• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      考慮周期性的城市道路車流量預(yù)測模型

      2022-11-17 08:32:56李鵬程
      關(guān)鍵詞:序列圖優(yōu)度車流量

      李鵬程

      (中遠(yuǎn)海運科技股份有限公司,上海 200135)

      0 引 言

      城市道路車流量預(yù)測是交通領(lǐng)域的研究熱點之一。準(zhǔn)確預(yù)測車流量,能使交通管理部門提前對未來的交通運行狀況做出判斷,在制訂交通管控和誘導(dǎo)預(yù)案時具有可靠的數(shù)據(jù)支撐,最終達(dá)到緩解交通擁堵、節(jié)約出行時間和提高出行效率的目的。有效解決交通擁堵問題有助于減少交通事故、環(huán)境污染和能源浪費,因此對車流量進(jìn)行預(yù)測具有重要的現(xiàn)實意義。已有很多學(xué)者采用不同方法捕捉車流量規(guī)律,建立預(yù)測、分析模型,其中差分自回歸移動平均(Autoregressive Integrated Moving Average,ARIMA)模型是比較基礎(chǔ)、常用的模型,廣泛應(yīng)用于車流量等時間序列數(shù)據(jù)的分析中。然而,ARIMA模型在分析歷史車流量規(guī)律時忽略了周期性因素。所謂周期性,是指流量在特定時期(年、季度、月、周和節(jié)假日等)內(nèi)表現(xiàn)出相似的變化趨勢或具有相當(dāng)?shù)乃健?/p>

      目前,研究人員[1-4]已在船舶交通流量、空中交通流量、軌道交通客流量和交通樞紐客流量等領(lǐng)域建立多種考慮季節(jié)性和周期性因素的模型。在道路交通流量預(yù)測方面,很多研究都表明,考慮過去一定周期內(nèi)的變化規(guī)律的模型能更準(zhǔn)確地預(yù)測未來的車流量。祁偉等[5]認(rèn)為交通流數(shù)據(jù)存在很強(qiáng)的周期性,采用考慮季節(jié)性的ARIMA模型能得到很好的預(yù)測效果;張建晉等[6]指出城市交通流量數(shù)據(jù)具有較為明顯的以天或周為周期的統(tǒng)計學(xué)特征;孫湘海等[7]通過研究發(fā)現(xiàn),考慮日周期性和周周期性的模型預(yù)測城市道路短期交通流量的能力最強(qiáng),且不同周內(nèi)的交通流變化具有相似性,若沒有特殊事件的影響,每周相應(yīng)日的流量存在共性。然而,在這些研究中:文獻(xiàn)[5]和文獻(xiàn)[7]只是將模型應(yīng)用于稀疏交通流的預(yù)測中,未對其在常規(guī)車流量預(yù)測中的適用性進(jìn)行研究;文獻(xiàn)[6]建立的模型較為復(fù)雜,對預(yù)測結(jié)果解釋的能力有待提升。本文考慮對常用的ARIMA模型進(jìn)行優(yōu)化,將其應(yīng)用于日常的車流量預(yù)測中。建立考慮周周期性(周期為7 d)的ARIMA模型,分析周期性規(guī)律對車流量預(yù)測效果的影響。

      本文提出的方法除了能用來預(yù)測城市車流量以外,還能應(yīng)用于數(shù)據(jù)存在相似規(guī)律的其他業(yè)務(wù)中。目前已依托某城市公路管養(yǎng)平臺積累大量養(yǎng)護(hù)數(shù)據(jù),若本文提出的模型經(jīng)驗證有效,可直接將其應(yīng)用于實際業(yè)務(wù)中,比如預(yù)測道路養(yǎng)護(hù)投訴量等。

      1 數(shù)據(jù)來源及建模流程

      1.1 數(shù)據(jù)來源及統(tǒng)計分析

      本文建模所用車流量數(shù)據(jù)來源于廣東省政府的開放平臺。以某條城市道路的車流量日統(tǒng)計數(shù)據(jù)為例建立ARIMA模型,驗證考慮周周期性的模型具有更好的車流量預(yù)測效果。由于ARIMA模型要求原始數(shù)據(jù)具有平穩(wěn)性,且本文還將研究車流量的周周期性,因此對車流量數(shù)據(jù)有一定的要求??紤]到數(shù)據(jù)缺失值較多時無法用于建模,加上開放平臺的數(shù)據(jù)具有延遲性,本文選用某年10月至次年4月的車流量數(shù)據(jù)(共27個完整周期(1個周期7 d),193條連續(xù)日期的數(shù)據(jù))進(jìn)行分析,無缺失值。對原始車流量數(shù)據(jù)進(jìn)行描述性統(tǒng)計分析,結(jié)果見表1。從表1中可看出:10月份的車流量最大,平均日車流量為5 728輛;4月份的車流量最小,平均日車流量為1 819輛。日車流量最大為15 166輛,最小為379輛;月度車流量呈不平穩(wěn)變化規(guī)律。

      表1 原始車流量描述性統(tǒng)計分析結(jié)果

      1.2 ARIMA模型構(gòu)建流程

      ARIMA模型由自回歸(Autoregressive,AR)模型和移動平均(Moving Average,MA)模型2部分組成。

      1)AR模型利用歷史車流量預(yù)測當(dāng)前的值yt(t為時間,d),p階自回歸模型AR(p)代表yt的值與之前的p個值有關(guān),表達(dá)式[8]為

      yt=α0+α1yt-1+α2yt-2+…+αpyt-p+εt

      (1)

      式(1)中:α0為常數(shù);εt為誤差項;α1,α2,…,αp為回歸系數(shù)。

      2)MA模型表示車流量與其誤差項之間的線性關(guān)系,q階移動平均模型MA(q)代表yt與誤差的回歸,表達(dá)式[8]為

      yt=β0+εt-β1εt-1-β2εt-2-…-βqεt-q

      (2)

      式(2)中:β0為常數(shù);β1,β2,…,βq為回歸系數(shù)。

      因此,ARIMA模型的表達(dá)式[8]可表示為

      yt=γ0+α1yt-1+α2yt-2+…+αpyt-p+εt-β1εt-1-β2εt-2-…-βqεt-q

      (3)

      式(3)中:γ0為常數(shù)。

      ARIMA模型構(gòu)建步驟見圖1。在建立ARIMA模型時,要求時間序列是平穩(wěn)的。所謂平穩(wěn),是指所有車流量值都圍繞某一水平直線上下波動。然而,大多數(shù)時間序列數(shù)據(jù)都是不平穩(wěn)的,因此要先對原始車流量數(shù)據(jù)進(jìn)行平穩(wěn)性檢驗。平穩(wěn)性檢驗的方法主要有序列圖和自相關(guān)圖等[9]。若原始車流量數(shù)據(jù)為非平穩(wěn)時間序列數(shù)據(jù),則需對其進(jìn)行差分。差分是使時間序列平穩(wěn)化的常用方法,用后值減去前值,以消除前后數(shù)據(jù)之間的依賴性[10]。進(jìn)行差分的次數(shù)d稱為階數(shù),由于每次差分都會引起信息損失,差分值次數(shù)一般不超過2次[11]。

      圖1 ARIMA模型構(gòu)建步驟

      將原始車流量數(shù)據(jù)轉(zhuǎn)化為平穩(wěn)時間序列數(shù)據(jù)之后,需通過自相關(guān)圖和偏自相關(guān)圖中的拖尾步數(shù),大致確定ARIMA(p,d,q)模型中p和q的值,該過程即為模型定階過程。

      此后,進(jìn)行參數(shù)估計和檢驗,其中檢驗主要是進(jìn)行白噪聲檢驗,根據(jù)楊-博克斯Q檢驗結(jié)果的顯著性,判斷殘差是否屬于白噪聲序列。當(dāng)顯著性大于0.05時,認(rèn)為模型提取的信息比較充分,可接受。此外,還要根據(jù)p和q取不同的值時ARIMA(p,d,q)模型的擬合指標(biāo),確定使模型最優(yōu)的p和q的值,即確定最優(yōu)模型。

      對于不同的模型,主要根據(jù)以下2個指標(biāo)選擇最優(yōu)模型:

      1)平穩(wěn)R方。R方為原始車流量數(shù)據(jù)的模型決定系數(shù),其取值范圍為小于等于1,取值越大,代表模型的擬合優(yōu)度越好。平穩(wěn)R方的取值范圍與普通R方完全相同,但其是采用模型的平穩(wěn)部分進(jìn)行計算的,當(dāng)原始車流量數(shù)據(jù)具有周期性波動特征時,該指標(biāo)優(yōu)于普通R方。

      2)正態(tài)化BIC。正態(tài)化BIC是基于均方誤差的分?jǐn)?shù),考慮罰分和序列長度,其值越小,代表模型越好。

      2 ARIMA模型構(gòu)建

      本文采用SPSS 26.0軟件繪制車流量序列圖、自相關(guān)圖和偏自相關(guān)圖,并進(jìn)行建模預(yù)測等,車流量序列圖見圖2。

      圖2 車流量序列圖

      由圖2可知,原始車流量數(shù)據(jù)呈上下波動,且大致在每周都有1個車流量高峰日,可能存在周周期性特征,不滿足ARIMA模型的平穩(wěn)性要求,因此需先對原始數(shù)據(jù)進(jìn)行差分處理。進(jìn)行1次差分處理之后,車流量序列去除了長期趨勢,圍繞均值上下波動,認(rèn)為序列達(dá)到了平穩(wěn)要求,可確定差分次數(shù)d=1,繼續(xù)進(jìn)行ARIMA(p,1,q)模型構(gòu)建。圖3為1階差分之后的車流量序列圖。

      圖3 1階差分之后的車流量序列圖

      根據(jù)自相關(guān)圖和偏自相關(guān)圖(見圖4)確定ARIMA(p,1,q)模型中p和q的值。由圖4可知:在偏自相關(guān)圖中,在1階時超出置信區(qū)間,1階拖尾,可確定p=1;在自相關(guān)圖中同樣如此,可確定q=1。由此,可建立ARIMA(1,1,1)模型。

      a)自相關(guān)圖

      利用SPSS軟件的時間序列預(yù)測模塊,選擇車流量作為因變量,建立ARIMA(1,1,1)模型并進(jìn)行參數(shù)估計,得到一系列模型擬合指標(biāo),見圖5。由圖5可知,模型ARIMA(1,1,1)的擬合優(yōu)度較差,僅為0.198,且楊-博克斯Q檢驗顯著性為0.014,小于0.050,說明建立的ARIMA模型未通過白噪聲檢驗,模型中還忽略了有用的信息。根據(jù)各種車流量預(yù)測研究中對周期性和季節(jié)性的總結(jié),本文認(rèn)為該ARIMA模型的擬合優(yōu)度較差,可在模型中考慮周周期性對車流量的影響,建立新的ARIMA模型。

      3 考慮周期性的ARIMA模型構(gòu)建

      下面在上述ARIMA(1,1,1)模型的基礎(chǔ)上考慮周期性因素,建立ARIMA(1,1,1)(P,D,Q)S模型,其中S為周期。由于考慮的是周周期性的影響,因此S=7。ARIMA(1,1,1)(P,D,Q)7的建模流程與ARIMA(1,1,1)相同,需先確定差分次數(shù)D,再確定P和Q,最后進(jìn)行建模和白噪聲檢驗。圖6為1階季節(jié)性差分后的車流量序列圖。由圖6可知,進(jìn)行1次季節(jié)性差分處理之后,序列圍繞0值波動,D=1。

      圖6 1階季節(jié)性差分后的車流量序列圖

      利用SPSS 26.0軟件得到經(jīng)過1次差分和1次季節(jié)性差分處理之后的自相關(guān)圖和偏自相關(guān)圖,見圖7。通過觀察發(fā)現(xiàn),P和Q均不超過3[7]。依次建立P=0,1,2,3和Q=0,1,2,3的ARIMA(1,1,1)(P,1,Q)7模型,比較各模型的擬合優(yōu)度、正態(tài)化BIC和楊-博克斯Q檢驗結(jié)果,選出最優(yōu)模型。建立的5個ARIMA(1,1,1)(P,1,Q)7模型指標(biāo)擬合結(jié)果見圖8。

      a)自相關(guān)圖

      e)ARIMA(1,1,1)(1,1,1)7模型

      由圖8可知:ARIMA(1,1,1)(0,1,1)7、ARIMA(1,1,1)(0,1,2)7、ARIMA(1,1,1)(1,1,2)7和ARIMA(1,1,1)(2,1,1)7等4個模型的擬合優(yōu)度較好,分別達(dá)到了0.567、0.572、0.574和0.573,但這4個模型的楊-博克斯Q檢驗結(jié)果的顯著性分別為0.044、0.049、0.044和0.045,均小于0.050,說明這4個模型都未通過白噪聲檢驗,建立的模型不夠好。通過比較,最終選定擬合優(yōu)度和楊-博克斯Q檢驗結(jié)果顯著性均較好的ARIMA(1,1,1)(1,1,1)7模型為最優(yōu)模型。該模型的擬合優(yōu)度平穩(wěn)R方達(dá)到了0.573,相比之前的模型有很大的提高;楊-博克斯Q檢驗結(jié)果的顯著性為0.056,大于0.050,說明該模型通過了白噪聲檢驗。考慮周期性特征的ARIMA(1,1,1)(1,1,1)7模型明顯優(yōu)于ARIMA(1,1,1)模型。

      最后,利用建立的ARIMA(1,1,1)(1,1,1)7模型對4月23日—4月26日的車流量進(jìn)行預(yù)測,并將所得結(jié)果與實際車流量相對比。ARIMA(1,1,1)(1,1,1)7模型車流量預(yù)測結(jié)果見圖9。從圖9中可看出,預(yù)測車流量與實際車流量的整體變化趨勢大致相同,在預(yù)測的4 d中,除了4月25日的預(yù)測效果與實際有較大差距,另外3 d的預(yù)測結(jié)果良好。這說明該模型適合預(yù)測較短天數(shù)內(nèi)(即前2 d)的車流量,預(yù)測天數(shù)變長時預(yù)測效果會變差。結(jié)合擬合優(yōu)度平穩(wěn)R方達(dá)到了0.573的較高水平,認(rèn)為建立的ARIMA(1,1,1)(1,1,1)7模型較好。

      圖9 ARIMA(1,1,1)(1,1,1)7模型車流量預(yù)測結(jié)果

      4 結(jié) 語

      本文建立了考慮周期性的ARIMA(1,1,1)(1,1,1)7模型,得出的擬合優(yōu)度相比原始的ARIMA模型有很大提升。因此,在進(jìn)行車流量預(yù)測過程中,不能忽略可能存在的周期性或季節(jié)性特征的影響。但是,本文建模采用的數(shù)據(jù)量較小,模型包含的車流量影響因素單一,后續(xù)可嘗試建立考慮不同輸入變量的ARIMA模型,以不斷提高模型的預(yù)測精度。此外,本文驗證了提出的考慮周期性的車流量預(yù)測模型在城市車流量預(yù)測方面的有效性,當(dāng)?shù)缆饭莛B(yǎng)、養(yǎng)護(hù)等業(yè)務(wù)中涉及類似與時間序列相關(guān)的數(shù)據(jù)時,可直接利用本文的建模思路和方法快速實現(xiàn)對養(yǎng)護(hù)數(shù)據(jù)的預(yù)測分析,產(chǎn)生新的養(yǎng)護(hù)應(yīng)用場景。

      猜你喜歡
      序列圖優(yōu)度車流量
      基于 ROADS 的面向場景業(yè)務(wù)架構(gòu)建模方法
      勘 誤 聲 明
      如何正確運用χ2檢驗
      ——擬合優(yōu)度檢驗與SAS實現(xiàn)
      基于SPSS序列法的商務(wù)談判實務(wù)課程混合教學(xué)模式實證研究
      物流科技(2021年10期)2021-05-12 08:41:06
      應(yīng)用ETDFA生成CBTC聯(lián)鎖軟件形式化模型的方法
      思維游戲
      喜劇世界(2016年24期)2017-01-04 05:06:56
      可拓方法的優(yōu)度評價在輸氣管優(yōu)化設(shè)計中的應(yīng)用
      參考答案
      可拓優(yōu)度評價法在CRM軟件供應(yīng)商選擇中的應(yīng)用
      科技與管理(2014年4期)2014-12-31 11:25:39
      高速公路重大節(jié)假日免費車流量金額算法研究與應(yīng)用
      神农架林区| 浑源县| 法库县| 浦城县| 临高县| 宾阳县| 新丰县| 鲁甸县| 津南区| 西青区| 容城县| 博客| 新巴尔虎左旗| 云安县| 融水| 鹤庆县| 洱源县| 郎溪县| 宣恩县| 巴东县| 丰台区| 繁峙县| 波密县| 丰都县| 常山县| 汝州市| 丰宁| 宜黄县| 肃北| 湖南省| 青田县| 广宗县| 仁怀市| 修武县| 石景山区| 松滋市| 博湖县| 秭归县| 丹巴县| 澄城县| 泊头市|