劉越仁,辛永磊,許立坤,段體崗,高顯澤,2,郭明帥,2
Ti/Co3O4/RuO2-IrO2納米結(jié)構(gòu)陽極電催化析氧研究
劉越仁1,辛永磊1,許立坤1,段體崗1,高顯澤1,2,郭明帥1,2
(1.中國船舶重工集團公司第七二五研究所 海洋腐蝕與防護重點實驗室,山東 青島 266237;2.哈爾濱工程大學 材料科學與化學工程學院,哈爾濱 150001)
研發(fā)含納米結(jié)構(gòu)Co3O4中間層的Ti/Co3O4/RuO2-IrO2陽極,并對其電化學析氧性能進行研究,以提升Ti/RuO2-IrO2金屬氧化物陽極的電化學析氧性能。在Ti基底上電沉積制備Co(OH)2,燒結(jié)形成Co3O4納米片結(jié)構(gòu),隨后采用熱分解工藝在Ti/Co3O4表面制備RuO2-IrO2電催化層,從而構(gòu)建了Ti/Co3O4/ RuO2-IrO2復合陽極。使用透射電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)、X-射線衍射儀(XRD)和電化學工作站對涂層的微觀表面形貌、物相組成、電化學性能等進行觀察與分析。SEM顯示出Ti/Co3O4納米片上RuO2-IrO2的負載量隨涂刷次數(shù)增加逐漸增多,最終完全遮蓋Co3O4納米片中間層。且隨著RuO2- IrO2前驅(qū)體溶液涂覆次數(shù)的增加,XRD觀察到RuO2-IrO2衍射峰強度在逐漸增大。TEM測試顯示Co3O4中間層是由納米顆粒堆疊組成且具有多孔結(jié)構(gòu)。電化學極化曲線測試表明,涂覆三次RuO2-IrO2層的含Co3O4中間層陽極析氧電位最低,當電流密度達到10 mA/cm2時,析氧電位僅為1.326 V(vs. SCE),低于無中間層的Ti/RuO2-IrO2陽極(1.413 V)。循環(huán)伏安測試表明,Ti/Co3O4/RuO2-IrO2陽極的伏安電量達到62.83 mC/cm2,相較于Ti/RuO2-IrO2陽極的23.65 mC/cm2提高了166%。穩(wěn)定性能試驗表明,在經(jīng)過1 000次循環(huán)穩(wěn)定性試驗后,加入Co3O4納米片中間層的復合陽極的伏安電量降低了35.94%,低于無中間層陽極48.88%的伏安電量損耗率。循環(huán)極化試驗后的Ti/Co3O4/RuO2-IrO2復合陽極的電化學活性仍明顯優(yōu)于循環(huán)極化試驗前的Ti/RuO2-IrO2陽極。結(jié)論 Co3O4納米片中間層的加入使得Ti/Co3O4/RuO2-IrO2陽極的電催化析氧性能和穩(wěn)定性都得到了提升。
RuO2-IrO2;Co3O4納米片;電催化;析氧;金屬氧化物陽極;伏安電量
鈦基金屬氧化物陽極具備優(yōu)秀的電催化性能,在陰極保護、氯堿工業(yè)、污水處理等領(lǐng)域得到了廣泛的應用。這些陽極材料是由具有高催化性能的貴金屬氧化物(如IrO2、RuO2等)以及化學和電化學惰性氧化物(如TiO2、Ta2O5等)的混合物組成[1]。有研究表明[2],混合金屬氧化物有利于提高陽極的穩(wěn)定性。在酸性電解液中,Ru及其氧化物擁有優(yōu)異的析氧反應(OER)活性[3-4]。但是,Ru作為貴金屬元素成本較高,阻礙了其在工業(yè)化中的廣泛應用[5]。除此之外,OER過程需要高的活化能,產(chǎn)生高能中間體[6]。在析氧反應的過程中Ru2+也會轉(zhuǎn)變?yōu)槎喾N價態(tài)導致溶解,所以通常析氧反應和陽極涂層的溶解會同時發(fā)生[7]。
至今已有諸多研究人員致力于研發(fā)活性高、穩(wěn)定性強且成本低的OER催化劑,以減少貴金屬Ru和Ir的用量和提高陽極壽命[8],這促進了廉價電極材料(如MnO2、NiO、Co3O4等)的研究[9]。另外,通過在基底與催化層之間加入中間層可抑制活性氧向鈦基體表面擴散,從而可以有效地提高陽極的穩(wěn)定性和壽命[10]。
Co3O4是一種具有尖晶石結(jié)構(gòu)的p型半導體,由2種價態(tài)的鈷離子組成,一個Co2+位于四面體位置,另外2個Co3+位于八面體位置[11]。這種尖晶石結(jié)構(gòu)的氧化物對析氧反應表現(xiàn)出良好的電化學活性。但尖晶石Co3O4電極在酸性溶液中不夠穩(wěn)定[12],其單獨作為陽極材料使用時穩(wěn)定性不足,因此常常需要和其他組元復合構(gòu)成混合氧化物陽極[12-13]。有研究顯示,RuO2+Co3O4混合物的組成比單一的氧化物擁有更好的電化學活性,這是因為RuO2+Co3O4具有更高的比表面積并促進RuO2在表面富集[14-15]。這些特性使得采用尖晶石Co3O4作為貴金屬催化劑的部分替代物成為可能[16]。由于尖晶石型Co3O4與涂層活性氧化物能夠形成固溶體,且納米結(jié)構(gòu)的Co3O4導電性能優(yōu)異,因此可以考慮采用納米結(jié)構(gòu)Co3O4作為金屬氧化物陽極的中間層來提高陽極性能。
本研究工作中,我們使用電沉積方法,通過在氧化催化劑和基底之間添加Co3O4納米片中間層來制備RuO2-IrO2的鈦基金屬氧化物陽極。采用恒電位電沉積在Ti基底沉積Co(OH)2,隨后燒結(jié)制備Co3O4納米片中間層。研究了Co3O4納米片中間層和表層涂刷次數(shù)對析氧陽極微觀結(jié)構(gòu)、電化學性能以及穩(wěn)定性的影響。
將TA0鈦板試樣(尺寸為100 mm′20 mm′10 mm)使用質(zhì)量分數(shù)為8%的混合溶液(NaPO4∶Na2CO3∶NaOH=45∶25∶4)在80 ℃下堿洗1 h除油,用超純水反復清洗后,置于10%(質(zhì)量分數(shù))的草酸水溶液中煮沸2 h,以去除Ti基體表面的氧化層并獲得均勻的灰色麻面,取出后用無水乙醇反復清洗。
采用恒電位電沉積方法制備涂層,經(jīng)過預處理后的Ti基體作為工作電極(陰極),對電極(陽極)使用表面積為4 cm2的鉑片,飽和甘汞電極作為參比電極。鍍液使用Co(NO3)2水溶液,濃度為0.05 mol/L。外加電位?1.0 V(vs. SCE),在25 ℃下沉積30 min。電沉積完成后,Ti基體表面形成藍綠色涂層。將試樣取出使用超純水清洗后,置于燒結(jié)爐中加熱至350 ℃保溫1 h獲得Co3O4中間層。反應過程如下[17-18]:
圖1展示了含Co3O4中間層Ti/Co3O4/RuO2-IrO2復合陽極的制備過程。通過將H2IrCl6和RuCl3·H2O溶解在丁醇中,獲得濃度為0.3 mol/L(Ir∶Ru=1∶9)的混合溶液,將混合溶液在制備好的Ti/Co3O4樣品上進行涂覆。涂刷后,樣品在120 ℃下干燥20 min,然后在馬弗爐中加熱到500 ℃燒結(jié)1 h。分別重復上述過程1~5次以獲得不同RuO2-IrO2負載量的Ti/ Co3O4/RuO2-IrO2復合陽極,分別記為Co@RuIr-1~ Co@RuIr-5,無中間層的氧化物陽極記為Ti/RuIr。
使用德國Bruker公司D8 Advance X-射線衍射儀對試樣進行相結(jié)構(gòu)分析。選用Cu-Kα(=0.154 18 nm)射線,衍射角2的掃描范圍為20°~90°,掃描速度為5 (°)/min。
采用日本電子公司JSM-6700F場發(fā)射掃描電子顯微鏡和美國FEI公司Tecnai G2 F20 S-Twin 透射電子顯微鏡來對涂層的表面微觀形貌信息進行采集。使用JSM-6700F 掃描電鏡所附帶的能譜分析儀(EDS)評價涂層的成分信息。
電化學測試在室溫下進行,使用普林斯頓Parstat2273電化學工作站,采用三電極體系,電解液為0.5 mol/L H2SO4,工作電極為制備的復合陽極,表面積為4 cm2的鉑片電極作對電極,參比電極為飽和甘汞電極(SCE),試樣的測試面積為1 cm2。動電位極化測試的掃描范圍從0~1.8 V(vs. SCE),掃描速度為1 mV/s。循環(huán)伏安測試的掃速為20 mV/s,掃描范圍是0~1.2 V(vs. SCE)。電極的穩(wěn)定性試驗使用循環(huán)伏安電解法,通過外加線性變化的電壓,監(jiān)測所制備的陽極涂層的穩(wěn)定性,掃描速率是100 mV/s,循環(huán)的次數(shù)是1 000次,掃描的范圍為0~1.2 V(vs. SCE)。
圖1 納米結(jié)構(gòu)的Ti/Co3O4/RuO2-IrO2復合陽極的制備流程圖
2.1.1 X射線衍射分析
圖2為經(jīng)過處理的Ti基體、Ti/Co3O4和Ti/Co3O4/ RuO2-IrO2陽極的XRD數(shù)據(jù)圖。Ti/Co3O4試樣在22.1°、36.5°、43.1°與45.1°出現(xiàn)了與Co3O4(PDF#97- 062-4571)相符的特征峰,表明制備的納米片狀結(jié)構(gòu)中間層為立方相Co3O4。此外,不同表層涂覆次數(shù)的Ti/Co3O4/RuO2-IrO2陽極譜圖中均在32.8°、41.2°與64.2°左右出現(xiàn)衍射峰,這與金紅石相RuO2(PDF#97- 008-4575)和IrO2(PDF#97-008-4577)相匹配,晶面指數(shù)如圖2所示。由于Ru4+和Ir4+的離子半徑非常接近,分別為0.076、0.077 nm,且IrO2和RuO2都是金紅石型氧化物[19],根據(jù)Hume-Rothery理論,這種混合二元氧化物體系可以形成金紅石型固溶體[20]。隨著RuO2-IrO2前驅(qū)體溶液涂覆次數(shù)的增加,XRD觀察到RuO2-IrO2衍射峰強度在逐漸增大且更加寬泛,根據(jù)謝樂公式推斷晶粒尺寸,Co3O4納米片中間層的存在使得負載的RuO2-IrO2固溶體具有更加細小的晶粒。
圖2 Ti基體、Ti/Co3O4以及Ti/Co3O4/RuO2-IrO2陽極的XRD譜圖
2.1.2 掃描電子顯微鏡分析
圖3為使用恒電位電沉積工藝在Ti基體上制備的納米片狀結(jié)構(gòu)在高溫燒結(jié)前和燒結(jié)后的微觀形貌照片。電沉積結(jié)束后,在Ti基底的表面形成了一層藍綠色的涂層,微觀形貌如圖3a所示,呈現(xiàn)出相互垂直交錯生長的納米片層結(jié)構(gòu),完全遮蓋了Ti基體。根據(jù)相關(guān)研究,電沉積后的涂層為Co(OH)2[17,21-23]。制備的Co(OH)2涂層在經(jīng)過350 ℃燒結(jié)后轉(zhuǎn)變?yōu)镃o3O4,經(jīng)過燒結(jié)后的表面依然保持著原本的片狀結(jié)構(gòu),但粗糙的表面變得更光滑平整,這和相關(guān)研究的結(jié)果是一致的[24]。光滑平整表面的形成可能與高溫燒結(jié)期間發(fā)生的氧化反應以及再結(jié)晶過程有關(guān)。
圖4展示了在Ti/Co3O4的表面,涂刷不同次數(shù)前驅(qū)體溶液所制備的Ti/Co3O4/RuO2-IrO2陽極的微觀形貌。制備的陽極顯示出與傳統(tǒng)無中間層陽極龜裂狀完全不同的表面形貌[25]。圖4a為涂刷1次RuO2-IrO2前驅(qū)體溶液制備的復合陽極,Co3O4納米片中間層上負載的RuO2-IrO2組分數(shù)量極少。伴隨著涂刷次數(shù)的遞增,表面負載的RuO2-IrO2組分逐漸增多。當涂刷次數(shù)達到3次如圖4c所示,在Ti/Co3O4表面均勻地負載著顆粒細小的RuO2-IrO2活性組分,但是Co3O4納米片結(jié)構(gòu)依然清晰可見。涂刷四次時,負載的RuO2-IrO2涂層厚度明顯增加。圖4e顯示涂刷5次時,Co3O4中間層的納米片結(jié)構(gòu)已經(jīng)被RuO2-IrO2涂層完全覆蓋,此時Ti/Co3O4/RuO2-IrO2復合陽極的比表面積減少。使用EDS分析了復合陽極的化學成分,其化學元素組成并無區(qū)別,均檢測到了Ti、Ir、Ru、O、Cl和Co元素。但是隨著熱分解法制備RuO2-IrO2涂層時涂刷次數(shù)的增加,Ru和Ir的含量在逐漸增加。
圖3 Ti基體上電沉積制備的納米片陣列涂層在煅燒前后的SEM形貌
圖4 表面涂覆不同次數(shù)的Ti/Co3O4/RuO2-IrO2陽極的SEM形貌照片
2.1.3 透射電子顯微鏡分析
通過TEM進一步觀察Co3O4納米片和Ti/Co3O4/ RuO2-IrO2陽極的微觀精細結(jié)構(gòu)。圖5a為Co3O4中間層的TEM圖像,可以發(fā)現(xiàn),Co3O4納米片由大小均一的不規(guī)則小顆粒相互堆積而成,顆粒之間擁有較多空隙使得Co3O4納米片形成多孔的微觀結(jié)構(gòu)。這種疏松多孔的結(jié)構(gòu)可以大幅增加比表面積,有利于負載RuO2-IrO2活性組分,增大陽極涂層與溶液的接觸面積。同時可以看出,0.24、0.47、0.28 nm的晶面間距分別和Co3O4的(311)、(111)及(220)晶面相匹配。
圖5 Co3O4中間層和Ti/Co3O4/RuO2-IrO2陽極涂層的TEM照片
圖5b為含中間層的Ti/Co3O4/RuO2-IrO2復合陽極涂層的TEM圖像,可以看出陽極涂層由顆粒細小均一的RuO2-IrO2納米顆粒呈團簇狀堆砌組成,并擁有孔洞結(jié)構(gòu)。同時可以看出,圖像的晶格條紋顯示0.28 nm與0.24 nm的晶面間距分別對應于立方相Co3O4的(220)和(311)晶面,0.32 nm的晶面間距與RuO2-IrO2組分的(110)晶面相匹配,且RuO2-IrO2組分的顆粒大小約為8 nm,分布于Co3O4中間層的邊緣。
2.2.1 極化曲線分析
圖6a為Ti/Co3O4、Ti/RuO2-IrO2(涂覆5次)和加入中間層的Ti/Co3O4/RuO2-IrO2(涂覆5次)陽極在0.5 mol/L H2SO4溶液中的動電位極化曲線。由圖可見Ti/Co3O4/RuO2-IrO2陽極的電催化活性最高,當達到10 mA/cm2的電流密度時,析氧電位為1.335 V(vs. SCE)。不含中間層的Ti/RuO2-IrO2陽極次之。而Ti/Co3O4電極由于沒有RuO2-IrO2電催化涂層,電化學活性差,達不到10 mA/cm2的電流密度。當過電位逐漸增長時,Ti/RuO2-IrO2與Ti/Co3O4/RuO2-IrO2陽極之間電流密度相差更大。圖6b給出了3種電極動電位極化曲線的Tafel區(qū),Ti/Co3O4電極的Tafel斜率最大,高達145.41 mV/dec,加入了Co3O4中間層的Ti/Co3O4/RuO2-IrO2陽極的Tafel斜率為90.13 mV/dec,相較于沒有中間層的Ti/RuO2-IrO2陽極的Tafel斜率(88.18 mV/dec)稍大。綜合考慮Tafel斜率、工作電流密度、析氧電位等因素,加入Co3O4中間層的Ti/Co3O4/RuO2-IrO2作為酸性電催化OER陽極材料更有優(yōu)勢。納米片層結(jié)構(gòu)的Co3O4可以提高電子導電性,Co3O4納米片的多孔結(jié)構(gòu)提供了更大的比表面積,可以增強反應過程的傳質(zhì)。加入Co3O4納米片中間層的Ti/Co3O4/RuO2-IrO2復合陽極,RuO2-IrO2涂層可以充分利用Co3O4中間層的納米片結(jié)構(gòu),有效增大電催化活性面積,從而增加了復合陽極的電催化OER活性。
圖6 Ti/Co3O4、Ti/RuO2-IrO2和Ti/Co3O4/RuO2-IrO2陽極在0.5 mol/L H2SO4溶液中的陽極極化曲線
為了研究在Ti/Co3O4基體上使用熱分解法制備陽極時RuO2-IrO2前驅(qū)體涂液涂刷的次數(shù)對復合陽極電催化性能的影響,測試了涂覆1~5次的Ti/Co3O4/ RuO2-IrO2陽極的極化曲線,如圖6c所示。圖中顯示出涂覆前3次時Ti/Co3O4/RuO2-IrO2陽極隨著RuO2-IrO2前體溶液涂覆次數(shù)的增加催化活性提高,在涂覆3次過后電催化活性優(yōu)異,隨后活性略有降低。這一現(xiàn)象的發(fā)生與RuO2-IrO2在Co3O4納米片中間層表面的負載量息息相關(guān)。隨著涂刷次數(shù)的增加,RuO2-IrO2的負載量逐漸增大,前3次涂刷溶液時,RuO2-IrO2對Co3O4納米片的利用率逐步增高,之后增加涂覆次數(shù)僅僅增大了RuO2-IrO2顆粒的負載量,但電化學活性位點的增加有限。涂刷3次制備的陽極表面,在Co3O4納米片中間層的表面均勻分布著顆粒細小的RuO2-IrO2組分,使得在高電位下析氧電化學活性最高。但圖6d的Tafel區(qū)表明,在1.3 V以下時涂覆3~5次RuO2-IrO2的陽極電化學活性差別較小,Tafel曲線幾乎重合。
2.2.2 循環(huán)伏安曲線分析
圖7為不同陽極在0.5 mol/L H2SO4溶液中的曲線和伏安電量。圖7a顯示出在相同RuO2-IrO2涂層的涂刷次數(shù)下,Ti/Co3O4/RuO2-IrO2陽極所圍成的曲線面積遠大于未引入中間層的Ti/RuO2-IrO2陽極。而根據(jù)Ti/Co3O4的曲線可知其在酸性環(huán)境下的電化學活性極差。Ti/RuO2-IrO2陽極的曲線較為平滑,在Ti/Co3O4/RuO2-IrO2的曲線中0.4~0.6 V(vs. SCE)出現(xiàn)了對稱的電流峰,證明發(fā)生了氧化還原反應,它們與可逆的Ru(III)/Ru(IV)和Ir(III)/Ir(IV)的氧化還原轉(zhuǎn)變有關(guān)[26]。圖7b為不同陽極的伏安電量的比較,顯示的伏安電量(*)可以從曲線的積分計算得出,其與表面活性位點的數(shù)量成正比[27]。Ti/Co3O4、Ti/RuO2-IrO2和Ti/Co3O4/RuO2-IrO2陽極的伏安電量分別為0.55、23.65、62.83 mC/cm2。其中Ti/Co3O4/RuO2-IrO2陽極相較于Ti/RuO2-IrO2陽極,伏安電量提升了1.66倍。加入Co3O4中間層后的Ti/Co3O4/RuO2-IrO2復合陽極電流密度和伏安電量都有明顯的增大,這是因為疏松多孔的Co3O4中間層的存在使得電化學活性面積增加,RuO2-IrO2組分的晶粒尺寸有所減小,疏松多孔的微觀結(jié)構(gòu)可以增加陽極涂層活性組分的比表面積,為析氧反應提供更多的活性位點。
圖7 不同陽極在0.5 mol/L H2SO4溶液中的循環(huán)伏安曲線和伏安電量
圖7c顯示了不同RuO2-IrO2前驅(qū)體溶液涂刷次數(shù)制備的Ti/Co3O4/RuO2-IrO2陽極的曲線的變化。曲線在0.4、0.6 V(vs. SCE)之間的電位處觀察到了一對較寬的電流峰,這是由于Ru(III)/Ru(IV)和Ir(III)/Ir(IV)的氧化還原反應導致的。在0.7、1.1 V(vs. SCE)之間出現(xiàn)的寬峰可能與Ir(IV)/Ir(VI)的氧化還原轉(zhuǎn)變有關(guān)[26,28]。圖7d顯示出不同涂刷次數(shù)制備的陽極伏安電量的變化。當涂刷的次數(shù)從一次增加到2次的時候,Ti/Co3O4/RuO2-IrO2陽極的伏安電量大幅度增加,由于RuO2-IrO2涂層組分在Co3O4納米片中間層上負載量的增加,伏安電量也從從初始的17.76 mC/cm2變?yōu)?1.03 mC/cm2。隨著涂刷次數(shù)的變多,RuO2-IrO2對Co3O4中間層的利用率也逐漸增大,涂層增厚,電催化面積增加。但是涂覆3次以后,Ti/Co3O4/RuO2- IrO2陽極的伏安電量變化很小,這是因為Co3O4納米片的高表面積已被充分利用,陽極的活性表面積大小已經(jīng)趨于穩(wěn)定增加緩慢。隨著涂刷次數(shù)的繼續(xù)增加,Co3O4納米片結(jié)構(gòu)被完全覆蓋,電催化活性表面積已接近頂峰。結(jié)果表明,當涂覆3次后已達到最優(yōu)的電化學活性,繼續(xù)增加涂覆量并不能對電化學活性有明顯提升。
2.2.3 電極穩(wěn)定性分析
如圖8所示,對涂刷5次的Ti/Co3O4/RuO2-IrO2陽極和無中間層的Ti/RuO2-IrO2陽極進行循環(huán)穩(wěn)定性測試,比較加入Co3O4中間層對循環(huán)穩(wěn)定性測試前后電化學活性的差異。結(jié)果顯示,Ti/RuO2-IrO2陽極循環(huán)極化試驗前的伏安電量為23.65 mC/cm2,在經(jīng)過1 000圈的循環(huán)穩(wěn)定性測試之后降低至12.09 mC/cm2,降幅達到了48.88%。而加入Co3O4中間層的Ti/Co3O4/ RuO2-IrO2陽極循環(huán)穩(wěn)定性測試前后的伏安電量分別是62.83、40.25 mC/cm2,損失率為39.54%,低于無中間層的Ti/RuO2-IrO2陽極。不論是否加入Co3O4中間層,RuO2-IrO2陽極的析氧電催化活性都有較為明顯的下降,但有Co3O4中間層的陽極在循環(huán)極化試驗后的電化學活性仍明顯優(yōu)于循環(huán)極化試驗前的Ti/RuO2-IrO2陽極,這表明加入Co3O4中間層可以明顯改善RuO2-IrO2電催化劑的穩(wěn)定性。圖8c展現(xiàn)了在循環(huán)穩(wěn)定性測試對2陽極動電位極化曲線的影響,Ti/RuO2-IrO2陽極和Ti/Co3O4/RuO2-IrO2陽極在穩(wěn)定性測試前達到10 mA/cm2的電流密度時所需的電位分別為1.433、1.335 V(vs. SCE),穩(wěn)定性試驗后分別提升到1.485、1.385 V(vs. SCE),增長率為3.63%和3.75%,2種陽極在穩(wěn)定性測試前后的電位增長率相近。影響Ti/Co3O4/RuO2-IrO2陽極穩(wěn)定性的主要原因可歸結(jié)為:(1)Co3O4在酸性環(huán)境下發(fā)生析氧反應時穩(wěn)定性較差[29];(2)使用電沉積和高溫燒結(jié)方法在Ti基體表面制備的Co3O4納米片狀結(jié)構(gòu)和Ti基體的結(jié)合力尚需提升[30]。然而,不論是伏安電量還是循環(huán)極化測試都表明加入Co3O4中間層的Ti/Co3O4/RuO2-IrO2復合陽極在經(jīng)過長時間的循環(huán)穩(wěn)定性試驗后相較于未經(jīng)過穩(wěn)定性測試的無中間層Ti/RuO2-IrO2陽極電催化活性仍然要更加優(yōu)異。由此可見,使用電沉積和高溫燒結(jié)方法制備的Co3O4納米片中間層可以有效地提高RuO2-IrO2陽極的穩(wěn)定性。
圖8 Ti/RuO2-IrO2陽極和Ti/Co3O4/RuO2-IrO2陽極的循環(huán)極化穩(wěn)定性比較
1)采用電沉積和高溫煅燒的方法在Ti基體上成功制備了Co3O4中間層,隨后采用熱分解方法在其表面負載RuO2-IrO2涂層,制備了Ti/Co3O4/RuO2-IrO2復合陽極。Co3O4中間層具有納米片狀結(jié)構(gòu),隨著涂刷次數(shù)的遞增,Ti/Co3O4表面負載的RuO2-IrO2涂層組分逐漸增多,厚度增加,最終完全覆蓋Co3O4中間層。
2)加入Co3O4中間層的Ti/Co3O4/RuO2-IrO2陽極電催化活性明顯高于不含中間層的Ti/RuO2-IrO2陽極。納米片狀的Co3O4中間層擁有疏松多孔的結(jié)構(gòu)可以增加電子導電性,并增大比表面積;負載均勻分散的RuO2-IrO2涂層組分后,復合陽極的電催化活性表面積顯著增大。隨著制備的RuO2-IrO2涂層組分的增多,復合陽極的析氧電催化活性趨于穩(wěn)定。
3)循環(huán)極化試驗表明,Ti/Co3O4/RuO2-IrO2陽極的穩(wěn)定性優(yōu)于未加中間層的Ti/RuO2-IrO2陽極,有中間層的陽極在循環(huán)極化試驗后的電化學活性仍明顯高于循環(huán)極化試驗前的Ti/RuO2-IrO2陽極。
[1] DA SILVA L M, DE FARIA L A, BOODTS J F C. Elec-trochemical Impedance Spectroscopic (EIS) Investigation of the Deactivation Mechanism, Surface and Electrocatal-ytic Properties of Ti/RuO2()+Co3O4(1–) Electrodes[J]. Journal of Electroanalytical Chemistry, 2002, 532(1-2): 141-150.
[2] LEDENDECKER M, GEIGER S, HENGGE K, et al. Towards Maximized Utilization of Iridium for the Acidic Oxygen Evolution Reaction[J]. Nano Research, 2019, 12(9): 2275-2280.
[3] KHAN M A, ZHAO Hong-bin, ZOU Wen-wen, et al. Recent Progresses in Electrocatalysts for Water Elec-trolysis[J]. Electrochemical Energy Reviews, 2018, 1(4): 483-530.
[4] PITTKOWSKI R, KRTIL P, ROSSMEISL J. Rationality in the New Oxygen Evolution Catalyst Development[J]. Current Opinion in Electrochemistry, 2018, 12: 218-224.
[5] REIER T, NONG H N, TESCHNER D, et al. Electrocata-lytic Oxygen Evolution Reaction in Acidic Environments- Reaction Mechanisms and Catalysts[J]. Advanced Energy Materials, 2017, 7(1): 1601275.
[6] LYONS M E G, DOYLE R L, FERNANDEZ D, et al. The Mechanism and Kinetics of Electrochemical Water Oxidation at Oxidized Metal and Metal Oxide Electrodes. Part 1. General Considerations: A Mini Review[J]. Elec-trochemistry Communications, 2014, 45: 60-62.
[7] K?TZ R, LEWERENZ H J, BRüESCH P, et al. Oxygen Evolution on Ru and Ir Electrodes[J]. Journal of Elect-roanalytical Chemistry and Interfacial Electrochemistry, 1983, 150(1-2): 209-216.
[8] YANG Meng-xi, WANG Jun-tian, SHUANG Chen-dong, et al. The Improvement on Total Nitrogen Removal in Nitrate Reduction by Using a Prepared CuO-Co3O4/Ti Cathode[J]. Chemosphere, 2020, 255: 126970.
[9] LIU Yang, ZHAO Wei-wei, ZHANG Xiao-gang. Soft Template Synthesis of Mesoporous Co3O4/RuO2·H2O Composites for Electrochemical Capacitors[J]. Electroc-himica Acta, 2008, 53(8): 3296-3304.
[10] LI Xiao-liang, SHAO Dan, XU Hao, et al. Fabrication of a Stable Ti/TiOH/Sb–SnO2Anode for Aniline Degra-dation in Different Electrolytes[J]. Chemical Engineering Journal, 2016, 285: 1-10.
[11] WANG H Y, HUNG S F, CHEN Han-yi, et al. In Ope-rando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4[J]. Journal of the American Chemical Society, 2016, 138(1): 36-39.
[12] KOZHINA G A, ERMAKOV A N, FETISOV V B, et al. Electrochemical Dissolution of Co3O4in Acidic Solutions[J]. Russian Journal of Electrochemistry, 2009, 45(10): 1170- 1175.
[13] WANG Xuan-bing, XU Rui-dong, FENG Su-yang, et al. Facile One-Step Synthesis of a Co3O4-and CNT-Doped 3D-Ti/PbO2Electrode with a High Surface for Zinc Elect-rowinning[J]. Hydrometallurgy, 2021, 199: 105529.
[14] DA SILVA L M, BOODTS J F C, DE FARIA L A. Oxygen Evolution at RuO2()+Co3O4(1–) Electrodes from Acid Solution[J]. Electrochimica Acta, 2001, 46(9): 1369- 1375.
[15] KRSTAJI? N, TRASATTI S. Cathodic Behavior of RuO2- Doped Ni/Co3 O4Electrodes in Alkaline Solutions: Sur-face Characterization[J]. Journal of the Electrochemical Society, 1995, 142(8): 2675-2681.
[16] SU Liu-hua, LI Kan, ZHANG Hong-bo, et al. Electroc-hemical Nitrate Reduction by Using a Novel Co3O4/Ti Cathode[J]. Water Research, 2017, 120: 1-11.
[17] KUNG C W, CHEN H W, LIN C Y, et al. Synthesis of Co3O4Nanosheets via Electrodeposition Followed by Ozone Treatment and Their Application to High-Performance Supercapacitors[J]. Journal of Power Sources, 2012, 214: 91-99.
[18] FERN M, GAZULLA A, VENTURA M J, et al. Charac-terization of Cobalt Oxides Transformations with Tempe-rature at Different Atmospheres[J]. International Journal of Chemical Sciences, 2019, 17(2): 258.
[19] LIU Bao, MA Bao-zhong, CHEN Yong-qiang, et al. Cor-rosion Mechanism of Ti/IrO2-RuO2-SiO2Anode for Oxy-gen Evolution in Sulfuric Acid Solution[J]. Corrosion Science, 2020, 170: 108662.
[20] FELIX C, MAIYALAGAN T, PASUPATHI S, et al. Synt-hesis, Characterisation and Evaluation of IrO2Based Bin-ary Metal Oxide Electrocatalysts for Oxygen Evolution Reaction[J]. International Journal of Electrochemical Sci-ence, 2012, 7(12): 12064-12077.
[21] JAGADALE A D, KUMBHAR V S, BULAKHE R N, et al. Influence of Electrodeposition Modes on the Super-capacitive Performance of Co3O4Electrodes[J]. Energy, 2014, 64: 234-241.
[22] FAN Xiao-yong, SHI Yong-xin, GOU Lei, et al. Electro-deposition of Three-Dimensional Macro-/Mesoporous Co3O4Nanosheet Arrays as for Ultrahigh Rate Lithium-Ion Bat-tery[J]. Electrochimica Acta, 2014, 142: 268-275.
[23] MAILE N, SHINDE S K, PATIL S S, et al. Capacitive Property Studies of Electrochemically Synthesized Co3O4and Mn3O4on Inexpensive Stainless Steel Current Col-lector for Supercapacitor Application[J]. Ceramics Inter-national, 2020, 46(10): 14640-14649.
[24] MAILE N C, SHINDE S K, PATIL R T, et al. Structural and Morphological Changes in Binder-Free MnCo2O4Electrodes for Supercapacitor Applications: Effect of Deposition Parameters[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(4): 3729-3743.
[25] SHAN Rui, ZHANG Zi-chen, KAN Miao, et al. A Novel Highly Active Nanostructured IrO2/Ti Anode for Water Oxidation[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14279-14283.
[26] LIU Bao, WANG Cheng-yan, CHEN Yong-qiang, et al. Electrochemical Behavior and Corrosion Mechanism of Ti/IrO2-RuO2Anodes in Sulphuric Acid Solution[J]. Jour-nal of Electroanalytical Chemistry, 2019, 837: 175-183.
[27] BURKE L D, MURPHY O J. Cyclic Voltammetry as a Technique for Determining the Surface Area of RuO2Electrodes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 96(1): 19-27.
[28] MEHDIPOUR M, TABAIAN S H, FIROOZI S. Effect of IrO2Crystallinity on Electrocatalytic Behavior of IrO2- Ta2O5/MWCNT Composite as Anodes in Chlor-Alkali Membrane Cell[J]. Ceramics International, 2019, 45(16): 19971-19980.
[29] MONDSCHEIN J S, CALLEJAS J F, READ C G, et al. Crystalline Cobalt Oxide Films for Sustained Electro-cata-lytic Oxygen Evolution under Strongly Acidic Con-di-tions[J]. Chemistry of Materials, 2017, 29(3): 950- 957.
[30] LI Chen, LI Kan, CHEN Chen, et al. Electrochemical Removal of Nitrate Using a Nanosheet Structured Co3O4/Ti Cathode: Effects of Temperature, Current and pH Adjusting[J]. Separation and Purification Technology, 2020, 237: 116485.
Electrocatalytic Oxygen Evolution Performance of Nanostructured Ti/Co3O4/RuO2-IrO2Anode
1,1,1,1,1,2,1,2
(1. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Shandong Qingdao 266101, China; 2. College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 15001, China)
In order to improve the electrocatalytic oxygen evolution performance of Ti/RuO2-IrO2anode, Ti/Co3O4/RuO2- IrO2composite anode with nano-structured Co3O4interlayer was developed. The electrochemical oxygen evolution performance of the composite anode was studied. The TA0titanium plate sample (100 mm×20 mm×10 mm) was degreased and cleaned, then boiled in 10wt.% oxalic acid aqueous solution for 2 hours to remove the surface oxide film. The coating was prepared by potentiostatic electrodeposition. Electrodeposition adopts standard three-electrode system, and the plating solution is 0.05 mol/L aqueous solution of Co(NO3)2. The electrodeposition parameters were: applied potential ?1.0 V (vs. SCE), solution temperature was 25 ℃, and deposition time was 30 min. After the electrodeposition was completed, the coated samples were placed in a muffle furnace and sintered at 350 ℃for 1 hour to obtain Co3O4nanosheet structure (Ti/Co3O4). H2IrCl6·6H2O and RuCl3·H2O were mixed and dissolved in n-butanol, and then stirred for 30 min to form a coating solution with a concentration of 0.3 mol/L (Ir∶Ru=1∶9). The solution was uniformly coated on the prepared Ti/Co3O4sample, then the sample was placed in a constant temperature oven at 120 ℃ for 20 min, and finally calcined in a muffle furnace at 500 ℃ for 1 hour. The above process was repeated 1 to 5 times to obtain Ti/Co3O4/RuO2-IrO2composite anodes with different RuO2-IrO2loadings. Then,the micro morphology of the coating was observed by scanning electron microscope (JSM-6700F) and transmission electron microscope (TECNAI G2 F20 s-twin). The component is analyzed by the EDS spectrum of each selected point taken by an energy spectrometer. Analyze the phase composition of the coating by an X-ray diffractometer (D8 Advance). Finally, electrochemical analysis was performed using an electrochemical workstation (Parstat 2273), and the samples were subjected to potentiodynamic polarization tests, cyclic voltammetry tests and cyclic stability tests. The Ti/Co3O4/RuO2-IrO2anode with nanostructured Co3O4interlayer was successfully prepared on the surface of Ti substrate by electrodeposition and sintering. The results showed that the intensity of XRD diffraction peak of RuO2-IrO2gradually increased with the increase of coating times on the surface of Co3O4nanosheets. SEM showed that the RuO2-IrO2mixed nanoparticles loaded on Co3O4nanosheets increased gradually with the increment of coating times, and finally the Co3O4interlayer was covered. TEM analysis showed that Co3O4nanosheets were made up of nanoparticles and had a porous structure. The polarization curves showed that the oxygen evolution potential of the composite anode containing Co3O4interlayer coated with three layers of RuO2-IrO2was the lowest. When the current density was 10 mA/cm2, the oxygen evolution potential of the composite anode was 1.326 V (vs. SCE), lower than that of the Ti/RuO2-IrO2anode without interlayer (1.413 V). Cyclic voltammetric measurement showed that Ti/Co3O4/RuO2-IrO2anode had a high electrocatalytic active surface area with a voltammetric charge of 62.83 mC/cm2, which was 166% higher than that of Ti/ RuO2-IrO2anode (23.65 mC/cm2). Stability test demonstrated that after 1 000 cycles of cyclic stability test, the loss rate of voltammetric charge of the composite anode was 35.94%, which was lower than that of the anode without interlayer (48.88%), and the electrochemical activity of the composite anode with interlayer after the stability test with cyclic polarization was still obviously better than that of Ti/RuO2-IrO2anode before cyclic polarization test. The Co3O4with nanosheet structure can improve the electronic conductivity and increase the specific surface area; after loading the uniformly dispersed RuO2-IrO2nanoparticles, the electrochemically active surface area of the composite anode increases significantly. Therefore, the addition of the interlayer of Co3O4nanosheets improves the electrocatalytic oxygen evolution performance and stability of the Ti/Co3O4/ RuO2-IrO2anode.
RuO2-IrO2; Co3O4nanosheets; electrocatalysis; oxygen evolution; metallic oxide anode; voltammetric charge
TG174.2
A
1001-3660(2022)11-0436-09
10.16490/j.cnki.issn.1001-3660.2022.11.041
2021–09–28;
2022–03–15
2021-09-28;
2022-03-15
劉越仁(1996—),男,碩士研究生,主要研究方向為腐蝕與防護。
LIU Yue-ren (1996-), Male, Postgraduate, Research focus: corrosion and protection.
辛永磊(1982—),男,高級工程師,主要研究方向為腐蝕與防護。
XIN Yong-lei (1982-), Male, Senior engineer, Research focus: corrosion and protection.
劉越仁, 辛永磊, 許立坤, 等. Ti/Co3O4/RuO2-IrO2納米結(jié)構(gòu)陽極電催化析氧研究[J]. 表面技術(shù), 2022, 51(11): 436-444.
LIU Yue-ren, XIN Yong-lei, XU Li-kun, et al. Electrocatalytic Oxygen Evolution Performance of Nanostructured Ti/Co3O4/RuO2-IrO2Anode[J]. Surface Technology, 2022, 51(11): 436-444.