殺菌劑的熱處理作用能夠防止桃果實(shí)采后腐爛。熱處理還可以同其他處理相結(jié)合,尤其與輻射處理結(jié)合可以降低病原微生物及其感染劑量。
3.1.4 氣調(diào)貯藏
氣調(diào)貯藏[43]主要是利用環(huán)境中二氧化碳和氧氣來(lái)調(diào)控果蔬的呼吸作用,從而延長(zhǎng)其貯藏期[44]。目前氣調(diào)保鮮是效果較好的保鮮技術(shù),能夠延長(zhǎng)貨架期,也是比較先進(jìn)的保鮮技術(shù)之一[45]。常見的PE包裝薄膜可以在低溫下使桃果實(shí)存放10 d[46]。劉穎等[47]以錦繡黃桃為實(shí)驗(yàn)材料,測(cè)定了貯藏初期和終期的指標(biāo)。結(jié)果表明,O2和CO2體積分?jǐn)?shù)分別為2%~3%和2%~5%時(shí)能夠維持桃的品質(zhì),減少呼吸作用,達(dá)到延長(zhǎng)保質(zhì)期的作用。Cano-Salazar等[48]在研究不同氣調(diào)參數(shù)下桃風(fēng)味的變化時(shí)發(fā)現(xiàn),O2(2%)+ CO2(5%)下貯藏的桃果實(shí)風(fēng)味低于O2(3%)+CO2(10%)和O2(6%)+CO2(17%)。田世平等[49]研究了蜜桃在O2(5%)+CO2(10%)的氣體條件下的品質(zhì),結(jié)果表明果肉未發(fā)生褐變,氣調(diào)貯藏能夠有效地抑制蜜桃的褐變,對(duì)果皮顏色的保存有重要意義。LI等[50]研究了納米ZnO+低密度聚乙烯(LDPE)包裝對(duì)桃冷藏耐寒性和果膠代謝的影響,將LDPE和納米ZnO +LDPE包裝的桃在溫度2 ℃下貯藏40 d,這2種包裝都減輕了冷害的發(fā)生,其中納米ZnO+ LDPE包裝抑制了果膠酯酶,增強(qiáng)了聚半乳糖醛酸酶和β-半乳糖苷酶活性,導(dǎo)致堿溶性果膠和水溶性果膠增加,螯合性果膠減少,從而使果膠在冷害脅迫中保持了良好的品質(zhì)。
3.2.1 1-MCP處理
1-MCP作為一種化學(xué)保鮮劑,目前廣泛應(yīng)用于桃、蘋果、花卉的貯藏保鮮中[51]。1- MCP保鮮方法能夠通過(guò)延緩乙烯的合成和傳導(dǎo)信號(hào)[52],使果蔬的成熟和衰老變得緩慢,可以影響果實(shí)芳香物質(zhì)的形成,能夠更好地保存桃果實(shí)[53],并具有操作簡(jiǎn)單大眾化、安全無(wú)毒無(wú)害等作用,因而被國(guó)內(nèi)外研究人員廣泛應(yīng)用。朱明濤和王美軍[54]研究了采用1-MCP與蜂膠相結(jié)合的形式對(duì)桃保鮮效果的影響,測(cè)定了腐爛率、失水率、可溶性固形物含量、酶活性等指標(biāo)的變化,研究發(fā)現(xiàn),復(fù)合處理能夠降低腐爛率和失水率,保持酶的活性,能夠延長(zhǎng)桃的貯藏期。劉淑英等[55]研究了在1-MCP的含量為0.5、1.0、1.5、2.0 μL/L時(shí)對(duì)桃果實(shí)品質(zhì)的影響,結(jié)果發(fā)現(xiàn),在1-MCP的含量為1.0、1.5、2.0 μL/L時(shí)可以起到緩解桃果實(shí)軟化、降低果實(shí)呼吸強(qiáng)度等作用。李軍等[56]研究了采用1-MCP處理結(jié)合MAP包裝方法時(shí)桃的貯藏品質(zhì)及酶的活性,研究結(jié)果表明,1-MCP處理結(jié)合MAP包裝可以延緩果實(shí)的采后后熟和衰老進(jìn)程,減小果實(shí)的采后損失。
3.2.2 NO處理
NO具有化學(xué)性質(zhì)活潑、氣體分子小等特點(diǎn)[57]。田雯[58]將桃果實(shí)放入一定濃度的NO溶液中浸泡30 min,并在0 ℃的條件下冷藏,結(jié)果顯示,用NO處理后能夠明顯觀察到桃放置的時(shí)間更長(zhǎng),桃果實(shí)的品質(zhì)也得到了保證。朱樹華等[59]用NO熏蒸處理桃果實(shí)后有效地延緩了桃的細(xì)胞代謝,并且延緩了果實(shí)的腐敗軟化,同時(shí)也降低了冷害對(duì)桃果實(shí)造成的傷害。Cai等[60]在冷藏前采用10 μL/L的NO對(duì)桃進(jìn)行熏蒸,結(jié)果表明,NO減輕了冷害的發(fā)生,促進(jìn)了貯藏期內(nèi)呼吸強(qiáng)度的恢復(fù)和乙烯的產(chǎn)生,有效地防止桃從低溫向貨架過(guò)渡過(guò)程中揮發(fā)性有機(jī)物的損失。同時(shí)Huang等[61]也研究了關(guān)于NO和貯藏溫度對(duì)桃脂代謝的相互作用,將桃浸入蒸餾水和15 μmol/L的NO溶液中進(jìn)行處理,然后分別貯藏在25 ℃和0 ℃下,研究其對(duì)桃中酶的鞘脂代謝活性和鞘脂含量的影響,結(jié)果表明,NO可以維持鞘脂代謝,緩解了采后果實(shí)對(duì)低溫的反應(yīng)。
3.2.3 鈣制劑處理
在果實(shí)生長(zhǎng)發(fā)育后期,若組織中持續(xù)保持較高的鈣含量,可以延長(zhǎng)果實(shí)保持較高硬度的時(shí)間,對(duì)于提高桃果實(shí)的品質(zhì)具有重要作用。鈣制劑在果實(shí)中的含量越高,其品質(zhì)越好,在運(yùn)輸過(guò)程中貯藏效果越好。鈣制劑對(duì)桃果實(shí)的貯藏同樣具有重要作用,是植物的重要營(yíng)養(yǎng)物質(zhì),具有保持果實(shí)采后品質(zhì)、減少腐爛變質(zhì)和延長(zhǎng)保質(zhì)期等作用[62]。王雷等[63]以肥桃為實(shí)驗(yàn)材料,向其噴施鈣肥料,研究表明,在噴施鈣制劑后,果肉、果仁和果皮均含有大量的鈣[64],肥桃中的鈣含量會(huì)隨著果實(shí)的生長(zhǎng)呈下降的趨勢(shì),這樣處理后可以提高果實(shí)的硬度。陳留勇等[65]研究了不同溫度下鈣制劑對(duì)黃桃硬度的影響,研究表明,鈣制劑可以延緩黃桃果實(shí)的后熟,保持果實(shí)的硬度。由此可見,鈣制劑可以延緩黃桃果實(shí)的后熟,保持果實(shí)的硬度,鈣處理可以將細(xì)胞膜的通透性降低, 因而有效地抑制了細(xì)胞壁和細(xì)胞膜的解體進(jìn)程。
生物保鮮技術(shù)是一種從動(dòng)植物和微生物中提取并對(duì)人體有益的保鮮劑的方法,具有抑制果蔬中腐敗菌和酶活性等功效。生物保鮮劑包括動(dòng)植物類、微生物類、生物酶類等[66]。其中,動(dòng)物類保鮮劑中的殼聚糖已在水果和蔬菜采后保存中廣泛使用。研究水蜜桃的生理生化指標(biāo)和冷害現(xiàn)象時(shí)發(fā)現(xiàn)[38],用殼聚糖為主要涂膜材料,在0 ℃的保鮮條件下的研究結(jié)果表明,殼聚糖涂膜處理能夠有效地降低果實(shí)的褐變腐敗和果實(shí)組織傷害。Jiao等[67]研究了采用自由基介導(dǎo)的接枝法將綠原酸引入殼聚糖中形成的復(fù)合物對(duì)在20 ℃下貯藏8 d桃采后品質(zhì)的影響,并且利用紫外-可見吸收光譜、傅里葉變換紅外技術(shù)和核磁共振光譜技術(shù)分析了其結(jié)構(gòu)特性,結(jié)果表明,殼聚糖接枝綠原酸配合物的抗氧化活性明顯高于天然的殼聚糖。此外,抗氧化活性隨著接枝率的增加而增加,殼聚糖接枝綠原酸配合物可以抑制桃子的質(zhì)量損失率、腐爛指數(shù)和呼吸強(qiáng)度的增加,且作為桃的防腐劑和可食用包衣材料具有巨大的潛力。微生物保鮮劑主要有抗菌肽、菌體次生代謝產(chǎn)物和微生物菌體等三大類,這種保鮮劑通過(guò)與果蔬中的致腐微生物進(jìn)行拮抗或競(jìng)爭(zhēng)作用,從而達(dá)到保鮮效果。其中,納他霉素作為一種微生物防腐劑可以延長(zhǎng)食品的保質(zhì)期,防止酵母菌和霉菌引起的變質(zhì)。研究表明,經(jīng)過(guò)納他霉素處理后能夠更好地抑制獼猴桃果實(shí)的腐爛,維持較好的硬度、Vc含量和還原糖含量,穩(wěn)定果實(shí)中酶的活性。生物酶保鮮劑是一類應(yīng)用于食品保鮮中的催化劑,不同種類的果蔬應(yīng)該選擇適宜的酶,使果蔬中不利保存的酶受到抑制,以實(shí)現(xiàn)保鮮目的。目前,生物酶保鮮劑應(yīng)用最廣泛的酶是葡萄糖氧化酶和溶菌酶。其中,葡萄糖氧化酶多用于食品材料,可以避免食品材料與氣體接觸過(guò)多,以減緩食品材料霉變的速率。制作面包的原材料是高筋面粉、生雞蛋和酵母菌等,添加溴酸鉀后可獲得抗壓強(qiáng)度和延展性,但溴酸鉀有致癌物質(zhì),可用葡萄糖氧化酶替代溴酸鉀,提升面糊的延展性,擴(kuò)大面包的容積。
桃果實(shí)作為人們普遍熟知的水果之一,國(guó)內(nèi)外學(xué)者對(duì)其貯藏保鮮技術(shù)也有所研究。在貯藏運(yùn)輸過(guò)程中,桃果實(shí)極易發(fā)生機(jī)械碰撞損傷和腐敗變質(zhì)等情況,不利于桃果實(shí)產(chǎn)業(yè)經(jīng)濟(jì)發(fā)展,因此采用適當(dāng)?shù)馁A藏保鮮方法對(duì)延長(zhǎng)桃果實(shí)貯藏具有重要意義。果蔬的保鮮效果與貯藏技術(shù)同樣影響著果實(shí)的品質(zhì),可以根據(jù)桃果實(shí)品種、成熟度、保鮮環(huán)境的不同,選擇最適宜的貯藏方法,從而達(dá)到最優(yōu)的保鮮效果。桃果實(shí)的保鮮方法可以分為物理保鮮、化學(xué)保鮮和生物保鮮等三大類。其中,物理保鮮中的低溫保鮮和化學(xué)保鮮中的1-MCP處理在桃果實(shí)貯藏保鮮中應(yīng)用得較多,保鮮效果比較明顯。雖然這些貯藏方法對(duì)于桃果實(shí)有一定的作用,但還是存在很多不足和弊端,如低溫保鮮會(huì)導(dǎo)致桃果實(shí)出現(xiàn)冷害反應(yīng),受低溫破壞的桃果實(shí)表現(xiàn)出各種生化和生理功能障礙,這些功能失調(diào)會(huì)對(duì)與香氣相關(guān)的揮發(fā)物、可溶性糖和有機(jī)酸的積累造成可逆的效應(yīng)和改變,擾亂最終的異常成熟,導(dǎo)致貯藏質(zhì)量降低;1-MCP 處理效果明顯,成本較低,但是如果過(guò)度使用,容易導(dǎo)致果實(shí)的軟化和風(fēng)味的喪失;氣調(diào)保鮮雖然安全無(wú)毒,可防止氧化變色,但是投入成本較高。由于生物保鮮技術(shù)的操作煩瑣,成本較高,在果蔬保鮮中應(yīng)用較少,因此還需要進(jìn)一步完善生物保鮮技術(shù)。綜上所述,單一的保鮮技術(shù)已經(jīng)不能滿足當(dāng)下的保鮮要求,而1-MCP處理作為貯藏保鮮的主流方向之一,在未來(lái)的實(shí)驗(yàn)中可進(jìn)一步研究1-MCP的最適濃度,并與其他保鮮技術(shù)相結(jié)合,如保鮮劑、臭氧、低溫或光催化處理等,尤其低溫貯藏能較好地保持桃風(fēng)味,與1-MCP結(jié)合后可彌補(bǔ)其不足;也可以人為調(diào)節(jié)貯藏環(huán)境中的O2、CO2和N2的比例,這樣能夠在較長(zhǎng)時(shí)間內(nèi)保持桃的質(zhì)地、色澤、口感、營(yíng)養(yǎng)等,進(jìn)而在桃果實(shí)貯藏中發(fā)揮更好的效果。未來(lái)將著重建立一套完整綜合的保鮮技術(shù),降低成本,并擴(kuò)大應(yīng)用。
[1] 賈云云, 王越輝, 白瑞霞, 等. 光照對(duì)桃果實(shí)內(nèi)在品質(zhì)的影響研究進(jìn)展[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2020, 32(12): 30-36.
JIA Yun-yun, WANG Yue-hui, BAI Rui-xia, et al. Research Progress in Effects of Sun Light on Internal Quality of Peach Fruit[J]. Acta Agriculturae Jiangxi, 2020, 32(12): 30-36.
[2] 王玉霞, 李延菊, 張福興, 等. 桃采后貯藏保鮮技術(shù)研究進(jìn)展[J]. 煙臺(tái)果樹, 2019(4): 1-4.
WANG Yu-xia, LI Yan-ju, ZHANG Fu-xing, et al. Research Progress of Postharvest Storage and Fresh-Keeping Teaching of Peach[J]. Yantai Fruits, 2019(4): 1-4.
[3] 普紅梅, 李雪瑞, 楊芳, 等. 不同采后處理對(duì)云南油桃和水蜜桃的貯藏保鮮效果對(duì)比[J]. 現(xiàn)代食品科技, 2020, 36(3): 120-126.
PU Hong-mei, LI Xue-rui, YANG Fang, et al. Comparison of Fresh-Keeping Effects of Different Post-Harvest Treatments on Yunnan Nectarine and Honey Peach[J]. Modern Food Science and Technology, 2020, 36(3): 120-126.
[4] 王海宏, 周慧娟, 喬勇進(jìn), 等. 桃貯藏保鮮技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 保鮮與加工, 2009, 9(2): 10-14.
WANG Hai-hong, ZHOU Hui-juan, QIAO Yong-jin, et al. Development Trend and Research Situation on Storage Techniques of Peach Fruits[J]. Storage & Process, 2009, 9(2): 10-14.
[5] 魏好程. 桃果實(shí)采后貯藏保鮮及其品質(zhì)控制的研究[D]. ??? 華南熱帶農(nóng)業(yè)大學(xué), 2005: 5-15.
WEI Hao-cheng. Study on the Post Harvest Storage & Fresh and Quality Control of Peach (cv.Okubao)[D]. Haikou: South China University of Tropical Agriculture, 2005: 5-15.
[6] 和岳, 王明力. 桃果實(shí)貯藏保鮮技術(shù)的發(fā)展現(xiàn)狀[J]. 貴州農(nóng)業(yè)科學(xué), 2011, 39(11): 181-183.
HE Yue, WANG Ming-li. Developing Status of Peach Fresh-Keeping Technology in China[J]. Guizhou Agricultural Sciences, 2011, 39(11): 181-183.
[7] 呂小華, 陳長(zhǎng)寶, 尚鵬鵬, 等. 一氧化氮和冷脅迫對(duì)桃果實(shí)細(xì)胞膜脂過(guò)氧化的影響[J]. 保鮮與加工, 2019, 19(2): 8-15.
LYU Xiao-hua, CHEN Chang-bao, SHANG Peng-peng, et al. Effect of Exogenous NO and Cold Stress on Membrane Lipid Peroxidationin of 'Feicheng' Peach Fruit[J]. Storage and Process, 2019, 19(2): 8-15.
[8] XIE Rang-jin, LI Xiong-wei, CHAI Ming-liang, et al. Evaluation of the Genetic Diversity of Asian Peach Accessions Using a Selected Set of SSR Markers[J]. Scientia Horticulturae, 2010, 125(4): 622-629.
[9] 俞琴. 真空注入對(duì)黃桃品質(zhì)的影響[D]. 上海: 上海交通大學(xué), 2007: 6-20.
YU Qin. The Effect of Vacuum Impregnation Treatment on the Quality of Yellow Peaches[D]. Shanghai: Shanghai Jiao Tong University, 2007: 6-20.
[10] RAI D R, PAUL S. Transient State In-Pack Respiration Rates of Mushroom under Modified Atmosphere Packaging Based on Enzyme Kinetics[J]. Biosystems Engineering, 2007, 98(3): 319-326.
[11] 皮鈺珍, 馬巖松, 王善廣, 等. 桃采后及貯藏生理研究進(jìn)展[J]. 果樹學(xué)報(bào), 2001, 18(1): 53-56.
PI Yu-zhen, MA Yan-song, WANG Shan-guang, et al. Advances of Research on Peach Postharvest and Storage Physiology[J]. Journal of Fruit Science, 2001, 18(1): 53-56.
[12] HAYAMA H, TATSUKI M, ITO A, et al. Ethylene and Fruit Softening in the Stony Hard Mutation in Peach[J]. Postharvest Biology and Technology, 2006, 41(1): 16-21.
[13] 韓晴, 曹珂, 朱更瑞, 等. 桃肉質(zhì)及粘離核性狀形成及其相關(guān)基因的表達(dá)分析[J]. 華北農(nóng)學(xué)報(bào), 2019, 34(3): 52-58.
HAN Qing, CAO Ke, ZHU Geng-rui, et al. Formation of Flesh Texture and Adhesion and Expression Analysis of Related Genes in Peach Fruit[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3): 52-58.
[14] AHMADI E, GHASSEMZADEH H R, SADEGHI M, et al. The Effect of Impact and Fruit Properties on the Bruising of Peach[J]. Journal of Food Engineering, 2010, 97(1): 110-117.
[15] LI Zhi-guo, YANG Hong-ling, LI Ping-ping, et al. Fruit Biomechanics Based on Anatomy: A Review[J]. International Agrophysics, 2013, 27(1): 97-106.
[16] JIANG Jin-yong, GONG Liang, DONG Qing-feng, et al. Characterization of PLA-P3, 4HB Active Film Incorporated with Essential Oil: Application in Peach Preservation[J]. Food Chemistry, 2020, 313: 126134.
[17] 萬(wàn)春燕, 李桂鳳. 1-甲基環(huán)丙烯和水楊酸在儲(chǔ)藏中對(duì)肥城桃品質(zhì)的影響[J]. 食品科學(xué), 2007, 28(10): 523-525.
WAN Chun-yan, LI Gui-feng. Effects of 1-MCP and SA on Quality of Feicheng-Peaches during Storage[J]. Food Science, 2007, 28(10): 523-525.
[18] 顏志梅, 盛寶龍, 趙江濤, 等. 影響桃貯藏保鮮的因素及其綜合保鮮技術(shù)[J]. 江蘇農(nóng)業(yè)科學(xué), 2002, 30(6): 76-78.
YAN Zhi-mei, SHENG Bao-long, ZHAO Jiang-tao, et al. Factors Affecting Storage and Preservation of Peach and Its Comprehensive Preservation Technology[J]. Jiangsu Agricultural Sciences, 2002, 30(6): 76-78.
[19] MANGANARIS G A, VASILAKAKIS M, DIAMANTIDIS G, et al. Cell Wall Physicochemical Aspects of Peach Fruit Related to Internal Breakdown Symptoms[J]. Postharvest Biology and Technology, 2006, 39(1): 69-74.
[20] 張瀟方. 甜櫻桃采后全程冷鏈保鮮技術(shù)研究[D]. 上海: 上海海洋大學(xué), 2017: 20-28.
ZHANG Xiao-fang. Study on Whole Cold-Chain and Preservation Technology of Postharvest Sweet Cherry[D]. Shanghai: Shanghai Ocean University, 2017: 20-28.
[21] 姜航, 張斌斌, 宋志忠, 等. 1-MCP和低溫處理對(duì)采后桃endo-PG家族基因表達(dá)的影響[J]. 果樹學(xué)報(bào), 2018, 35(5): 521-530.
JIANG Hang, ZHANG Bin-bin, SONG Zhi-zhong, et al. Effects of 1-MCP and Low Temperature Treatments on the Expression of Endo-PG Family Genes in Peach during Post Harvest Storage[J]. Journal of Fruit Science, 2018, 35(5): 521-530.
[22] SISLER E C, SEREK M. Inhibitors of Ethylene Responses in Plants at the Receptor Level: Recent Developments[J]. Physiologia Plantarum, 1997, 100(3): 577-582.
[23] 張紹珊. 茶葉提取物對(duì)采后桃果防腐保鮮效果研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2010: 11-20.
ZHANG Shao-shan. Study of Preservative and Fresh-Keeping Effects of Tea Extracts on Postharvest Peaches[D]. Wuhan: Huazhong Agricultural University, 2010: 11-20.
[24] 陳峰. 不同保鮮劑及其復(fù)配對(duì)水蜜桃保鮮效果研究[D]. 重慶: 西南大學(xué), 2010: 20-24.
CHEN Feng. Study on the Effect of Different Fresh-Keeping Agents and Compound Preservative on Storage of Juicy Peach[D]. Chongqing: Southwest University, 2010: 20-24.
[25] 周慧娟. 水蜜桃采后生理及貯藏保鮮技術(shù)研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2009: 74-95.
ZHOU Hui-juan. Studies on Postharvest Physiology and Storage Technology of Honey Peach Fruits[D]. Nanjing: Nanjing Agricultural University, 2009: 74-95.
[26] 劉晨霞, 喬勇進(jìn), 王曉, 等. 桃果采后生理與貯藏保鮮技術(shù)研究進(jìn)展[J]. 江蘇農(nóng)業(yè)科學(xué), 2018, 46(17): 18-23.
LIU Chen-xia, QIAO Yong-jin, WANG Xiao, et al. Research Progress of Post-Harvest Physiology and Storage Techniques of Peach[J]. Jiangsu Agricultural Sciences, 2018, 46(17): 18-23.
[27] 施楊, 危春紅, 陳志杰, 等. 枸杞鮮果采后生理及保鮮技術(shù)研究進(jìn)展[J]. 保鮮與加工, 2016, 16(3): 102-106.
SHI Yang, WEI Chun-hong, CHEN Zhi-jie, et al. Research Progress on Postharvest Physiology and Storage Technology of Fresh Fruit of Lycium Barbarum L[J]. Storage and Process, 2016, 16(3): 102-106.
[28] 崔志寬. 不同物理化學(xué)處理對(duì)鳳凰水蜜桃保鮮效果研究[D]. 南京: 南京大學(xué), 2014: 75-80.
CUI Zhi-kuan. Study on the Fresh-Keeping Effect of Different Physical and Chemical Treatments on Fenghuang Honey Peach[D]. Nanjing: Nanjing University, 2014: 75-80.
[29] 魏好程, 湯鳳霞, 陳發(fā)河. 采后桃果實(shí)風(fēng)味物質(zhì)研究進(jìn)展[J]. 福建農(nóng)業(yè)學(xué)報(bào), 2010, 25(3): 281-285.
WEI Hao-cheng, TANG Feng-xia, CHEN Fa-he. Advances in Research on Peach Volatile Flavoring Compounds[J]. Fujian Journal of Agricultural Sciences, 2010, 25(3): 281-285.
[30] 孟雪雁, 岑濤. 桃低溫貯藏中生理變化與冷害發(fā)生的關(guān)系[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 21(3): 268-270.
MENG Xue-yan, CEN Tao. Relationship between Physiological Variations and Chilling Injury in Peach at Low-Temperature[J]. Journal of Shanxi Agricultural University, 2001, 21(3): 268-270.
[31] ZHOU Dan-dan, SUN Ye, LI Meng-yu, et al. Postharvest Hot Air and UV-C Treatments Enhance Aroma-Related Volatiles by Simulating the Lipoxygenase Pathway in Peaches during Cold Storage[J]. Food Chemistry, 2019, 292: 294-303.
[32] 張瀟方, 劉升, 王達(dá), 等. 不同薄膜包裝對(duì)水蜜桃冷藏品質(zhì)的影響[J]. 包裝工程, 2016, 37(17): 91-95.
ZHANG Xiao-fang, LIU Sheng, WANG Da, et al. Effect of Different Film Packaging on the Quality of Juicy Peach at Cold Storage[J]. Packaging Engineering, 2016, 37(17): 91-95.
[33] 剛成誠(chéng), 李建龍, 王亦佳, 等. 利用不同物理方法處理水蜜桃保鮮效果的對(duì)比研究[J]. 江蘇農(nóng)業(yè)科學(xué), 2012, 40(2): 204-207.
GANG Cheng-cheng, LI Jian-long, WANG Yi-jia, et al. Comparison of Fresh-Keeping Effects of Different Physical Methods on Treating Honey Peach[J]. Jiangsu Agricultural Sciences, 2012, 40(2): 204-207.
[34] 郜海燕, 楊海龍, 陳杭君, 等. 生鮮果蔬物流及包裝技術(shù)研究與展望[J]. 食品與生物技術(shù)學(xué)報(bào), 2020, 39(8): 1-9.
GAO Hai-yan, YANG Hai-long, CHEN Hang-jun, et al. Progress and Prospect of Logistics and Preservation Technology on Fresh Fruit and Vegetables[J]. Journal of Food Science and Biotechnology, 2020, 39(8): 1-9.
[35] 申江, 劉麗, 宋燁, 等. 冰溫氣調(diào)貯藏對(duì)平谷大桃品質(zhì)影響的實(shí)驗(yàn)研究[J]. 食品工業(yè)科技, 2013, 34(5): 330-332.
SHEN Jiang, LIU Li, SONG Ye, et al. Experiment on Influence of Ice-Temperature Controlled Atmosphere Storage on Pinggu Peach Quality[J]. Science and Technology of Food Industry, 2013, 34(5): 330-332..
[36] 孟俁, 劉斌, 許茹楠, 等. 冰溫貯藏對(duì)蜜桃品質(zhì)評(píng)價(jià)研究[J]. 冷藏技術(shù), 2020, 43(1): 15-19.
MENG Yu, LIU Bin, XU Ru-nan, et al. Study on Evaluation of Peaches Quality by Ice-Temperature Storage[J]. Journal of Refrigeration Technology, 2020, 43(1): 15-19.
[37] 張鵬, 李欣悅, 薛友林, 等. 精準(zhǔn)溫控技術(shù)對(duì)蟠桃冷藏和常溫貨架品質(zhì)的影響[J]. 包裝工程, 2021, 42(15): 19-29.
ZHANG Peng, LI Xin-yue, XUE You-lin, et al. Effect of Precise Temperature Control Technology on Cold Storage and Shelf Quality of Flat Peach at Room Temperature[J]. Packaging Engineering, 2021, 42(15): 19-29.
[38] WANG Jin-hua, YOU Yan-li, CHEN Wen-xuan, et al. Optimal Hypobaric Treatment Delays Ripening of Honey Peach Fruit via Increasing Endogenous Energy Status and Enhancing Antioxidant Defence Systems during Storage[J]. Postharvest Biology and Technology, 2015, 101: 1-9.
[39] HONG S I, LEE H H, KIM D. Effects of Hot Water Treatment on the Storage Stability of Satsuma Mandarin as a Postharvest Decay Control[J]. Postharvest Biology and Technology, 2007, 43(2): 271-279.
[40] 周濤, 許時(shí)嬰, 王璋, 等. 熱激處理及貯藏溫度對(duì)水蜜桃果實(shí)生理生化變化的影響[J]. 中國(guó)南方果樹, 2003, 32(2): 39-44.
ZHOU Tao, XU Shi-ying, WANG Zhang, et al. Effects of Hot Treatment and Storage Temperature on Physiological and Biochemical Changes in Peach Fruits[J]. South China Fruits, 2003, 32(2): 39-44.
[41] 陸振中, 徐莉, 王慶國(guó). 熱空氣處理對(duì)中華壽桃貯藏品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(1): 375-379.
LU Zhen-zhong, XU Li, WANG Qing-guo. Effect of Hot Air Treatment on Postharvest Quality of Zhonghuashou Peach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 375-379.
[42] 袁海娜. 國(guó)內(nèi)外果蔬熱處理保鮮技術(shù)研究進(jìn)展[J]. 糧油加工與食品機(jī)械, 2002(10): 30-32.
YUAN Hai-na. Research Progress on Heat Treatment Technology of Fruit and Vegetables at the Home and Abroad[J]. Machinery for Cereals, Oil and Food Processing, 2002(10): 30-32.
[43] HUSSAIN P R, MEENA R S, DAR M A, et al. Studies on Enhancing the Keeping Quality of Peach (Prunus Persica Bausch) Cv Elberta by Gamma-Irradiation[J]. Radiation Physics and Chemistry, 2008, 77(4): 473-481.
[44] 安建申, 張慜, 陸起瑞, 等. 不同厚度薄膜氣調(diào)包裝對(duì)水蜜桃貯藏品質(zhì)的影響[J]. 食品與生物技術(shù)學(xué)報(bào), 2005, 24(3): 76-79.
AN Jian-shen, ZHANG Min, LU Qi-rui, et al. Effect of Different Thickness Films on the Quality of Modified Atmosphere Packaging Honey Peaches during the Storage[J]. Journal of Wuxi University of Light Industry, 2005, 24(3): 76-79.
[45] 梁潔玉, 朱丹實(shí), 馮敘橋, 等. 果蔬氣調(diào)貯藏保鮮技術(shù)研究現(xiàn)狀與展望[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2013, 4(6): 1617-1625.
LIANG Jie-yu, ZHU Dan-shi, FENG Xu-qiao, et al. Status and Prospects on Modified Atmosphere Storage Technology of Fruits and Vegetables[J]. Journal of Food Safety & Quality, 2013, 4(6): 1617-1625.
[46] AKBUDAK B, ERIS A. Physical and Chemical Changes in Peaches and Nectarines during the Modified Atmosphere Storage[J]. Food Control, 2004, 15(4): 307-313.
[47] 劉穎, 鄔志敏, 李云飛, 等. 錦繡黃桃快速降氧氣調(diào)貯藏實(shí)驗(yàn)研究[J]. 上海交通大學(xué)學(xué)報(bào), 2007, 41(3): 432-436. LIU Ying, WU Zhi-min, LI Yun-fei, et al. Experimental Study on the Controlled Atmosphere Storage for "Jinxiu" Yellow Peaches[J]. Journal of Shanghai Jiao Tong University, 2007, 41(3): 432-436.
[48] CANO-SALAZAR J, LóPEZ M L, ECHEVERRíA G. Relationships between the Instrumental and Sensory Characteristics of Four Peach and Nectarine Cultivars Stored under Air and CA Atmospheres[J]. Postharvest Biology and Technology, 2013, 75: 58-67.
[49] 田世平, 徐勇, 姜愛麗, 等. 冬雪蜜桃在氣調(diào)冷藏期間品質(zhì)及相關(guān)酶活性的變化[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2001, 34(6): 656-661.
TIAN Shi-ping, XU Yong, JIANG Ai-li, et al. Changes in Enzymatic Activity and Quality Attributes of Dongxue Peaches in Response to Controlled Atmosphere Conditions[J]. Scientia Agricultura Sinica, 2001, 34(6): 656-661.
[50] LI Dong, LI Li, LUO Zi-sheng, et al. Effect of Nano-ZnO-Packaging on Chilling Tolerance and Pectin Metabolism of Peaches during Cold Storage[J]. Scientia Horticulturae, 2017, 225: 128-133.
[51] 千春錄, 米紅波, 何志平, 等. 1-MCP對(duì)水蜜桃冷藏品質(zhì)和氧化還原水平的影響[J]. 食品科學(xué), 2013, 34(12): 322-326.
QIAN Chun-lu, MI Hong-bo, HE Zhi-ping, et al. Effect of 1-MCP on Cold Storage Quality and Redox State of Postharvest Peach Fruits[J]. Food Science, 2013, 34(12): 322-326.
[52] DAL CIN V, RIZZINI F M, BOTTON A, et al. The Ethylene Biosynthetic and Signal Transduction Pathways are Differently Affected by 1-MCP in Apple and Peach Fruit[J]. Postharvest Biology and Technology, 2006, 42(2): 125-133.
[53] CAI Hong-fang, AN Xiu-juan, HAN Shuai, et al. Effect of 1-MCP on the Production of Volatiles and Biosynthesis-Related Gene Expression in Peach Fruit during Cold Storage[J]. Postharvest Biology and Technology, 2018, 141: 50-57.
[54] 朱明濤, 王美軍. 1-MCP和蜂膠對(duì)水蜜桃貯藏保鮮效果的影響[J]. 包裝工程, 2020, 41(11): 33-39.
ZHU Ming-tao, WANG Mei-jun. Effects of 1-MCP and Propolis on the Preservation Results of Honey Peaches[J]. Packaging Engineering, 2020, 41(11): 33-39.
[55] 劉淑英, 李桂霞, 張冬梅, 等. 低溫貯藏下不同1-MCP濃度對(duì)桃生理特性的影響[J]. 食品科技, 2016, 41(2): 38-41.
LIU Shu-ying, LI Gui-xia, ZHANG Dong-mei, et al. Effect of Different Concentration of 1-MCP on the Peach Physiology Character during Cold Storage[J]. Food Science and Technology, 2016, 41(2): 38-41.
[56] 李軍, 林韌安, 林建紅, 等. 1-MCP處理結(jié)合MAP包裝對(duì)‘湖景蜜露’桃貯藏品質(zhì)及能量代謝的影響[J]. 浙江林業(yè)科技, 2017, 37(4): 24-32.
LI Jun, LIN Ren-an, LIN Jian-hong, et al. Effects of 1-Methylcyclopropene Treatment Combined with Modified Atmosphere Package on Quality and Energy Metabolism of Cold Stored Amygdalus Persica 'Hujingmilu' Fruit[J]. Journal of Zhejiang Forestry Science and Technology, 2017, 37(4): 24-32.
[57] WINK D A, HINES H B, CHENG R Y S, et al. Nitric Oxide and Redox Mechanisms in the Immune Response[J]. Journal of Leukocyte Biology, 2011, 89(6): 873-891.
[58] 田雯. NO對(duì)冷藏桃果實(shí)品質(zhì)相關(guān)的線粒體及其DNA聚合酶表達(dá)的調(diào)控作用[D]. 石河子: 石河子大學(xué), 2020: 12-23.
TIAN Wen. Regulation on Mitochondrial and Expression of Its DNA Polymerase Related to Fruit Quality by Nitric Oxide in Peach Fruit during Cold Storage[D]. Shihezi: Shihezi University, 2020: 12-23.
[59] 朱樹華, 劉孟臣, 周杰. 一氧化氮熏蒸對(duì)采后肥城桃果實(shí)細(xì)胞壁代謝的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2006, 39(9): 1878-1884.
ZHU Shu-hua, LIU Meng-chen, ZHOU Jie. Effects of Fumigation with Nitric Oxide on Cell Wall Metabolisms of Postharvest Feicheng Peaches[J]. Scientia Agricultura Sinica, 2006, 39(9): 1878-1884.
[60] CAI Hong-fang, HAN Shuai, YU Ming-liang, et al. Exogenous Nitric Oxide Fumigation Promoted the Emission of Volatile Organic Compounds in Peach Fruit during Shelf Life after Long-Term Cold Storage[J]. Food Research International, 2020, 133: 109135.
[61] HUANG Dan-dan, TIAN Wen, FENG Jian-rong, et al. Interaction between Nitric Oxide and Storage Temperature on Sphingolipid Metabolism of Postharvest Peach Fruit[J]. Plant Physiology and Biochemistry, 2020, 151: 60-68.
[62] 朱明濤, 余俊, 高瑞汝, 等. 桃果實(shí)不同成熟期總酚含量的變化及其抗氧化活性[J]. 北方園藝, 2017(5): 31-34.
ZHU Ming-tao, YU Jun, GAO Rui-ru, et al. Changes of Total Phenolic Contert and Antioxidant Capacity under Different Mature Periods of Peach Fruits[J]. Northern Horticulture, 2017(5): 31-34.
[63] 王雷, 李玲, 陳修德, 等. 噴施鈣對(duì)肥城桃果活性鈣含量及其在亞細(xì)胞分布的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2016, 22(4): 1102-1110.
WANG Lei, LI Ling, CHEN Xiu-de, et al. Effect of Foliar Ca Spraying on Calcium Dynamics, Fractions and Subcelluar Distribution of Pulp Cells of Feicheng Peach[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 1102-1110.
[64] MANGANARIS G A, VASILAKAKIS M, DIAMANTIDIS G, et al. The Effect of Postharvest Calcium Application on Tissue Calcium Concentration, Quality Attributes, Incidence of Flesh Browning and Cell Wall Physicochemical Aspects of Peach Fruits[J]. Food Chemistry, 2007, 100(4): 1385-1392.
[65] 陳留勇, 孔秋蓮, 孟憲軍, 等. 浸鈣處理對(duì)黃桃后熟軟化的影響[J]. 食品科技, 2003, 28(7): 22-24.
CHEN Liu-yong, KONG Qiu-lian, MENG Xian-jun, et al. Effect of Calcium Treatment on Ripening and Softening of Peach[J]. Food Science and Technology, 2003, 28(7): 22-24.
[66] 梁志宏, 劉剛, 王俊宇, 等. 羧甲基殼聚糖涂膜對(duì)大久保桃保鮮及貨架品質(zhì)的影響[J]. 食品工業(yè)科技, 2015, 36(3): 353-356.
LIANG Zhi-hong, LIU Gang, WANG Jun-yu, et al. Effect of N, O- Carboxymethyl Chitosan Coating on Storage and Shelf-Life Quality of Okubo Peach[J]. Science and Technology of Food Industry, 2015, 36(3): 353-356.
[67] JIAO Wen-xiao, SHU Chang, LI Xiang-xin, et al. Preparation of a Chitosan-Chlorogenic Acid Conjugate and Its Application as Edible Coating in Postharvest Preservation of Peach Fruit[J]. Postharvest Biology and Technology, 2019, 154: 129-136.
Research Progress of Peach Storage Technology
JIA Xiao-yu1,2,3,4, SHAO Li-mei5, LI Jin-jin6, ZHANG Peng1,2,3,4, LI Jiang-kuo1,2,3,4
(1.Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; 2.National Engineering and Technology Research Center for Preservation of Agricultural Products (Tianjin), Tianjin 300384, China; 3.Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300384, China; 4.Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China; 5.Food Science College, Shenyang Agricultural University, Shenyang 110866, China; 6.School of Higher Vocation Technology, Anshan Normal University, Anshan 114016, China)
The work aims to provide reference and idea for the development of peach preservation technology in China by summarizing various storage and preservation technologies of peach and selecting suitable storage methods. The factors affecting the physiological changes and the quality of postharvest peach were discussed, and the physical, chemical and biological preservation technologies applied in peach storage and preservation were investigated. The application of preservation technology to peach increased the shelf life to some extent, reduced the spoilage rate in the storage process, and expanded the economic development of peach industry in China. During the storage of peach, collision, damage and spoilage are easy to occur and temperature and storage method are the main factors affecting peach quality. A variety of preservation technologies are discussed, among which physical preservation is the most widely used, but consumes a large amount of energy, chemical preservation has obvious effect, but cannot guarantee absolute safety, and biological preservation is less widely used and still needs to be studied. Therefore, how to establish a comprehensive and effective preservation system still needs to be further studied and discussed.
peach; storage; affecting factor; research progress
S662.1
A
1001-3563(2022)03-0096-09
10.19554/j.cnki.1001-3563.2022.03.012
2021-05-31
天津市農(nóng)業(yè)科學(xué)院青年科研人員創(chuàng)新研究與實(shí)驗(yàn)項(xiàng)目(2021016);兵團(tuán)重點(diǎn)領(lǐng)域科技攻關(guān)項(xiàng)目(2019AB024)
賈曉昱(1988—),男,博士,助理研究員,主要研究方向?yàn)檗r(nóng)產(chǎn)品貯藏與加工。
李江闊(1974—),男,博士后,研究員,主要研究方向?yàn)檗r(nóng)產(chǎn)品安全與果蔬貯運(yùn)保鮮新技術(shù)。